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When asked to provide a picture for the cover of the 
Flowering Newsletter, I picked this image of an Arabidopsis 
thaliana inflorescence expressing fluorescent reporters for two 
key regulators of flower development: APETALA3 (AP3), 
which promotes petal and stamen identity, and SUPERMAN 
(SUP), which encodes a transcriptional repressor that defines 
the boundary between stamens and pistil (Fig. 1). The choice 

was easy: it was an important breakthrough in my research 
on the role of SUP in the separation of stamens in whorl 
3 and carpels in whorl 4; and among the images of flowers 
I  have taken with a confocal microscope, it is also one my 
favourites aesthetically. The image won awards at the 2015 
Nikon Small World and FASEB BioArt competitions and is 
published in Prunet et al. (2017).

The molecular mechanisms underlying the determination 
of floral organ identity have been extensively studied over the 
last three decades, from the description of mutants with floral 
organ homeosis (Bowman et al., 1989, 1991; Irish and Sussex, 
1990) to the characterization of the corresponding genes, 
most of which encode transcription factors of the MADS-
box family (Yanofsky et al., 1990; Jack et al., 1992; Mandel 
et  al., 1992; Goto and Meyerowitz, 1994), and the identifi-
cation of their targets (Kaufmann et al., 2009, 2010; Wuest 
et al., 2012; Ó’Maoiléidigh et al., 2013). Floral organ iden-
tity is determined by the combinatorial action of four classes 
of MADS-box transcription factors [class A, AP1; class B, 
AP3 and PISTILLATA (PI); class C, AGAMOUS (AG); and 
class E, SEPALLATAs (SEPs)], which form different protein 
quartets in each whorl (reviewed in Prunet and Jack, 2014). 
For instance, quartets composed of class B, C, and E tran-
scription factors orchestrate stamen development in whorl 3, 
while quartets composed of class C and E transcription fac-
tors alone determine carpel identity in whorl 4. These quar-
tets recruit different transcription co-regulators and histone 
modification factors to regulate the transcription of their 
targets (Smaczniak et al., 2012). While the genetic networks 
downstream of these quartets have been partially deciphered 
(reviewed in Stewart et  al., 2016), questions remain about 
how boundaries between floral whorls are established.

Mutations in SUP disrupt the boundary between whorls 
3 and 4, with the formation of numerous extra stamens, usu-
ally at the expense of carpels, which are reduced or missing in 
most alleles (Schultz et al., 1991; Bowman et al., 1992). This 
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Fig. 1. AP3 and SUP expression in young Arabidopsis flower buds. 
Arabidopsis inflorescence expressing gAP3-GFP (green) and gSUP-
3xVenusN7 (red) fluorescent reporters. Cell walls were stained with 
propidium iodide (grey). Siliques and older flower buds were removed, 
and the inflorescence was prepared and imaged on a Zeiss LSM780 with 
a 20× water-dipping lens as described in Prunet (2017) and Prunet et al. 
(2016). Background noise was digitally removed for aesthetic reasons.
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phenotype is associated with the expansion of the expression 
of AP3 and PI towards the center of the flower (Bowman 
et al., 1992; Goto and Meyerowitz, 1994), but does not result 
from a simple homeotic conversion of carpels into stamens: 
the overall number of floral organs is increased in sup com-
pared to the wild type, indicating an excess of cell prolifer-
ation in sup flowers. Two models have been proposed for the 
developmental origin of the extra stamens in sup flowers. It 
was first suggested that these extra stamens form in whorl 4, 
due to the ectopic expression of class B genes, and that the 
increase in floral organ number comes from delayed termin-
ation of the floral stem cells (Schultz et al., 1991; Bowman 
et al., 1992). However, when the SUP gene was identified, in 
situ hybridization experiments suggested that SUP was co-
expressed with AP3 and PI in the inner part of whorl 3, but 
not expressed in whorl 4, casting doubts on the fact that SUP 
might function to prevent ectopic expression of class B genes 
in the fourth whorl (Sakai et  al., 1995). Instead, SUP was 
proposed to control the balance of cell proliferation between 
whorls 3 and 4. According to this new model, extra stamens 
arise from whorl 3 cells that over-proliferate, while reduced 
proliferation in whorl 4 results in a loss of carpel tissue (Sakai 
et al., 1995, 2000). For more than 25 years after the isolation 
of the sup mutant it had not been possible to discriminate 
between these two models. This was mostly due to limitations 
in the techniques that were used at the time, such as in situ 
hybridizations or GUS reporter lines, which lack sufficient 
cellular resolution and cannot not be used on live tissues. The 
image I have chosen helped solve this question.

I first became interested in SUP during my PhD with 
Christophe Trehin and Ioan Negrutiu at École Normale 
Supérieure de Lyon. I was studying three different mutants 
with a minor delay in the termination of  floral stem cells 
that was manifesting through a slight increase in the num-
ber of  carpels and the occasional formation of  extra organs 
inside the gynoecium (Prunet et al., 2008). This phenotype 
was correlated with a decrease in the expression of  AG—
which acts as the main switch to terminate floral stem cells 
(Lenhard et al., 2001; Lohmann et al., 2001)—in the center 
of  the flower meristem (Prunet et al., 2008). However, the 
combination of  these three mutations resulted in a spec-
tacular phenotype, with the formation of  an indeterminate 
spiral of  stamens at the center of  the flower. This pheno-
type is also observed when combining the sup-1 mutation 
with the moderate loss-of-function allele ag-4 (Prunet et al., 
2008). While SUP initially appeared at the margin of  the 
genetic networks I  was studying, I  started to increasingly 
suspect that it was involved in the timely termination of  flo-
ral stem cells.

When I started my postdoc in Tom Jack’s lab at Dartmouth 
College, I decided to investigate the function of  SUP using a 
live confocal imaging approach—a technique that allows us 
to monitor the expression of  multiple genes in live tissue with 
good cellular resolution. Our data supported the model in 
which extra stamens in sup mutant flowers arise from whorl 
4 rather than whorl 3. We observed a prolonged expression 
of  the stem cell marker CLAVATA3 and stem cell activator 

WUSCHEL in sup flowers compared to the wild type, sug-
gesting that the increase in floral organ number resulted 
from delayed termination of  the floral stem cells rather than 
from an over-proliferation of  cells in whorl 3 (Prunet et al., 
2017). Time-lapse experiments also demonstrated that a ring 
of  cells in whorl 4, adjacent to the boundary with whorl 3, 
starts expressing AP3 ectopically at the transition between 
whorl 4 and 5 in sup mutant flowers, thus confirming that 
extra stamens form in the fourth whorl in sup (Prunet et al., 
2017). Our data also seemed to point at a mostly non cell-
autonomous effect of  SUP, which, based on hard-to-inter-
pret in situ hybridizations, was believed to be expressed in 
whorl 3, and not in whorl 4 (Sakai et al., 1995). We generated 
a translational fluorescent reporter for SUP to have a closer 
look at the SUP expression pattern. It turned out to be a 
slow and painful process—it took 4 years and some pretty 
acrobatic cloning by Tom—but we finally obtained a fluores-
cent SUP reporter just as I moved from Dartmouth to Elliot 
Meyerowitz’s lab at Caltech. This image of  an Arabidopsis 
inflorescence expressing two translational reporters for AP3 
(fused with a single GFP) and SUP (fused with three Venus 
proteins and a nuclear localization signal) was one of  the 
first images I took at Caltech; it was also the first time I man-
aged to separate signals from GFP and YFP, which have par-
tially overlapping emission spectra. But most importantly, 
this image clearly showed that contrary to what was previ-
ously thought, SUP is expressed on both sides of  the bound-
ary between whorls 3 and 4, not just in whorl 3. SUP and 
AP3 are expressed along two opposite gradients that only 
partially overlap in whorl 3, and whorl 4 cells that express 
SUP in wild-type flowers at stage 5 ectopically express AP3 
instead in sup mutant flowers, indicating that SUP prevents 
AP3 expression in whorl 4 in a cell-autonomous manner 
(Prunet et al., 2017).

Independently of the scientific significance of this image, 
I love it for aesthetic reasons. One of the reasons why I stud-
ied biology in the first place is that of all sciences, it leaves the 
most room for artistic expression: observational drawing is 
an integral part of the learning process. This science-meets-
art aspect—for which the term SciArt has been coined—has 
long been an important driver for my work. I chose to study 
development for my PhD because of the rich imaging pos-
sibilities this field offers. I later based my postdoc research on 
a confocal imaging approach for the power of the technique 
to solve developmental questions but also for the beauty of 
the images that can be generated. I admit to spending more 
time on the microscope than strictly required to answer my 
initial scientific questions, trying to get aesthetically perfect 
images (and I  consider myself  lucky to work with Elliot, 
who has been very supportive of that). But then, as Samuel 
H. Scudder noticed once he decided to draw his fish (‘At last 
a happy thought struck me—I would draw the fish; and now 
with surprise I began to discover new features in the creature. 
Just then the Professor returned. ‘That is right’, said he; ‘a 
pencil is one of the best of eyes’; Scudder, 1974), carefully 
crafted images often bring to our attention interesting bio-
logical details that we would not have suspected otherwise.
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