Skip to main content
. 2019 Apr 19;21(6):612–617. doi: 10.4103/aja.aja_16_19

Table 4.

Multivariable and univariable logistic regression model for analyzing the effects of patients’ clinical characteristics on prostate cancer detection rate after propensity score matching

Characteristics Multivariable Univariable


TRBx, OR (95% CI), P TPBx, OR (95% CI), P TRBx, OR (95% CI), P TPBx, OR (95% CI), P
Age 1.101 (1.064–1.139), <0.001 1.038 (1.014–1.063), 0.002 1.118 (1.085–1.152), <0.001 1.045 (1.023–1.067), <0.001
PSA 1.059 (1.037–1.081), <0.001 1.035 (1.026–1.044), <0.001 1.064 (1.042–1.087), <0.001 1.035 (1.026–1.044), <0.001
PV 0.982 (0.973–0.991), <0.001 0.993 (0.985–1.000), 0.065 0.990 (0.983–0.997), 0.004 0.995, (0.988–1.001), 0.111

TRBx: transrectal biopsy; TPBx: transperineal biopsy; OR: odds ratio; CI: confidence interval; PSA: prostate-specific antigen; PV: prostate volume