
Assessing PM2.5 Model Performance for the Conterminous U.S. 
with Comparison to Model Performance Statistics from 2007–
2015

James T. Kelly1, Shannon N. Koplitz1, Kirk R. Baker1, Amara L. Holder2, Havala O.T. Pye2, 
Benjamin N. Murphy2, Jesse O. Bash2, Barron H. Henderson1, Norm Possiel1, Heather 
Simon1, Alison M. Eyth1, Carey Jang1, Sharon Phillips1, Brian Timin1

1Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research 
Triangle Park, NC 27711, USA

2Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle 
Park, NC 27711, USA

Abstract

Previous studies have proposed that model performance statistics from earlier photochemical grid 

model (PGM) applications can be used to benchmark performance in new PGM applications. A 

challenge in implementing this approach is that limited information is available on consistently 

calculated model performance statistics that vary spatially and temporally over the U.S. Here, a 

consistent set of model performance statistics are calculated by year, season, region, and 

monitoring network for PM2.5 and its major components using simulations from versions 4.7.1–

5.2.1 of the Community Multiscale Air Quality (CMAQ) model for years 2007–2015. The multi-

year set of statistics is then used to provide quantitative context for model performance results 

from the 2015 simulation. Model performance for PM2.5 organic carbon in the 2015 simulation 

ranked high (i.e., favorable performance) in the multi-year dataset, due to factors including recent 

improvements in biogenic secondary organic aerosol and atmospheric mixing parameterizations in 

CMAQ. Model performance statistics for the Northwest region in 2015 ranked low (i.e., 

unfavorable performance) for many species in comparison to the 2007–2015 dataset. This finding 

motivated additional investigation that suggests a need for improved speciation of wildfire 

PM2.5emissions and modeling of boundary layer dynamics near water bodies. Several limitations 

were identified in the approach of benchmarking new model performance results with previous 

results. Since performance statistics vary widely by region and season, a simple set of national 
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performance benchmarks (e.g., one or two targets per species and statistic) as proposed previously 

are inadequate to assess model performance throughout the U.S. Also, trends in model 

performance statistics for sulfate over the 2007 to 2015 period suggest that model performance for 

earlier years may not be a useful reference for assessing model performance for recent years in 

some cases. Comparisons of results from the 2015 base case with results from five sensitivity 

simulations demonstrated the importance of parameterizations of NH3 surface exchange, organic 

aerosol volatility and production, and emissions of crustal cations for predicting PM2.5 species 

concentrations.
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1. Introduction

Photochemical grid models (PGMs) simulate concentrations of trace gases and particles in 

the atmosphere using numerical representations of the major physical and chemical 

production and loss processes. Since PGMs are based on mechanistic parameterizations, 

they are believed to have suitable predictive capability to be used in a wide range of 

assessments including human health and welfare risk analyses (USEPA, 2009, 2014b), 

policy cost-benefit assessments (USEPA, 2012c), air quality forecasting (Lee et al., 2017), 

and air quality management (SJVAPCD, 2018). The predictive capability of PGMs is 

established in part during model development by deriving process parameterizations from 

first principles, using fundamental laboratory and other scientific datasets, and evaluating 

model developments against field study measurements designed to isolate processes of 

interest. PGM predictions are also assessed by comparison with routine observations 

according to operational, diagnostic, dynamic, and probabilistic performance evaluation 

techniques (Dennis et al., 2010).

Operational model evaluation uses statistical and graphical comparisons to assess the overall 

agreement of model predictions and observations from routine monitoring networks. 

Operational evaluation statistics are often used in judging the appropriateness of modeling 

for a given application, and several studies have recommended approaches and best practices 

for operational evaluation. Boylan and Russell (2006) recommended goals and criteria for 

model performance in terms of mean fractional bias (MFB) and mean fractional error (MFE) 

statistics based on performance in earlier modeling studies for particulate matter (PM) and 

visibility impairment. The Boylan and Russell (2006) goals and criteria relax under low 

concentration conditions to accommodate a range of environments, but do not vary by region 

or season. Simon et al. (2012) compiled model performance statistics for multiple pollutants 

from 69 peer-reviewed publications during 2006–2012 and provided recommendations on a 

minimum set of statistics that should be reported in studies of regulatory relevance. The set 

includes absolute and normalized bias and error statistics along with information to assess 

performance for correlation and variability. Recently, Emery et al. (2017) provided 

recommendations on statistics and benchmarks to assess PGM performance based on 

information from 31 of the 69 studies compiled by Simon et al. (2012) in combination with 
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results from seven additional studies published between 2012 and 2015. For operational 

evaluations of PM2.5 and several PM2.5 components, Emery et al. (2017) recommended 

model performance goals and criteria for mean bias (MB), normalized mean bias (NMB), 

and Pearson correlation coefficient (r). The Emery et al. (2017) benchmarks do not vary with 

region, season, or pollutant concentration.

The previous studies identified several challenges in assessing the state of operational model 

performance using statistics available in the peer-reviewed literature. Limitations include 

inconsistency in the statistics reported, inconsistency in the temporal and spatial scales of 

aggregation, relatively large influence on multi-study compilations of a minority of studies 

that report many statistics, and possible publication bias in the model performance literature. 

Artifacts in measurements of total and speciated PM2.5 (e.g., El-Sayed et al., 2016; Kim et 

al., 2015; Pye et al., 2018; Solomon et al., 2014) also complicate interpretation of model 

performance statistics. Another issue in compiling information across studies is 

inconsistency in the type of modeling performed. For instance, some applications are based 

on an optimal model configuration developed for a specific region and period. For routine 

annual modeling of the conterminous U.S., computational considerations and differences in 

performance in different regions and seasons limit the ability to optimize model 

configuration options and grid resolution. As a result, typical model performance statistics 

likely differ for routine national modeling compared to modeling tailored to a specific region 

and period (e.g., Murphy et al., 2017). In summary, limited information is available in the 

peer-reviewed literature to provide quantitative context for interpreting spatially and 

temporally varying operational model performance statistics for national simulations over 

the U.S.

In the current study, PM2.5 is simulated over the conterminous U.S. during 2015 with the 

Community Multiscale Air Quality (CMAQ) model using 12-km horizontal resolution. 

Operational model performance statistics are calculated and compared with a consistent set 

of performance statistics developed for the years 2007–2015 from national 12-km modeling 

of the U.S. with varying versions of CMAQ. The 2015 model predictions are also compared 

with results of five sensitivity simulations to help interpret model performance and examine 

the influence of alternative model configurations. Information on model performance 

statistics for 2007–2015 developed in this study are provided in the supporting information 

(Tables S1–S9 and a supplementary file) for use in assessing 12-km modeling studies of the 

conterminous U.S.

2. Methods

2.1 Air Quality Modeling

The 2015 base case simulation was based on CMAQ version 5.2.1 (www.epa.gov/cmaq; 

https://doi.org/10.5281/zenodo.1212601) (Appel et al., 2018) on a domain covering the 

conterminous U.S. with 12-km horizontal resolution and 35 vertical layers as part of a recent 

study (Kelly et al., 2019). Gas-phase chemistry was represented with the Carbon Bond 2006 

mechanism (CB6r3; Emery et al., 2015), inorganic aerosol thermodynamics were based on 

ISORROPIA II (Fountoukis and Nenes, 2007; Nenes et al., 1998), primary organic aerosol 

(POA) was modeled as non-volatile (Appel et al., 2017; Simon and Bhave, 2012), and 
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secondary organic aerosol (SOA) from volatile organic compounds was based on Pye et al. 

(2017). Chemical boundary conditions (BCs) were developed from a CMAQ simulation on a 

larger domain that used BCs based on a hemispheric CMAQ simulation (Mathur et al., 

2017). U.S. anthropogenic emissions were based on version 2 of the 2014 national emission 

inventory (NEI) (USEPA, 2019a). Day-specific satellite-based fire activity data and fuel-

specific emissions were used to generate wild, prescribed (Baker et al., 2016, 2018), and 

cropland fire (Pouliot et al., 2017; Zhou et al., 2018) emissions for 2015. Electric generation 

unit emissions were based on continuous emission monitoring data from 2015. Mobile 

source emissions were simulated for 2014 and 2016 with MOVES2014a (www.epa.gov/

moves) and were interpolated to 2015. Emissions of biogenic compounds (Bash et al., 

2016), windblown dust (Foroutan et al., 2017), and sea-spray aerosol (Gantt et al., 2015; 

Kelly et al., 2010) were simulated online using 2015 meteorology. NH3 surface-exchange 

was simulated using an updated version of the CMAQv5.2.1 bidirectional exchange 

parameterization (Bash et al., 2013; Pleim et al., 2013). Specifically, the resistance 

parameterization of Pleim et al. (2013) was replaced with that of Massad et al. (2010), and 

the maximum amount of NH4
+ in soil-water solution was estimated using the sorption model 

of Venterea et al. (2015) rather than a fixed fraction of total NH4
+. Meteorological fields for 

CMAQ modeling were based on version 3.8 of the Weather Research and Forecasting 

(WRF) model (Skamarock et al., 2008).

Five sensitivity simulations were conducted with CMAQ to examine the influence of 

emissions and model configuration options on PM2.5 predictions in the 2015 base case. First, 

a simulation with wild and prescribed (but not cropland) fire emissions set to zero (“no.fire” 

case) was conducted to understand the influence of modeled fires on predictions. Second, a 

simulation with gridded emissions of crustal PM2.5components set to zero (“no.crustal” 

case) was conducted to examine the influence of crustal cations on nitrate predictions via 

their effects on inorganic aerosol thermodynamics. Crustal cation emissions from sea spray 

and windblown dust are calculated during CMAQ execution and are included in all 

simulations. Third, a simulation was conducted using the default version of the NH3 

bidirectional exchange parameterization in CMAQv5.2.1 and updated versions of the 

emissions inventory and BCs that became available during the study (“nei.bc.nh3” case). 

National total emissions for NOx, SO2, and primary EC and OC in the nei.bc.nh3 case were 

within 1% of the emissions in the base case. Fourth, a simulation without the bidirectional 

surface-exchange parameterization for NH3 (“no.bidi” case) was conducted to understand 

the influence of this model option on performance. Finally, a simulation was conducted 

where the organic aerosol treatment of Murphy et al. (2017) was used (“pc.soa” case) 

instead of the non-volatile POA treatment. The Murphy et al. (2017) parameterization treats 

POA as semi-volatile and produces SOA from an additional species that is emitted in 

proportion to POA emissions to approximate potential missing SOA production from 

combustion sources.

As part of previous studies, CMAQ simulations for the conterminous U.S. were conducted 

for years 2007–2014. Consistent with the 2015 base case, these simulations used 12-km 

horizontal resolution for annual simulations of air quality over the U.S. CMAQ versions 

ranged from 4.7.1 to 5.2 and WRF versions ranged from 3.1 to 3.8.1 for the 2007 to 2014 

simulations. The differences in model configuration over the years introduced variability 
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into the model performance statistics, which is useful in providing a broader range of recent 

performance results for comparison with the new modeling. More details on the 

configuration of the 2007–2014 simulations are provided in Table 1 and references therein.

2.2 Model Performance Statistics

Model performance statistics were calculated consistently for all simulations using 

measurements of major PM2.5 components from Chemical Speciation Network (CSN) and 

Interagency Monitoring for the Protection of Visual Environments (IMPROVE) monitoring 

sites (Solomon et al., 2014). Comparisons were made between modeled and observed 

concentrations that were paired in space and time by averaging predictions to the 24-h 

sampling period of each measurement. Particle mass in the sub-2.5 μm diameter size range 

was calculated directly from the predicted particle size distributions. Nolte et al. (2015) 

reported that summation of particles mass in the Aitken and accumulation modes provides a 

similar estimate as the direct calculation used here. Since CSN sites tend to be in urban areas 

and IMPROVE sites tend to be in rural areas, model performance statistics are considered 

separately for the two networks. Statistics were calculated for PM2.5components by season, 

year, network, and U.S. climate region (Karl and Koss, 1984; Fig. S1). Information on 

model performance for total PM2.5 is available in Tables S1 and S10 and previous work 

(Kelly et al., 2019) but is not discussed below for brevity.

The following statistics are considered below (see Table S11 for definitions): NMB (%), MB 

(μg m−3), root-mean-square error (RMSE) (μg m−3), and Pearson r. Normalized mean error 

(NME) (%), MFB, and MFE values are also provided in the supporting information. This set 

of statistics is consistent with recommendations of Simon et al. (2012) and Emery et al. 

(2017). Absolute values of NMB and MB were used in ranking performance for the 2015 

base case against the multi-year set of statistics because NMB and MB can have positive and 

negative values.

3. Results

3.1 Overview

In this section, model performance statistics for PM2.5 sulfate, nitrate, organic carbon (OC), 

and elemental carbon (EC) are discussed. PM2.5 ammonium is not discussed because of 

measurement uncertainties (e.g., Yu et al., 2006) and its strong correlation with sulfate and 

nitrate. Due to the large number of possible comparisons (e.g., species, seasons, regions, 

networks, statistics), key features of model performance are considered below, and the 

supporting information is used to provide additional details. The median and range of the 

model performance statistics for simulations of 2007–2015 are provided in Tables S1–S9, 

and performance statistics for the 2015 base case are provided in Tables S10 and S12–S15. 

The full table of performance statistics for the individual annual simulations are available in 

a supporting file. Since distinct performance issues were observed for the Northwest, 

performance for the Northwest is discussed in more detail following the discussion of 

performance for the species.
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3.2 Sulfate

Model performance statistics for PM2.5 sulfate at CSN sites for the 2015 base case 

simulation are illustrated in Fig. 1 by season and U.S. climate region. Values of the sulfate 

performance statistics at CSN and IMPROVE sites are provided in Table S12. NMB for 

sulfate at CSN sites is generally within ±20% (Fig. 1), with a notable exception of the 

Northwest region, where NMB is greater than 80% for most seasons. MB is generally within 

±0.2 μg m−3 and has a similar spatial and seasonal dependence as NMB. The highest RMSE 

values are in the Northeast and Ohio Valley regions due to the relatively high absolute 

sulfate concentrations. For instance, the mean observed sulfate concentrations at CSN sites 

in the Northeast (1.45 μg m−3) and Ohio Valley (1.81 μg m−3) are several times that in the 

Northwest (0.52 μg m−3). The correlation coefficient for sulfate predictions in the Northeast 

and Ohio Valley is relatively low in winter compared with other seasons, which could be due 

to challenges in simulating oxidation mechanisms in winter (Shah et al., 2018). Correlation 

coefficients are also generally lower in the western U.S., where concentrations are relatively 

low. The annual correlation coefficient for predictions at CSN sites ranged from 0.31 

(Southwest) to 0.79 (Upper Midwest) (Table S12).

Model performance statistics for sulfate at CSN sites for the 2015 base case are compared 

with statistics for 2007–2015 in Fig. 2. The percentiles give the relative level of performance 

for the base case compared with the multi-year set of statistics. Since the 2015 base case is 

included in the multi-year set, the model performance percentiles for the base case fall 

between 0% (lowest rank) and 100% (highest rank). Sulfate performance for the 2015 base 

case compares favorably with previous modeling in terms of NMB, MB, and RMSE, with 

exceptions of the Southwest in Spring and Northwest in all seasons. The rank of the 

correlation coefficient for the 2015 sulfate predictions is relatively low compared with that 

of NMB, MB, and RMSE. A challenge in comparing sulfate performance statistics across 

years is that model performance for sulfate appears to have been influenced by the 

substantial decreases in ambient sulfate in the U.S. during the 2007 to 2015 period. For 

instance, negative correlation exists between year and RMSE (r: 0.70), r (r: 0.74), and 

observed concentration (r: 0.57) based on annual values at IMPROVE and CSN sites over 

2007–2015 (Figs. S2 and S3). The relatively low rank for r performance for the 2015 base 

case for regions in the eastern U.S. is consistent with the trend of decreasing r over 2007–

2015. The trend is associated with reductions in SO2emissions from electric generation units 

that have decreased the summertime sulfate peaks (i.e., signal-to-noise ratio) in the eastern 

U.S. (Chan et al., 2018; gispub.epa.gov/neireport/2014/). Therefore, although performance 

statistics from modeling of earlier years may be helpful in providing context for a new 

model case, performance for earlier years may set inappropriate standards to judge new 

modeling in cases where the underlying atmospheric conditions have changed substantially 

between the modeling periods.

A prominent feature of Fig. 1, Fig. 2 is the relatively poor performance for sulfate in the 

Northwest in the 2015 base case simulation. Predicting sulfate in the Northwest is relatively 

challenging because the concentrations are typically low and representing source-receptor 

relationships is difficult due to the complex terrain. In Fig. 3, NMB for sulfate at CSN and 

IMPROVE sites is compared for the base case simulation and the nei.bc.nh3 and no.fire 
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simulations. Updates to the emission inventory and BCs in the nei.bc.nh3 case improved 

sulfate performance statistics in the Northwest and Southwest. These improvements are due 

in part to emission regulations for shipping sources (USEPA, 2019b) that were better 

represented in the nei.bc.nh3 case than the base case. Recent reductions in SO2 emissions in 

China (e.g., Krotkov et al., 2016; van der A et al., 2017; Zheng et al., 2018) were also better 

represented in the nei.bc.nh3 case and contributed to improved sulfate performance in the 

western U.S. Annual NMB for sulfate improved from 108% for the base case to 96% for the 

no.fire case at IMPROVE sites in the Northwest. High bias in sulfate predictions was evident 

on days where the model estimated a high fire contribution to the concentrations (e.g., Fig. 

S4). These results suggest that the model may overestimate sulfate from wildfires in the 

west. Multiple factors could have contributed to model performance issues for sulfate from 

wildfires including problems with plume rise and transport, excessive mixing of aloft plumes 

to the surface, and emissions issues (e.g., overestimates in SO2 emissions, primary 

PM2.5emissions, or the fraction of primary PM2.5 emissions speciated to sulfate). Laboratory 

measurements suggest that the modeled percent of primary PM2.5emissions speciated as 

sulfate (0.33%) is not too high, because much larger values have been reported for fuels 

typical of the western U.S. such as needle leaf trees (0.68%) and chaparral (1.72%) 

(McMeeking et al., 2009). In previous modeling of fires in 2011 and 2013 (Baker et al., 

2016, 2018), regional transport of wildfire plumes was captured reasonably well by the 

modeling system and sulfate predictions were relatively unbiased on days with wildfire 

impacts. Modeling wildfires in the 2015 base case could be relatively challenging because 

the 2015 fire season in the Pacific Northwest was the most severe in modern history by some 

metrics (USDA, 2016).

3.3 Nitrate

Model performance statistics for PM2.5 nitrate at CSN sites in the 2015 base case simulation 

are shown in Fig. 4 by season and U.S. climate region. Values of the nitrate performance 

statistics at CSN and IMPROVE sites are provided in Table S13. In the eastern U.S., NMB 

for nitrate at CSN sites is generally within ±40%, with exceptions such as the Southeast in 

Fall (NMB: 98%) and Winter (NMB: 77%). Seasonal average modeled NOy concentrations 

were within 14% of measured values in all seasons at Southeastern Aerosol Research 

Characterization (SEARCH) sites, and so overpredictions of nitrate in the Southeast do not 

appear to be due to overpredictions in the total oxides of nitrogen. In the western U.S., 

nitrate is generally biased low with NMBs between about −20 and −60%, except for the 

Northwest in Fall (62%), Spring (NMB: 107%), and Summer (NMB: 145%). 

Underpredictions in the West and Southwest in winter appear more pronounced when 

viewed in terms of MB (Fig. 4b) than NMB (Fig. 4a). These relatively large negative MBs 

are driven by underpredictions of nitrate in mountain valleys during ammonium nitrate 

episodes associated with strong meteorological temperature inversions in winter (e.g., Chen 

et al., 2012; Chow et al., 2006; Franchin et al., 2018). Modeling stagnant meteorology in 

complex terrain often requires finer grid resolution than is currently possible in national-

scale modeling (e.g., <1–4 km; Crosman and Horel, 2017), and wintertime nitrate episodes 

have been simulated reasonably well in the western U.S. for higher-resolution CMAQ 

simulations (e.g., Chen et al., 2014; Kelly et al., 2018). Since model performance can differ 

for PGM simulations at different grid resolutions (e.g., Zakoura and Pandis, 2018), 
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comparisons of performance statistics among simulations to assess operational model 

performance are most meaningful when a consistent grid resolution is used. The correlation 

coefficients for nitrate predictions at CSN sites are greater than 0.6 in much of the U.S., with 

exceptions in cases where nitrate concentrations are low (e.g., during summer and in the 

Southwest) and in the Northwest (Fig. 4d).

Model performance statistics for nitrate at CSN sites for the 2015 base case are compared 

with statistics for 2007–2015 in Fig. 5. In general, NMB, MB, and RMSE statistics for 

nitrate predictions from the 2015 base simulation rank high compared with the full 2007–

2015 dataset, with exceptions of the Northern Rockies and Plains in Winter, Upper Midwest 

in Spring, and the Northwest. The high NMBs for nitrate predictions in the Southeast in Fall 

and Winter (Fig. 4a) are not anomalous compared with the full 2007–2015 dataset (Fig. 5). 

A persistent high bias in PM2.5nitrate predictions occurred in the Southeast in Fall and 

Winter during 2007–2015 (NMB: 32–119%, Table S4), although nitrate is typically a small 

fraction of PM2.5 in the Southeast (e.g., about 6% on average for CSN sites in 2015). 

Correlation coefficients for nitrate in the 2015 base case tend to compare less favorably to 

the multi-year dataset than do NMB, MB, and RMSE. However, correlation coefficients for 

nitrate predictions in the 2015 base case were high in some cases (e.g., r: 0.63 for Ohio 

Valley in Fall; Table S13) where performance ranked in the lowest category (0–20%) in 

comparison to the 2007–2015 dataset. This behavior illustrates that relatively weak 

performance in new modeling compared with previous modeling does not necessarily imply 

a model performance issue. The annual correlation coefficient for nitrate predictions over all 

CSN sites in the 2015 base case (0.71) was the highest in the 2007–2015 dataset (0.62–0.71; 

Fig. S6d).

Recent studies have identified that over-predictions of crustal cations can influence model 

performance for nitrate by affecting particle pH and gas-particle partitioning of total nitrate 

(i.e., NO3
− + HNO3) (Pye et al., 2018; Shah et al., 2018; Vasilakos et al., 2018). Crustal 

cations were biased high in the 2015 base case over much of the U.S. (Fig. S7). These biases 

may derive in part from issues with the nonpoint and fugitive dust emission sectors 

considering the magnitude and spatial correspondence of the emissions (Fig. S8) and 

predicted concentrations (Fig. S9). Also, crustal cation concentrations were underpredicted 

in the Southwest in Summer when windblown dust is relatively active (Fig. S7). Dust 

concentrations in the northern U.S. were influenced by transport from Canada in the model 

(Fig. S9), but sources of dust in Canada are unlikely to explain overpredictions of crustal 

cations in regions far from the border, such as the Southeast. In Fig. 6, NMB for nitrate at 

CSN and IMPROVE sites for the 2015 base case is compared with values for sensitivity 

simulations. For the no.crustal simulation, nitrate concentrations and NMBs are lower than 

for the base case due to increases in particle acidity associated with lower concentrations of 

water-soluble crustal cations in the model (i.e., Ca2+, Mg2+, and K+). The increases in 

particle acidity reduce the fraction of total nitrate in the particle phase in the no.crustal 

simulation compared with the base case simulation (Fig. S10). In areas of the country with 

overpredictions of nitrate (e.g., Southeast and Northwest), the reductions in crustal cation 

emissions improved model bias (e.g., annual NMB improved from 47 to 22% at CSN sites in 

the Southeast). In the West and Southwest, the nitrate NMB was slightly worse in the 
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no.crustal simulation than the base case consistent with underpredictions of crustal cation 

concentrations in the Southwest in the 2015 base case.

The effect of removing the bidirectional NH3 treatment (no.bidi case) on nitrate NMB was 

often directionally similar but smaller than for removing the gridded crustal cation 

emissions, with some exceptions such as the Ohio Valley, South, and Southwest at 

IMPROVE sites (Fig. 6). Turning off the bidirectional surface-exchange parameterization led 

to relatively near-source NH3 deposition and lower NH3concentrations. Lower NH3 

concentration, in turn, led to greater partitioning of total nitrate to HNO3 (Fig. S10), which 

deposits rapidly. Model predictions for NH3were closer to observations from U.S. 

monitoring networks in the base case than in the no.bidi case, although model predictions 

were biased low in both cases (Table S16, Figs. S11 and S12). For the nei.bc.nh3 simulation, 

nitrate NMB was higher than in the base case indicating degraded performance in the 

Northeast, Southeast, and Northwest. The greater nitrate NMBs are associated with the 

greater NH3concentrations in the nei.bc.nh3 case, which used the default version of the 

CMAQv5.2.1 bidirectional exchange parameterization, compared with the base case, which 

used the updated bidirectional exchange parameterization (Figs. S11 and S12). The higher 

NH3 levels in the nei.bc.nh3 case increased the fraction of total nitrate in the particle phase 

compared with the base case (Fig. S10). Despite the degraded performance for nitrate in the 

nei.bc.nh3 case, NH3 predictions for the nei.bc.nh3 case were closer to observations in 

Winter and Spring at SEARCH and Atmospheric Ammonia Network (AMoN; Butler et al., 

2016) sites than were the base case predictions.

For the no.fire simulation, model bias for nitrate is similar to that in the base case with some 

exceptions such as the Northwest, where bias is lower and performance is improved (e.g., 

NMB improved from 76 to 48% at IMPROVE sites in the Northwest; Fig. 6). The wildfire 

sector emits significant amounts of NH3 (Bray et al., 2016) and NOx that can contribute to 

nitrate formation. In previous studies (Baker et al., 2018; Cai et al., 2016), the modeling 

system simulated plume-top NOx concentrations reasonably well and produced little HNO3 

in wildfire plumes, which suggests that the wildfire-driven nitrate overpredictions in the 

Northwest are due to factors other than NOx emissions and chemistry. Laboratory testing of 

fuels common to this region (McMeeking et al., 2009) suggest the nitrate fraction of primary 

PM2.5emissions from wildfires (0.85–1.02%) is similar to the value used here (1.07%).

Another challenge in simulating nitrate is representing nitrate production due to 

heterogeneous hydrolysis of N2O5 (Chang et al., 2011). Nitrate production from this 

pathway is highly variable and difficult to parameterize in PGMs (Jaeglé et al., 2018; 

McDuffie et al., 2018). McDuffie et al. (2018) reported that the Davis et al. (2008) 

parameterization used in CMAQ produced higher N2O5 uptake coefficients than were 

estimated from aircraft measurements in 2015. Future work is planned to better constrain 

estimates of N2O5 uptake using field study data.

3.4 Organic carbon

Model performance statistics for PM2.5 OC at CSN sites for the 2015 base case are shown in 

Fig. 7 by season and U.S. climate region. Values of the OC performance statistics at CSN 

and IMPROVE sites are provided in Table S14. For half of the region-season cases in Fig. 7, 
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NMB is within ±20%, but underpredictions of −23 to −50% occur in six of the nine regions 

in summer. Summertime OC underpredictions could be due in part to too little SOA 

production, although predictions are relatively unbiased in the Southeast in summer (NMB: 

7.6%), where biogenic SOA concentrations are high. In contrast to the underpredictions for 

summer, OC predictions were biased high (3–76%) in seven of the nine regions in winter. 

Emissions associated with home heating (e.g., wood combustion) and prescribed burning in 

the Southeast are relatively important in winter (Odman et al., 2018; Watson et al., 2015) 

and lead to model OC overestimates under non-volatile POA assumptions (Murphy et al., 

2017). Challenges in simulating prescribed burning along the Gulf of Mexico contributed to 

PM2.5 overpredictions in winter there (Fig. S17). For instance, the predicted OC 

concentration at Breton Island, LA on 14 February was 250 μg m−3 in the base case (and 2.2 

μg m−3 in the no.fire case) when the observed concentration was less than 5 μg m−3 (Fig. 

S18). RMSE for OC is generally between 1 and 2 μg m−3 in the eastern U.S. and tends to be 

higher in the western U.S., especially in the Northwest region. The correlation coefficient for 

OC is frequently between 0.4 and 0.6, but is between 0.6 and 0.8 in the West in all seasons 

and six of the nine regions in Fall. Overall, model performance for the 2015 simulation 

ranked high in the full 2007–2015 dataset (Fig. 8), with a few exceptions (e.g., Northern 

Rockies and Plains in Fall and Summer). The relatively good performance for OC could be 

due to a range of factors including recent improvements in the biogenic SOA 

parameterizations (Pye et al., 2013, 2017) and atmospheric mixing (USEPA, 2015b) in 

CMAQ.

NMB values for OC at CSN and IMPROVE sites for the 2015 base case are compared with 

values for the sensitivity simulations in Fig. 9. The lower NMB values for the no.fire 

simulation than the base case indicate generally worse model performance for the simulation 

without wild and prescribed fire emissions. This behavior is most evident at IMPROVE sites 

in regions of the western U.S. where fires were most prevalent (Fig. S19). Consistent with 

previous studies (Baker et al, 2016, 2018), model performance for OC is mixed within 

regions and across seasons (Fig. S20) on days with modeled fire influence. The model had 

some skill in predicting OC associated with large fires for sites in the Northwest (Flathead 

and Glacier), but underpredictions (Fresno) and overpredictions (Redwood) are evident at 

other sites (e.g., see Fig. S21).

For the pc.soa simulation, NMB for OC is lower at CSN sites and higher at IMPROVE sites 

compared with the base case. This behavior is consistent with the organic aerosol 

parameterization used in the pc.soa simulation in which organic aerosol may locally 

decrease due to POA evaporation, but generally increase in source regions and downwind 

due to additional SOA production relative to the base case (Murphy et al., 2017). The 

Murphy et al. (2017) treatment tends to increase OC during photochemically active daytime 

conditions (Fig. S22) and was previously shown to substantially reduce negative bias in at 

urban sites in California during summer when evaluated with hourly observations. OC 

model performance statistics were generally similar for the base case and the pc.soa case, 

although NMB performance degraded moderately in some regions in the pc.soa simulation 

(e.g., at IMPROVE sites in the east) (Fig. 9). These results should be interpreted cautiously, 

however, because differences in OC measurements from collocated IMPROVE and CSN 

sites have been previously reported (e.g., Kim et al., 2015; Weakley et al., 2016). NMB for 
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OC was noticeably better in the Northwest for the pc.soa case than the base case, although 

this behavior may be related to issues with simulating boundary layer mixing (see section 

3.5). The influence on OC NMB of updates to the emission inventory, BCs, and NH3 

surface-exchange parameterization in the nei.bc.nh3 case was moderate and mixed overall. 

Correlation coefficients for OC improved significantly in the Upper Midwest and several 

other regions in the nei.bc.nh3 case compared with the base case (Fig. S23).

3.5 Elemental carbon

Model performance statistics for PM2.5 EC at CSN sites in the 2015 base case simulation are 

shown in Fig. 10 by season and U.S. climate region. Values of the EC performance statistics 

at CSN and IMPROVE sites are provided in Table S15. Modeled EC is biased high for all 

regions and seasons compared with CSN (and IMPROVE, Table S15) observations. NMB 

values are between 20 and 60% for 23 of the 36 region-season cases in Fig. 10a. Despite 

some large NMBs, MB values are generally less than 0.2 μg m−3 due to the low 

concentrations of EC (e.g, Fig. S15), with an exception of the Northwest region for which 

MBs are greater than 0.8 μg m−3 (see section 3.5 below). Annual correlation coefficients for 

EC predictions at CSN sites ranged from 0.39 (Northwest) to 0.65 (Northern Rockies and 

Plains). Model performance for EC in the base case often ranks high in comparison to 

statistics for the 2007–2015 dataset (Fig. 11), with exceptions of the Northern Rockies and 

Plains and Northwest regions, which experienced unusually high wildfire activity in 2015. 

PM2.5 EC predictions were biased high on median throughout the 2007–2015 period (Table 

S9).

NMB for PM2.5 EC predictions in the 2015 base case is compared with NMB for the PM2.5 

EC in the sensitivity simulations in Fig. 12. The bias in EC predictions was smaller in the 

no.fire simulation than the base case, and the biggest improvements in the no.fire simulation 

compared with the base case occurred at IMPROVE sites in the western U.S. For instance, 

NMB improved from 90 to 7% in the West, and 120 to −12% in the Northern Rockies and 

Plains. On days where the model predicted substantial influence of fire emissions on 

concentrations at monitoring sites, EC concentrations were generally overestimated in the 

base case (Fig. S4) consistent with previous studies (Baker et al., 2016, 2018). Issues with 

primary PM2.5 emissions from the wildfire sector or the fraction of PM2.5 emissions 

speciated to EC may contribute to the overpredictions. In the nei.bc.nh3 case, model 

performance for EC improved slightly compared with the base case.

3.6 Model Performance in the Northwest

Consistently higher MB and NMB for the predictions in Northwest compared to the other 

regions are evident in Fig. 1, Fig. 4, Fig. 7, Fig. 10, with NMB exceeding 60% for most 

seasons across all species examined. This pattern is particularly pronounced for EC, where 

NMB exceeds 100% across the whole year. The greater high biases for EC in the Northwest 

are likely due in part to assumptions about the speciation of PM2.5 emissions from wildland 

fires and challenges in simulating boundary layer dynamics near the Puget Sound and other 

coastal areas.
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The NMB for EC improved dramatically in the Northwest in the no.fire simulation, reducing 

from 309% in the base case to 149% in the no.fire case at IMPROVE sites. The speciation 

profile for wildland fire PM2.5 emissions, which was based on profiles estimated in two 

studies (Chow et al., 2004; Watson et al., 1996) according to Reff et al. (2009), allocates 

9.5% of total PM2.5 from all wildfire emissions as EC. The Chow et al. (2004) and Watson 

et al. (1996) speciation profiles were developed by combining measurements across several 

burn experiments, some of which included measurements from pile burns of dried vegetative 

clippings and fence posts in addition to natural biomass. A more recent laboratory study also 

suggests that EC may contribute a relatively large percentage of PM2.5 emissions for fuels in 

the southeastern (7.5%) and southwestern (e.g., 20% for chaparral) U.S. (Hosseini et al., 

2013). However, separate laboratory measurements for fuels common in the western U.S. 

suggest that EC makes up a smaller percentage of total PM2.5 emissions (e.g., 1.4% for 

montane and 4.3% for chaparral ecosystems) (McMeeking et al., 2009) than the 9.5% value 

used in our modeling. Additionally, recent field measurements from forest fires in the 

southeastern U.S. (Aurell et al., 2015) suggest that the composite profile developed by Reff 

et al. (2009) that was used in developing the NEI may have overestimated the contribution of 

EC to emitted PM2.5 mass by a factor of four (Fig. 13). Updated speciated contributions for 

wildland fire EC are scheduled for implementation in future U.S. EPA emission inventories 

and should correct some of the relatively high biases in EC performance in the Northwest 

and the other western fire-prone regions observed in this assessment.

In addition to issues with speciation profiles for fire emissions, overpredictions for EC and 

other primary species at some sites in the Northwest appear to be due to meteorological 

factors. For instance, EC was strongly overestimated in the no.fire simulation at the Puget 

Sound IMPROVE site (PUGE1) in Seattle, which is west of the Cascade Mountain Range 

and upwind from many of the major fire areas in eastern Washington, Oregon, and Idaho. 

Unusually high concentrations of EC (>20 μg m−3) and other species (e.g., soil and OC) 

were predicted at this site during periods where the modeled boundary layer height was 

extremely low (<50 m) (e.g., Figs. S24 and S25). Simulating atmospheric mixed layers is 

challenging near the shoreline (McNider et al., 2018), and modeled boundary layer heights 

may have been underestimated at times due to the low water temperature of the Puget 

Sound. Other monitoring sites in Washington and Oregon show similar patterns of elevated 

EC and soil concentrations during periods with low simulated boundary layer heights (e.g., 

Fig. S26) suggesting that this issue is not confined to the site in Seattle. Further evaluation of 

modeled boundary layer dynamics in this region would be of interest. Also, although this 

section emphasizes the role of fire emissions and boundary layer dynamics, other factors 

likely contributed to the high biases for EC predictions in the Northwest and other regions.

4. Summary and Conclusions

Comparing model performance statistics for new modeling with consistently calculated 

statistics from previous modeling studies can be useful in assessing model performance 

(Boylan and Russell, 2006; Emery et al., 2017; Simon et al., 2012; USEPA, 2018b). 

However, limited information on performance statistics from previously published studies is 

available to provide quantitative context for annual 12-km modeling of the conterminous 

U.S. Here, a consistent set of model performance statistics by season, year, network, and 
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U.S. climate region are developed for PM2.5 and its major components (i.e., sulfate, nitrate, 

OC, and EC) using 12-km CMAQ simulations for 2007 to 2015. The multi-year set of 

statistics are then used to interpret model performance for the 2015 base simulation.

Several insights were provided by comparison of model performance statistics for the 2015 

base case simulation with statistics for the full 2007–2015 dataset. Performance statistics for 

OC in the base case generally ranked high compared with performance statistics for the 

2007–2015 dataset and built confidence in the 2015 simulation results. The relatively good 

performance for OC in 2015 could be due to improvements in emissions modeling as well as 

the modeling of atmospheric mixing (USEPA, 2015b) and biogenic SOA (Pye et al., 2013, 

2017) in recent versions of CMAQ. Model performance for sulfate and nitrate in the 2015 

base case also ranked high in general (excluding the Northwest) for NMB, MB, and RMSE 

compared with the 2007–2015 dataset. Comparison of 2015 model performance statistics 

with results for previous years helped identify relatively weak model skill in the Northwest 

in 2015. Additional investigation of performance in the Northwest indicated that the fraction 

of wildfire PM2.5 emissions speciated as EC is likely too high and the simulated boundary 

layer height is frequently too low at coastal urban sites in the Northwest in the 2015 

simulation. Model performance for sulfate in the Northwest was also found to improve with 

updates to shipping emissions and boundary conditions that better reflected recent 

reductions in SO2 emissions in Asia.

Limitations in comparing performance statistics for the 2015 base case with results of earlier 

modeling also emerged from our study. First, performance statistics were found to vary 

widely by region and season due to the spatially and temporally varying nature of the 

underlying processes. This behavior suggests that a simple set of nationally representative 

statistical benchmarks (e.g., one or two national benchmarks per statistic and species) as has 

been proposed previously would not be adequate to assess model results throughout the U.S. 

Second, trends in model performance due to trends in ambient air quality can compromise 

the value of using performance statistics from previous modeling in assessing the 

appropriateness of new modeling. For example, recent decreases in sulfate concentration in 

the eastern U.S. appear to have contributed to improvements in MB and RMSE and 

degradation in r for CMAQ predictions over the 2007–2015 period. Third, relatively high 

rank of performance for new modeling compared with previous modeling can occur even 

when model skill is weak in the new modeling, and vice-versa. For example, NMB for 

nitrate at CSN sites in the Southeast in Winter appeared high in the 2015 base case (NMB: 

77%), but this value ranked reasonably high (i.e., 40–60% category) in the 2007–2015 

dataset. Conversely, good correlation for nitrate (e.g., r: 0.63 for Ohio Valley in Fall) in the 

2015 base case ranked in the lowest category (0–20%) compared with the full 2007–2015 

period. These limitations should be considered when using previous model performance 

results to provide context for new modeling. Summary statistics for the full 2007–2015 

dataset are provided in Tables S1–S9 and statistics for individual cases are available in a 

supplementary file.

In addition to providing a database of model performance statistics and illustrating their use, 

sensitivity simulations were used to examine model performance for the 2015 base case. 

Improved performance for sulfate, nitrate, and EC at IMPROVE sites in the western U.S. in 
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a simulation with wild and prescribed fire emissions removed suggested that sulfur and EC 

(and possibly NH3) emissions may be overestimated from the wildfire sector. Fire-related 

OC performance was mixed but removing all wild and prescribed fire emissions resulted in 

unreasonable concentrations at monitors in the West and Southeast, consistent with previous 

studies (Baker et al., 2016, 2018). A simulation with reduced crustal cation emissions 

demonstrated that these species have an important influence on nitrate concentrations, and 

crustal cation concentrations were frequently overestimated in the base case. Simulations 

with different treatments of NH3 surface exchange in CMAQ demonstrated that NH3 and 

nitrate concentrations are sensitive to NH3 resistance and bidirectional flux 

parameterizations. These parameterizations are active areas of development in CMAQ. A 

simulation using a semi-volatile POA treatment and SOA formation from potentially 

missing combustion sources yielded higher OC concentrations at IMPROVE sites and lower 

OC concentrations at CSN sites. This behavior generally had a small impact on performance 

statistics, with some degradation in annual NMB at IMPROVE sites in the east. However, 

interpreting OC performance across CSN and IMPROVE networks is challenging due to 

differences in OC measurements at collocated CSN and IMPROVE sites identified in recent 

studies (e.g., Kim et al., 2015; Weakley et al., 2016). Additional work is warranted on 

understanding the volatility distribution of POA emissions and the magnitude of SOA 

precursor emissions, particularly from wild and prescribed fires and residential wood 

combustion. CMAQ predictions for wild and prescribed fires may need to be supplemented 

with other relevant information to gain a more comprehensive understanding of fire 

influence in cases where such predictions are of importance (e.g., extreme events in rural 

and remote areas).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PM2.5 sulfate performance statistics for the 2015 base case at CSN sites by season and U.S. 

climate region.
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Figure 2. 
Percentile rank of PM2.5 sulfate performance statistics for the 2015 simulation relative to 

performance statistics for 2007–2015. Scale ranges from low rank (0–20%) to high rank 

(80–100%).
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Figure 3. 
Comparison of annual NMB for PM2.5 sulfate in the 2015 base simulation with NMB for the 

no.fire and nei.bc.nh3 cases at CSN and IMPROVE sites.
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Figure 4. 
PM2.5 nitrate performance statistics for the 2015 base case at CSN sites by season and U.S. 

climate region.
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Figure 5. 
Percentile rank of PM2.5 nitrate performance statistics for the 2015 simulation relative to 

performance statistics for 2007–2015. Scale ranges from low rank (0–20%) to high rank 

(80–100%).
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Figure 6. 
Comparison of annual NMB for PM2.5 nitrate in the 2015 base simulation with NMB for the 

sensitivity modeling cases at CSN and IMPROVE sites.
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Figure 7. 
PM2.5 OC performance statistics for the 2015 base case at CSN sites by season and U.S. 

climate region.

Kelly et al. Page 26

Atmos Environ (1994). Author manuscript; available in PMC 2020 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 8. 
Percentile rank of PM2.5 OC performance statistics for the 2015 simulation relative to 

performance statistics for 2007–2015. Scale ranges from low rank (0–20%) to high rank 

(80–100%).
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Figure 9. 
Comparison of annual NMB for PM2.5 OC in the 2015 base simulation with NMB for the 

no.fire, pc.soa, and nei.bc.nh3 cases at CSN and IMPROVE sites.
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Figure 10. 
PM2.5 EC performance statistics for the 2015 base case at CSN sites by season and U.S. 

climate region.
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Figure 11. 
Percentile rank of PM2.5 EC performance statistics for the 2015 simulation relative to 

performance statistics for 2007–2015. Scale ranges from low rank (0–20%) to high rank 

(80–100%).
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Figure 12. 
Comparison of annual NMB for PM2.5 EC in the 2015 base simulation with NMB for the 

no.fire and nei.bc.nh3 cases at CSN and IMPROVE sites.
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Figure 13. 
Comparison of wildfire PM2.5 speciation profiles. The assumed profile for the 2015 

modeling platform is labeled “NEI 2014”. The “Lab Averages” profile represents the mean 

profile across several additional lab studies (Hays et al., 2002; Hosseini et al., 2013; 

McMeeking et al., 2009).
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Table 1.

Model configuration for 2007–2015 simulations.

Year Case name Air Quality Model Meteorological Model Reference

2007 2007aq_07c_N5ao_inline CMAQv4.7.1 WRFv3.1 USEPA (2012a)

2008 2008aa_08c_N5ao_inline CMAQv4.7.1 WRFv3.1 USEPA (2012b)

2009 2009ef2_v5_09d_N5ao_inline CMAQv4.7.1 WRFv3.2 USEPA (2013)

2010 2010ef_v5_10f_N5ao_inline CMAQv4.7.1 WRFv3.4 USEPA (2014a)

2011 2011ef_v6_11g_ltngNO_bidi_25L CMAQv5.0.2 WRFv3.4 USEPA (2015a)

2012 2012eh_cb05v2_v6_12g CMAQv5.0.2 WRFv3.6.1 USEPA (2016)

2013 2013ej_v6_13i CMAQv5.1 WRFv3.7.1 USEPA (2017)

2014 2014 fb_cb6r3_ae6nvPOA_aq CMAQv5.2 WRFv3.8.1 USEPA (2018a)

2015 2015fd_cb6_15j (“base case”) CMAQv5.2.1 WRFv3.8 This study

2015 2015fd_cb6_15j_noptf (“no.fire”) CMAQv5.2.1 WRFv3.8 This study

2015 2015fd_cb6_15j_0cr (“no.crustal”) CMAQv5.2.1 WRFv3.8 This study

2015 2015fe_cb6_15j (“nei.bc.nh3”) CMAQv5.2.1 WRFv3.8 This study

2015 2015fd_cb6_15j_nobidi (“no.bidi”) CMAQv5.2.1 WRFv3.8 This study

2015 2015fd_cb6_15j_pcSOA (‘pc.soa”) CMAQv5.2.1 WRFv3.8 This study
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