
Coding regions affect mRNA stability in human cells

ASHRUT NARULA,1,2,3 JAMES ELLIS,2,3 J. MATTHEW TALIAFERRO,4 and OLIVIA S. RISSLAND1,3,5

1Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
2Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
3Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
4RNA Bioscience Initiative and Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine,
Aurora, Colorado 80045, USA

ABSTRACT

A new paradigm has emerged that coding regions can regulate mRNA stability in model organisms. Here, due to differ-
ences in cognate tRNA abundance, synonymous codons are translated at different speeds, and slow codons then stimulate
mRNA decay. To ask if this phenomenon also occurs in humans, we isolated RNA stability effects due to coding regions
using the humanORFeome collection.We find that many open reading frame (ORF) characteristics, such as length and sec-
ondary structure, fail to provide explanations for how coding regions alter mRNA stability, and, instead, that theORF relies
on translation to impactmRNA stability. Consistentwith what has been seen in other organisms, codon use is related to the
effects of ORFs on transcript stability. Importantly, we found instability-associated codons have longer A-site dwell times,
suggesting for the first time in humans a connection between elongation speed and mRNA decay. Thus, we propose that
codon usage alters decoding speeds and so affects human mRNA stability.
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INTRODUCTION

Transcript destruction is key for controlling gene expres-
sion. Messenger RNA (mRNA) decay not only helps set
the overall expression level of genes, but it also deter-
mines the dynamics of their expression. Unsurprisingly,
proper control of mRNA decay is critical in diverse biolog-
ical processes ranging from the maternal-to-zygotic transi-
tion to the inflammatory response (Giraldez et al. 2006;
Benoit et al. 2009; Brooks and Blackshear 2013). A major
line of research has thus been to understand both the ele-
ments within an RNA that control its stability as well as the
mechanisms underlying this regulation.
For decades, researchers have focused on the 3′ untrans-

lated regions (3′UTRs) for several important reasons. First,
especially in humans, 3′UTRs contain extensive sequence
space that has large regulatory potential while also being
devoid of other constraints (such as encoding a protein).
Second, regulatory factors, such as RNA binding proteins
(RBP), can stably bind the 3′UTR, which is not exposed to
the translating ribosome, unlike the 5′UTR or open reading

frame (ORF) (Grimson et al. 2007). Thus, elements within
the 3′UTR, such as those bound by microRNAs (miRNAs),
provide our best understanding of the mechanisms and
regulation of mRNA decay (Rissland 2016). Briefly, sites in
the 3′UTR are recognized by regulatory factors, such as
RBP or miRNAs. These regulatory factors both remove sta-
bilizing protein components and also recruit deadenylase
complexes, which then shorten the poly(A) tail found on
nearly all eukaryotic transcripts (Eulalio et al. 2009; Fabian
et al. 2009, 2011; Zekri et al. 2013; Kuzuoğlu-Öztürk et al.
2016; Rissland et al. 2017). Following deadenylation, the
decapping enzyme then removes the 5′ cap, thereby ex-
posing the body of the transcript to the major cytoplasmic
5′ →3′ exonuclease, Xrn1 (Yamashita et al. 2005; Chen
et al. 2009).
In contrast, outside of surveillance pathways, our under-

standing of how the coding region influences mRNA
stability lags behind that of 3′UTR-based regulation.
Nonetheless, over the past few years, research in a number
of model organisms has demonstrated that coding regions
play a major role inmRNA stability. Best defined by work in
Saccharomyces cerevisiae, the primary mechanism by
which ORFs regulate mRNA stability is through codon us-
age (Presnyak et al. 2015). Although synonymous codons
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encode the same amino acid, they are not equivalent to
the elongating ribosome. Due to differences in tRNA
abundance, demand, and wobble interactions, some syn-
onymous codons are decoded faster than others (Pech-
mann and Frydman 2013; Gardin et al. 2014; Yu et al.
2015; Hanson et al. 2018; Wu et al. 2019a). These dif-
ferences in elongation speed are sensed by the decay
machinery, resulting in recruitment of the CCR4-NOT
deadenylase complex, the decapping activator Dhh1p,
and eventual decapping (Radhakrishnan et al. 2016; Web-
ster et al. 2018). In other words, mRNAs with low optimality
codons (i.e., those decoded slowly) aremore unstable than
those with high optimality codons. Although initially made
in budding yeast, these observations have now been ex-
tended to Escherichia coli, Schizosaccharomyces pombe,
trypanosomes, and metazoans (Bazzini et al. 2016;
Boël et al. 2016; Harigaya and Parker 2016; Mishima and
Tomari 2016; Mattijssen et al. 2017; Burow et al. 2018;
de Freitas Nascimento et al. 2018; Jeacock et al. 2018;
Wu et al. 2019b), likely pointing to a conserved evolution-
ary mechanism.

An important unanswered question has been the extent
to which these observations hold in humans. This question
has been raised in part because human 3′UTRs are often
longer than 1000 nt (Lianoglou et al. 2013), which has
led to the model that 3′UTRs are the dominant regulatory
force for post-transcriptional regulation in humans. Impor-
tantly, all elements of a gene, including the coding region
and UTRs, coevolve, and so exploring the contribution of
codons to endogenous mRNA stability is confounded by
UTR effects. Another barrier has been a lack in the con-
sensus of which codons mediate fast elongation speeds
in human cells, and so calling codons as “optimal” or
“nonoptimal” has been challenging. The lack of consensus
has come about for at least three reasons. First, unlike in
yeast, only slight relationships have been observed be-
tween translation elongation speeds and standard metrics
of codon optimality, such as tRNA abundance and codon
adaptivity index (Ingolia et al. 2011; Darnell et al. 2018).
Second, tRNA abundance is notoriously hard to measure
due to extensive RNA modifications and secondary struc-
ture. Highly processive reverse transcriptases, like TGIRT,
and other high-throughput sequencing methods have en-
abled better quantitation, but measurements from differ-
ent labs still fail to correlate well, even when performed
on the same cell type (Zheng et al. 2015; Gogakos et al.
2017; Mattijssen et al. 2017). Third, tRNA abundance
also differs between different cell types and states (Dittmar
et al. 2006; Goodarzi et al. 2016; Shigematsu et al. 2017;
Torrent et al. 2018), leaving open the possibility that
some variation in tRNA measurements and elongation
speeds reflect biological differences.

To understand how the coding region could impact
mRNA stability in humans, we turned to the human
ORFeome collection, which contains full-length human

ORFs surrounded by invariant UTRs. By using this collec-
tion as a parallel reporter system, we isolated the effects
of the coding region on mRNA stability. We found that dif-
ferent ORFs mediate a wide range of mRNA stabilities and
that the majority of their impact depends on translation.
Similar to results from model organisms and a parallel
study in humans (Bazzini et al. 2016; Harigaya and Parker
2016; Mishima and Tomari 2016; Burow et al. 2018; de
Freitas Nascimento et al. 2018; Jeacock et al. 2018; Wu
et al. 2019b), our results point to codon usage as a key fea-
ture of the ORF that alters mRNA stability. Moreover, our
analyses revealed that codons associated with instability
have longer A-site dwell times, thus providing a link be-
tween elongation speeds and mRNA decay in humans.

RESULTS

Changing the coding region can change mRNA
stability in human cells

Given recent reports on the influence of codon use on
mRNA stability, we wanted to explore the potential of
the ORF to impact mRNA stability in human cells. Howev-
er, codon use and otherORF features coevolvewithmRNA
characteristics (such as length, translational efficiency,
3′UTR regulation), all of which have the potential to impact
mRNA stability (Schnall-Levin et al. 2011; Duan et al. 2013;
Geisberg et al. 2014; Presnyak et al. 2015; Neymotin et al.
2016). We reasoned that these confounding factors would
significantly impact genome-wide analyses, making it chal-
lenging to disentangle correlative and causative features.
To explore this question, we thus turned to the human
ORFeome collection because it contains thousands of
coding regions surrounded by invariant UTRs as lentiviral
constructs.

We decided to use the ORFeome collection as a parallel
reporter system and split the collection into six pools,
which we then used to generate six corresponding sets
of pooled stable HEK293T cell lines through lentiviral in-
fection. Western blotting against the V5 tag at the carboxy
terminus of eachORFeome construct confirmed that many
ORFs were expressed after stable line generation (Sup-
plemental Fig. S1A). We then used approach-to-equi-
librium 4-thiouracil (4SU) metabolic labeling followed
by biotinylation and streptavidin pull-down to measure
mRNA stability transcriptome-wide (Lugowski et al. 2017).

We did not use ORFeome-targeted RNA sequencing,
and so we simultaneously captured stabilities for both
ORFeome-derived and endogenous mRNAs. However,
because very few reads mapped to regions that could be
unambiguously defined as ORFeome-derived (i.e., map-
ping to the junctions between the UTRs and coding re-
gion), these reads could not be used to generate half-
lives. To enable half-life calculation of the ORFeome-tran-
scripts, we developed a computational pipeline to classify
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each mRNA (and corresponding half-life) as “ORFeome”
or “endogenous” (Fig. 1B). Briefly, reads were mapped
to the RefSeq coding regions. To classify an mRNA as
“ORFeome,” we required three times more reads in the
corresponding cell line in our steady-state libraries than
in the paired cell line. We first analyzed the experiment de-
rived from cell lines expressing pools 1 and 4. Of the 2211
pool 1 ORFs that were detected in cell line 1, only 359
were expressed three-times as much in cell line 1 than in
cell line 4 (presumably because some were expressed en-
dogenously, while others were not expressed at high
enough levels). Similarly, 302 pool 4 ORFs passed this
threshold (Fig. 1B). As expected based on this criterion,
pool 1 mRNAs were significantly more highly expressed
in pool 1 cells, and pool 4 mRNAs, in the pool 4 cells (Sup-
plemental Fig. S1B,C). Coding regions contained in the
ORFeome pool 1 that did not cross this threshold were ex-
cluded fromdownstream analysis. We then calculated half-
lives for three sets of mRNAs (pool 1, pool 4, and endog-
enous). Some ORFeome mRNAs, despite passing our ini-
tial cut-off, were still lowly expressed, and thus we could
not calculate half-lives for all of the ORFeome mRNAs. In
total, we obtained half-lives for 357 ORFeome mRNAs
(221 from pool 1 and 136 from pool 4), and 10,208 endog-
enous mRNAs (Supplemental Tables S1, S2).

Having thus obtained half-lives for 357 ORFeome re-
porters, we next asked whether changing the coding re-
gion was sufficient to change mRNA stability. In general,
ORFeome mRNAs were more stable than endogenous
mRNAs (median half-life: 8.2 h for endogenous mRNAs
versus 13.8 h for ORFeome mRNAs; P<10−15, Kolmogo-
rov–Smirnov test; Fig. 1C), likely due to the WPRE stabiliz-
ing element included in the invariant 3′UTR of the
ORFeome collection (Zufferey et al. 1999). Strikingly, de-
spite containing invariant UTRs, the ORFeome mRNAs
showed similar variation in stability as endogenous tran-
scripts: half-lives ranged from 0.25 h to >100 h for endog-
enous mRNAs, and from 0.56 h to >100 h for ORFeome
mRNAs (Fig. 1C,D). This result held evenwhen we subsam-
pled endogenous mRNAs to match sample sizes between
the two groups (data not shown).
To see whether this result held more broadly, we turned

to our other cell lines, obtaining half-lives for (i) 357
ORFeome mRNAs from pools 2 and 3 and (ii) 384
ORFeome mRNAs from pools 5 and 6 (Supplemental Ta-
bles S1, S3, S4). Similar to what we observed with pools
1 and 4, the ORFeome mRNAs had similar variation in sta-
bilities as endogenous ones (Supplemental Fig. S1E). Fi-
nally, we analyzed a complementary ORFeome data set
from Wu et al. (2019b). This data set allowed us to directly

A
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FIGURE 1. Coding sequences regulate mRNA stability in human cells. (A) Schematic of ORFeome pool creation. The ORFeome collection con-
tains ∼15,000 full-length coding regions in a lentiviral plasmid background, where each ORF is flanked by invariant UTRs and also contains a car-
boxy-terminal V5 tag. Pools of ∼3000 ORFeome clones from the collection were used to make lentivirus, which was then used to infect HEK293T
cells and generate pools of stable cell lines. After selection, mRNA half-lives were measured through an approach-to-equilibrium 4SU-labeling
experiment, giving stabilities for endogenous and ORFeome-derived transcripts. (B) Table summarizing the number of endogenous and
ORFeome mRNAs passing each step in the processing pipeline. Endogenous and ORFeome transcripts were first examined in the steady state
libraries. ORFeome transcripts were required to be expressed >3 times as much in the appropriate cell line than in the other. Once classified as
“endogenous” or “ORFeome,” mRNA half-lives were calculated from the metabolic labeling experiment. Total endogenous mRNA half-lives
correspond to the number of mRNAs with at least one measured half-life; if more than one half-life was measured, the arithmetic mean was
used. (C ) Coding regions change mRNA stability. Box-and-whisker plots of the stabilities of endogenous (End., in gray) and ORFeome
mRNAs (in blue). Line represents median, box demarcates second and third quartiles, points are outliers. (D) ORFeome mRNAs show as much
variability in stability as endogenous mRNAs. Plotted are the density distributions of median-centered stabilities of endogenous and
ORFeome mRNAs (in gray and blue, respectively).
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compare the variability in decay rates for the same ORFs
expressed as endogenous or ORFeome-derived tran-
scripts (Supplemental Fig. S1F). Importantly, there was a
similar range in stabilities for these matched ORFeome
and endogenous transcripts. Thus, we conclude that the
coding region can regulate mRNA stability in human cells.
One surprising implication of this result is that merely
changing the coding region can give a similar range of sta-
bilities seen with endogenous mRNAs, which differ not
only in their coding regions, but also in their UTRs.

The effects of the coding region on mRNA stability
depend predominantly on ribosome loading

The primary function of the coding region of a transcript is
to be read by the ribosome, and it has become increasing-
ly clear that translation impacts mRNA stability not just
through surveillance pathways, but also through normal
decay. Given the connection between translation, the cod-
ing region, andmRNA stability, we next asked whether the

effects of the coding region on mRNA stability required ri-
bosome loading. To do so, we repeated our ORFeome
and endogenous stability measurements (in cell lines 1
and 4), but this time cells were treated either with DMSO
or the translation inhibitor 4EGI-1, which disrupts eIF4F
and so blocks initiation (Moerke et al. 2007).

We first confirmed that 4EGI-1 reduced translation by
analyzing polysomes by sucrose gradient fractionation
and measuring puromycin incorporation followed by west-
ern blotting (Fig. 2A,B). As expected, 4EGI-1 treatment
robustly reduced translation. (Note that complete inhibi-
tion of translation was incompatible with mRNA stability
measurements.) 4EGI-1 treatment had broad effects on
mRNA stability, both for endogenous and ORFeome
mRNAs. Endogenous mRNAs were globally less stable in
the presence of the inhibitor (Fig. 2C), consistent with pre-
vious studies where translational inhibition destabilized
mRNA (Schwartz and Parker 1999). While there was strong
correlation for endogenous mRNAs measured in our orig-
inal experiment and in the presence of DMSO (Spearman

E F

B

A
C D

FIGURE 2. Inhibiting ribosome loading reduces the effects of the coding region on mRNA stability. (A) 4EGI-1 treatment inhibits translation.
Shown are A254 traces from sucrose density gradients of lysates from HEK293T cells treated with DMSO (gray) or 4EGI-1 (orange). (B) 4EGI-1
treatment reduces translation, as measured by puromycin incorporation. Cells were treated with DMSO, 4EGI-1, or cycloheximide (CHX) for
the indicated times. To measure ongoing translation, cells were then pulsed with puromycin and harvested. Cell lysates were separated by
SDS-PAGE electrophoresis, and western blotting was performed, probing against puromycin and α-tubulin (as a loading control). (C )
Translation inhibition destabilizes endogenous mRNAs. Plotted are boxplots of half-lives for endogenous HEK293T mRNAs with DMSO or
4EGI-1 treatment (in gray and orange, respectively). The line represents median half-life, the box demarcates second and third quartiles, and
points are outliers. (D) Translation inhibition has a minor effect on the variation in stability for endogenous mRNAs. Plotted are density distribu-
tions of median-centered half-lives for endogenous HEK293T in cells treated with DMSO or 4EGI-1 (in gray and orange, respectively). (E)
Translation inhibition destabilizes ORFeome-derived mRNAs. As in C, except for ORFeome mRNAs. DMSO, in blue; 4EGI-1, in orange. (F )
Translation inhibition reduces the variation in stability for ORFeome-derived mRNAs. As in D, except for ORFeome mRNAs. DMSO, in blue;
4EGI-1, in orange. See also Supplemental Figure S2 and Supplemental Tables S1, S2.
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r [rs] = 0.67, P<10−15, Supplemental Fig. S2), there was
only a modest correlation with those measured in the pres-
ence of 4EGI-1 (rs=0.34, P<10−15, Supplemental Fig. S2).
Surprisingly, the variation in mRNA decay rates was signifi-
cantly, albeit modestly, reduced in the presence of 4EGI-1
(σ2 4EGI-1/σ2 DMSO=0.65, P<10−15, Fig. 2D).
We saw similar results with the ORFeome mRNAs, al-

though the effects were more pronounced here. Like the
endogenous mRNAs, ORFeome mRNAs were also less
stable in the presence of 4EGI-1 (P<10−10, Kolmogorov–
Smirnov test; Fig. 2E). More strikingly, there was sub-
stantially less variation in the stabilities of ORFeome
mRNAs in the presence of 4EGI-1 (σ2 4EGI-1/σ2 DMSO=
0.40, P<10−15, Fig. 2F). These results thus suggest that
coding regionpredominantly requires translation to impact
stability. It may be that the reduced variability in the stabil-
ities of endogenous mRNAs reflects the contribution of
coding regions to endogenous transcript stability. In addi-
tion, because ribosome loading was incompletely blocked
and inhibiting translation also exposes previously inacces-
sible regulatory sites in the coding region (see below),
the differences observed with 4EGI-1 are likely a lower
bound for the influence of translation of the coding region
on mRNA decay.

Length, secondary structure, and RNA binding
proteins cannot explain the effects on mRNA
stability mediated by the coding region

We next wanted to identify elements within the coding re-
gion that influenced RNA stability. Many differentORF fea-
tures have been associated with mRNA stability: transcript
or ORF length; local secondary structure; 3′UTR-like regu-
lation; and codon usage (Schnall-Levin et al. 2011; Duan
et al. 2013; Geisberg et al. 2014; Presnyak et al. 2015;
Neymotin et al. 2016). For those ORF elements directly
regulating mRNA stability, we expected that their signal
would be strengthened in the ORFeome data set (com-
pared with the endogenous one) because confounding
UTR effects are removed in the ORFeome measurements.
In contrast, for elements that coevolve with true causative
features, but do not directly affect stability, we expected
that their signals would be weaker in the ORFeome data
set than in the endogenous one.
We first investigated ORF length in our data from cell

lines 1 and 4. Consistent with many previous observations
(Duan et al. 2013; Neymotin et al. 2016), for endogenous
mRNAs, there was a negative correlation between ORF
length andmRNA stability such that transcripts with longer
coding regions were more unstable (rs=−0.14, P<10−15,
Supplemental Fig. S3A). In contrast, we observed no corre-
lation between ORF length and mRNA stability for
ORFeome transcripts (rs=0.01, P=0.9, Supplemental
Fig. S3).Weobserved similar results in our other ORFeome
pools and the complementary published ORFeome data

(Wu et al. 2019b), where the correlation between length
and stability was stronger for endogenous transcripts
than for ORFeome-derived ones; (endogenous rs: −0.30
to −0.15 versus ORFeome rs: −0.22 to 0.01; Supplemental
Fig. S3B). Thus, we conclude thatORF length, atmost, only
weakly affects mRNA stability.
We next looked at the local secondary structure in the

ORF. To do so, we calculated the folding energy within a
100-base sliding window and took the lowest value for
each coding region. For both endogenous and ORFeome
mRNAs, we found no general relationship between tran-
script stability and secondary structure (endogenous
rs: −0.10 to 0.04 versus ORFeome rs: −0.06 to 0.07, Sup-
plemental Fig. S3C,D). Although it is possible that strong
secondary structures influence stabilities for only some
transcripts, it appears unable to provide a general explana-
tion for the range of stabilities seen with the ORFeome
mRNAs.
We next examined the potential of coding regions to

modulate mRNA stability through 3′UTR-like regulation.
We first divided ORFeome mRNAs into those containing
or lacking sites for the top five expressed microRNA
(miRNA) families (Nam et al. 2014). Consistent with individ-
ual miRNA sites in the ORF having little impact (Grimson
et al. 2007; Schnall-Levin et al. 2011), half-lives for these
two sets of ORFeome transcripts failed to be significant
for any of the ORFeome data sets (P=0.06 to 0.99, Supp-
lemental Fig. S3E,F). Finally, we compared stabilities for
ORFeome mRNAs containing and lacking AU-rich ele-
ments, and only observed modest differences, although
these were significant for two of the four ORFeome data
sets (P=10−6 to 0.9, Supplemental Fig. S3G,H). Thus, al-
though many coding regions contain sites that have the
potential to be recognized by 3′UTR regulatory factors,
these sites cannot explain the range of ORFeome half-
lives.
This conclusion is consistent with previous reports show-

ing that miRNA sites in the ORF are rarely effective,
because of the translating ribosome (Grimson et al.
2007; Gu et al. 2009). This result also suggests that some
of the residual variation in ORFeome mRNA stability
upon 4EGI-1 treatment (Fig. 2F) may be due to RBP-based
regulation that now has an opportunity to impact stability.

Codon use is associated with mRNA stability

We next turned to the role of codon use in mRNA stability.
To do so, we used a previously defined metric (Presnyak
et al. 2015), the codon stability coefficient or CSC. For
each nonstop codon, we calculated its frequency in each
ORF and measured the Spearman correlation between
the codon frequency with the associated mRNA half-life
across the collection of endogenous or ORFeome
mRNAs (giving rise to endogenous and ORFeome CSC
values, respectively). We calculated these scores from
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each of our three ORFeome/endogenous stability data
sets, as well as those generated during DMSO treatment
(Fig. 2), giving us four independent measurements for
each CSC value.

We calculated the average score of the four values for
each codon (Fig. 3A,B; Supplemental Table S5). Overall,
the average endogenous andORFeomeCSC values corre-
lated with each other (rs=0.70, P<10−15; Fig. 3C).
Consistent with these effects being mediated by transla-
tion, ORFeome values calculated based on computation-
ally +1 or +2 frameshifted codons were significantly less
correlated with endogenous CSC values (rs=0.32 and
0.22, respectively; P<0.0002, Fishers r-to-z transforma-
tion). Similarly, there was not a significant correlation be-
tween the ORFeome values and those from yeast, an
unrelated species (rs=0.22, P=0.07).

In investigating the effects of codons on mRNA stability,
much of the focus has been on the effects of synonymous
codons because of the model that the abundance of cog-
nate tRNAs differs, leading to differences in decoding of
synonymous codons and thus mRNA stability. However,
we noted that, surprisingly, some synonymous codons
tended to have similar relationships with stability, especial-
ly for the “unstable” ORFeome CSCs (Supplemental Fig.
S4A). To investigate this issue more thoroughly, as has
been done before (Bazzini et al. 2016; Wu et al. 2019b),
we calculated an “amino acid stabilization coefficient”
(AASC) for the 20 standard amino acids by averaging the
CSCs for the corresponding codons (Supplemental Fig.
S4B; Supplemental Table S6). As with CSCs, average en-
dogenous and ORFeome AASCs were correlated (rs=
0.60, P=0.007). Although codons for several amino acids,
such as leucine, showed a wide range in stability scores,
codons for other amino acids (such as lysine and gluta-
mate) had similar values. Taken together, these data dem-

onstrate that codon usage and mRNA stability are related
in human cells, as has been seen in other organisms, and
that, for some amino acids, synonymous codons appear
to behave similarly.

Instability-associated codons are translated
more slowly

Based on studies in model organisms, the current model
explaining the relationship between codon usage and
mRNA stability is that some codons are translated slowly,
and slow elongation in turn triggers mRNA degradation.
We thus asked whether this model held in human cells
by investigating the relationship between stability coeffi-
cients and elongation rates. To do so, we used a published
ribosome profiling data set from HeLa cells (Arango et al.
2018) and calculated the enrichment of each codon
(when in the inferred A site) in ribosome-protected frag-
ments compared with its background abundance in the
pool of translated transcripts (see Materials and Methods,
Supplemental Table S5). That is, high enrichment indicates
long dwell times and thus slow relative elongation; low en-
richment, short dwell times and fast relative elongation. As
expected, we observed a strong enrichment for stop co-
dons in the A site, and depletion in the P site (data not
shown). We then compared these relative dwell times
with the endogenous and ORFeome CSCs. When we ex-
amined the codon scores from cell lines 1 and 4, there
was no relationship between endogenous CSCs and dwell
times (rs=0.02, P=0.83), but there was a significant corre-
lation with the ORFeome values (rs=0.33, P=0.008) such
that codons translated more slowly were associated with
instability (Fig. 4A,B).

To explore the relationship between codon stability
measurements and elongation speeds more fully, we

B

A

C

FIGURE 3. Codon use corresponds to mRNA stability. (A) Codons are differentially associated with stability. Shown are average Spearman cor-
relations, for each nonstop codon, of their frequency withmRNA stability (codon stability coefficient; CSC) for endogenous HEK293TmRNAs. The
line corresponds to a standard deviation as calculated from the fourmeasurements. (B) As inA, except for ORFeomemRNAs. (C ) Endogenous and
ORFeome mRNAs have similar CSCs. Plotted are the average CSC values for endogenous mRNAs compared to ORFeome mRNAs.
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calculated codon-level dwell times from four other ribo-
some profiling data sets: a biological replicate from HeLa
cells (Arango et al. 2018); HEK293T cells (Eichhorn et al.
2014); U2OS cells (Eichhorn et al. 2014); and NIH3T3 cells
(Eichhorn et al. 2014). We next compared our four sets of
ORFeome CSCs with the calculated dwell times from
both HeLa replicates, as well as HEK293T, U2OS, and
NIH3T3 experiments, given 20 total comparisons (Fig.
4C). Consistent with the known differences in codon usage
and tRNA abundance between mouse and human cells,
the ORFeome CSCs were significantly better correlated
with human ribosome speeds than NIH3T3 ribosome
speeds (human line rs values: 0.16 to 0.34; NIH3T3 rs val-

ues: 0.01 to 0.10; P=0.003, Wilcoxon test; Fig. 4C).
Importantly, when we repeated this analysis with the corre-
sponding endogenous CSC values, the ORFeome values
were significantly better correlated with human ribosome
dwell times than the endogenous values (P=0.0005,
paired Wilcoxon test; Fig. 4D).
We next compared the ORFeome CSC values deter-

mined in the contemporaneous study (Wu et al. 2019b)
with A-site dwell times. As with our ORFeome values,
these ORFeome CSCs were significantly more correlated
with human ribosome dwell times than those in NIH3T3
cells (P=0.04, Wilcoxon test; Fig. 4E). Similarly, their
ORFeome CSCs performed significantly better than the

E F

BA C D

G

FIGURE 4. Codons associated with instability are translated more slowly. (A) Endogenous HEK293T CSCs weakly correspond with pause scores.
UsingHeLa ribosomeprofiling (Arango et al. 2018), elongation speedswere calculated for each codon in the A site, and then codonswere divided
into three groups (slow in orange; neutral in green; fast in blue). Shown are boxplots and points for the corresponding CSC values as determined
by endogenous HEK293T mRNAs. (B) As in A, except for ORFeome-derived CSCs. (C ) Comparison of ORFeome CSCs and elongation speeds.
Four independent sets of ORFeome CSC values were compared with elongation speeds derived from five different ribosome profiling experi-
ments (Eichhorn et al. 2014; Arango et al. 2018). Plotted are the resulting Spearman correlations for each of the 20 comparisons with those in-
cluding NIH3T3 elongation speeds shown in gray. Significance was determined by the Wilcoxon test. (D) ORFeome stability scores better
correlate with elongation speeds than endogenous scores. Similar toC, four independent sets of CSC values derived frommatched endogenous
and ORFeome mRNAs were compared with the four values of human elongation speeds (from HeLa rep 1, HeLa rep 2, HEK293T, and U2OS
ribosome profiling experiments). Shown are boxplots and points for the Spearman correlations from the 16 resulting comparisons for endogenous
(gray) and ORFeome (red) CSC values. Significance was determined by the Wilcoxon test. (E) Published ORFeome CSC values derived in
HEK293T and K562 cells (Wu et al. 2019b) were compared with elongation speeds determined from ribosome profiling in HeLa, HEK293T,
U2OS, and NIH3T3 cells. Plotted are the corresponding correlations for each of the 10 comparisons; comparisons with NIH3T3 scores are shown
in gray. Significance was determined by the Wilcoxon test. (F ) Published ORFeome CSCs correspond better to elongation speeds than endog-
enous CSCs. Spearman correlations between each of the human-line elongation speeds and the published endogenous and ORFeome CSC val-
ues (Wu et al. 2019b) were calculated. Correlations with endogenous CSCs are shown in gray; with ORFeome CSCS, in red. Significance was
determined by the Wilcoxon test. (G) A-site speeds correspond better to stability scores than P- and E-site scores. P- and E-site scores were cal-
culated for the four ribosome profiling data sets from human cells (HeLa rep 1, HeLa rep 2, HEK293T, and U2OS), and compared with the
ORFeome CSC values. Plotted are the Spearman correlations for the 16 comparisons for A-site scores (in red), P- and E- site scores (in gray).
Significance was determined by the Wilcoxon test.
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corresponding endogenous values (P=0.0001, Wilcoxon
test; Fig. 4F). Interestingly, despite their CSC values being
derived from many more ORFs than our values, there was
no difference in the correlations of either set with ribosome
elongation speeds (P=1, Wilcoxon test). Taken together,
these results indicate that codons associated with instabil-
ity—but only when determined by ORFeome, not endog-
enous, measurements—are translated more slowly.

ORF-regulation of mRNA stability predominantly
relates to codons in the A site

Although the A-site codon is thought to predominantly
influence elongation speeds, other steps in elongation,
such as peptide bond formation or translocation, can
also influence ribosome speed and so could conceivably
also impact mRNA stability. To explore this possibility, we
calculated dwell times as before, but this time for codons
in the inferred P and E sites, and compared the four sets
of human dwell times for codons in the A, P, and E sites
with our four sets of ORFeome CSC measurements.

Although correlations between CSCs and A-site speeds
were tightly clustered, there was a broader range with the
P- and E-site speeds (Fig. 4G). Overall, however, the effect
size of the correlations was negligible for P- and E-site
speeds (median correlation: 0.29, 0.01, and 0.01 for A, P,
and E sites, respectively), and A-site speeds correlated sig-
nificantly better with ORFeome CSC values than P- or E-
site speeds (P=0.003 and 0.01, respectively, paired Wil-
coxon test). These results suggest that the A-site speed
is likely the major contributor to ORF-mediated regulation
of mRNA stability.

DISCUSSION

Inspired by reports of coding regions affecting mRNA
stability in model organisms, we set out to investigate
this phenomenon in human cells. By using the ORFeome
collection, where human coding regions are surrounded
by invariant UTRs, we showed that ORFs impact mRNA
stability in human cells and that the majority of the effect
depends on translation. Through our ORFeome stability
measurements, we were able to explore features that af-
fect stability, and, in contrast to previous suggestions
(Duan et al. 2013; Geisberg et al. 2014; Neymotin et al.
2016), we found little evidence that ORF length, local sec-
ondary structure, and 3′UTR-like regulation generally
impact mRNA stability. Some features (e.g., miRNA-medi-
ated regulation) likely regulate specific mRNAs; but others
(e.g., length) may coevolve with direct effectors of RNA
stability, explaining results from studies that relied onmea-
surements of endogenous transcript stability.

Instead, coding regions seem to affect mRNA stability
through differences in codon usage. Based on our results,
experiments in model organisms (Presnyak et al. 2015;

Bazzini et al. 2016; Boël et al. 2016; Mishima and Tomari
2016; Mattijssen et al. 2017; de Freitas Nascimento et al.
2018; Jeacock et al. 2018; Wu et al. 2019b), and an inde-
pendent study in human cells (Wu et al. 2019b), we pro-
pose that the relationship between codon use and
mRNA stability is causative, and that instability codons
stimulate mRNA decay by slowing translation elongation.

One of the strongest lines of evidence for the connec-
tion between mRNA stability and translation elongation
speeds comes from a comparison of codon stability scores
from ORFeome and endogenous mRNAs with elongation
speeds. While A-site dwell times did not correlate with en-
dogenous scores (which derive from a mix of ORF- and
UTR-based regulation), we saw a reproducible, significant
correlation with ORFeome stability scores (which derive
from only ORF-based regulation).

Because we found the strongest association between in-
stability-associated codons and amino acids with A-site
speeds, we favor a model that the elongation speeds
(and thus mRNA stability) are predominantly determined
by decoding rates, although there may be some amino ac-
ids (such as proline) that slow elongation by other mecha-
nisms (such as peptide bond formation) (Lu and Deutsch
2008; Wohlgemuth et al. 2008; Charneski and Hurst
2013; Gutierrez et al. 2013; Artieri and Fraser 2014; Gardin
et al. 2014). In turn, decoding rates are probably deter-
mined by a combination of tRNA abundance and aminoa-
cylation. Interestingly, we found that synonymous codons
tend to have similar A-site dwell times (Supplemental
Fig. S4B), and such “amino acid” effects have now been
seen in several studies in mammalian cells (Darnell et al.
2018; Gobet et al. 2019; Wu et al. 2019a). Moreover, we
found that A-site dwell times for different amino acids dif-
fer between HeLa/HEK293T and U2OS cells (Supplemen-
tal Fig. S4C,D). Thus, we propose that the combination of
tRNA abundance and charging affect decoding rates and
mRNA stability in human cells.

Nonetheless, an unanswered question is why the codon
stability scores do not correlate better with A-site dwell
times. There are several possible technical and biological
explanations. For instance, this result may be a technical
artifact of ribosome profiling because it is known that ribo-
somes can carry out one or two rounds of elongation dur-
ing the polysome preparation, which could blur the
resolution of elongation speeds. Arguing against this pos-
sibility is that the P site and A site elongation speeds are
very different. Similarly, it is unlikely that this result is due
to only using a few hundred transcripts for the ORFeome
scores: Corresponding scores from a parallel paper (Wu
et al. 2019b), which were based on thousands of tran-
scripts, did not perform any better.

Instead, we suspect there may be several biological ex-
planations. First, within endogenous coding regions, there
is a co-usage of codons and amino acids, which may par-
tially confound the stability scores for individual codons

Narula et al.

1758 RNA (2019) Vol. 25, No. 12

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.073239.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.073239.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.073239.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.073239.119/-/DC1


and amino acids. Second, in yeast, di- and tricodons have
been shown to dramatically affect protein output (Gamble
et al. 2016). Such multicodon effects are not captured by
either our stability scores or current elongation speedmea-
surements. Finally, although our data indicate that coding
regions primarily affect mRNA stability through translation,
translation-independent effects remain unaccounted for in
our current analysis and could explain some of the stability
variation observed in the ORFeome.
One final issue remains: What is the overall contribution

of the ORF to mRNA stability? Although our work and that
from others indicate that coding regions impact mRNA
stability, the amount to which they do so remains unclear.
Based on what we have already found, determining the
overall contribution of the coding region to mRNA stability
will be a challenge, and the answer probably differs for dif-
ferent transcripts and between different cell types. That is,
because the effect of a coding region depends upon ribo-
some loading, endogenous mRNAs, which have different
translation initiation rates, will differ in their opportunity
to be regulated by elongation speed. Indeed, it is likely
that those mRNAs most affected are those both with
high initiation rates and containing destabilizing codons.
Another important consideration is that tRNA abundance
and charging change between different cell states
(Dittmar et al. 2006; Goodarzi et al. 2016; Darnell et al.
2018; Torrent et al. 2018), and so the identities of
mRNAs with destabilizing coding regions may also change
between different cell types. One important wrinkle is the
potential for interplay betweenORF and 3′UTR regulation.
For instance, a recent report indicated that, in Drosophila
S2 cells, the coding region can influence the amount of
regulation exerted by 3′UTR sites (Cottrell et al. 2017),
but it is unknown whether the same interaction occurs in
human cells. Although integrating the contributions of dif-
ferent parts of an mRNA on stability requires additional
work, it is the critical next step for understanding how
gene expression is controlled.

MATERIALS AND METHODS

Cell lines and growth conditions

Human cell lines

Human HEK293T cells were cultured in DMEM (Lonza) supple-
mented with 10% FBS (VWR Seradigm) and 1%penicillin–strepto-
mycin solution. Cell lines were cultured at 37°C in a humidified
incubator with 5% CO2.

Drosophila cell lines

Drosophila melanogaster Schneider 2 (S2) cells (Cat #R69007,
Thermo Fisher Scientific) were cultured in ExpressFive SFMmedia
(Thermo Fisher Scientific) supplemented with 10% heat-inactivat-

ed FBS (Wisent) and 20mM L-Glutamine (Thermo Fisher Scientific)
at 28°C.

Yeast strains

S. cerevisiae USY006 was grown in YPD liquid or plates at 30°C.
Cultures were obtained from Dr. John Rubinstein (The Hospital
for Sick Children).

ORFeome cell line preparation

The human ORFeome collection version 8.1 (ccsbBroad304)
cloned into lentiviral vector pLX304 was obtained from Dr.
Jason Moffat (University of Toronto) as a series of 96-well over-
night bacterial cultures. Equal volumes of bacterial cultures
were pooled into 36 pools comprising ∼576 clones each.
Plasmid DNA was isolated using the GeneJET Plasmid
Midiprep Kit (Thermo Fisher Scientific) as per manufacturer’s in-
structions, yielding an average of ∼70 µg plasmid DNA per
pool. The 36 isolated pools were further combined into six unique
pools for downstream cell line generation.
Each of the six unique virus pools were packaged by transfec-

tion into HEK293T cells using Lipofectamine 2000 (Thermo
Fisher Scientific), according to manufacturer’s instruction. Cells
were transfected with the lentivirus pLX304 pool, psPAX2 pack-
aging vector, and pVSV-G envelope vector. After 8 h, transfec-
tion media was then removed and switched to harvest media
(DMEM+10% FBS+1.1 g/100 mL BSA [7.5% solution,
Thermo Fisher Scientific]). Cells were left for 2 d to complete vi-
rus production. Media was then collected from the plate and fil-
tered through a 0.45 µm filter by syringe. Harvested viruses were
aliquoted.
Freshly thawed HEK293T cells were grown in 10 cm dishes to

reach ∼30%–50% confluence for the day of infection. Media
was removed and 9 mL prewarmed infection media (DMEM+
10% FBS+8 µg/mL Polybrene) was added to cells. A total of
2 mL of freshly harvested virus pool was added to one plate of
HEK293T cells each and incubated overnight. Cells were then
trypsinized and expanded into 15 cm dishes. Cells were selected
using selection media (DMEM+10% FBS+6 µg/mL Blasticidin
[BioShop]) for 6 d. Selection media was changed every day.
Cells were then frozen in cell freezing medium (Sigma-Aldrich)
and stored in liquid nitrogen.

Western blotting

Cells were harvested by trypsinization and pelleted by centrifuga-
tion at 1000g for 2 min at 4°C. Cell pellets were resuspended in
500 µL lysis buffer (100 mM KCl, 0.1 mM EDTA, 20 mM HEPES-
KOH pH 7.6, 0.4% NP-40, 10% glycerol, 1 mM DTT, complete
mini EDTA-free protease inhibitors [Roche]) and clarified at
21,000g for 5 min at 4°C. A total of 250 µL supernatant wasmixed
with 20 µL 4× Bolt LDS sample buffer (Thermo Fisher Scientific),
8 µL 10× Bolt sample reducing agent (Invitrogen) and proteins
were denatured at 75°C for 10 min. Protein samples were loaded
into Bolt 4%–12%Bis-TRIS Plus gels (Thermo Fisher Scientific) and
run at 160 V for ∼1 h. The gel was transferred onto an Amersham
Hybond PVDFmembrane (GEHealthcare), according tomanufac-
turer’s instructions. Primary antibodies were added at 1:10,000
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concentration for α-V5 antibodies (Cat #V8012, Sigma-Aldrich), 1:
10,000 for α-puromycin antibodies (Cat #3RH11, Cedarlane), and
1: 5000 for α-tubulin antibodies (Cat #T5168 Sigma-Aldrich). α-
mouse secondary antibody (Cat #7076, New England Biolabs)
was used at 1:10,000. Blots were imaged using ECL Prime
Western Blotting Detection Reagent (GE Healthcare) and ex-
posed on Amersham Hyperfilm (GE Healthcare).

Polysome fractionation

hORF cell line 1 was grown for 24 h in the presence of either
DMSO or 100 µM 4EGI-1 (Cedarlane). Cells were treated with
100 µg/mL cycloheximide (CHX) (BioShop) for 10 min. Cells
were harvested on ice by washing 2× with ice-cold PBS contain-
ing 100 µg/mL CHX, and lysing with 500 µL ice-cold filter-steril-
ized lysis buffer (10 mM Tris-HCl [pH 7.4], 5 mM MgCl2, 100 mM
KCl, 1% Triton X-100, 2 mM DTT, 500 U/mL RNasin [Promega],
100 µg/mL CHX, Protease inhibitor [1× complete, EDTA-free,
Roche]). Cells were scraped off the dish into tubes and sheared
gently 4× with a 26-gauge needle. Lysed cells were centrifuged
at 1300g for 10 min at 4°C, and clarified supernatant was
isolated.

A 10/50% sucrose gradient was created by combining heavy
and light solutions on a BioComp Gradient Master. Heavy and
light solutions consisted of 20 mM HEPES-KOH (pH 7.4), 5 mM
MgCl2, 100 mM KCl, 2 mM DTT, 100 µg/mL CHX, and 20 U/mL
SUPERaseIn, and either 10% or 50% sucrose (w/v), respectively.
An amount of 300 µL of samples was layered on sucrose gradients
and centrifuged in a precooled Beckman Ultracentrifuge L-90K
using SW41 rotor at 36,000 RPM (221632.5G) for 2 h at 4°C.
The gradient was fractionated using the BioComp Piston
Gradient Fractionator and absorbance measurements were
made using an Econo EM-1 UV Monitor (BioRad).

Puromycin incorporation assay

hORF cell line 1 was grown for 1, 8, or 24 h in the presence of ei-
ther DMSO, 100 μM 4EGI-1, or 5 μg/mL cycloheximide. Cells
were pulsed with 1.5 μg/mL puromycin dihydrochloride
(Thermo Fisher Scientific) for 10 min at 37°C. Cells were then har-
vested and lysed as above.

HEK293T endogenous andORFeomemRNA stability
determination by metabolic labeling

Generation of spike-in RNA

Two sets of spike-in RNA were generated. An unlabeled S. cere-
visiae spike-in is used to determine the enrichment of 4SU-la-
beled RNA over unlabeled RNA, as described previously
(Lugowski et al. 2017). S. cerevisiae strain USY006 was grown in
YPD liquid culture at 30°C, and RNAwas isolated using a hot acid-
ic phenol method (Rissland and Norbury 2009). A 4SU-labeled D.
melanogaster spike-in was also generated by supplementing S2
culture media with 100 µM 4SU for 24 h prior to harvesting.
RNA was extracted using TRI-reagent (Molecular Research
Center) as per manufacturer’s instructions.

Metabolic labeling of hORFeome cell lines

Freshly thawed HEK293T hORFeome cell lines were cultured for
three to four passages and seeded into DMEM+FBS culture me-
dia in 15 cm dishes such that they attained ∼50% confluence on
the day of the time course. Media was replaced with DMEM+
10% FBS+100 µM 4SU (Sigma-Aldrich) reconstituted in DMSO.
Cells were harvested at 1, 2, 4, 8, 12, and 24 h after addition of
4SU. Harvesting was performed by dislodging cells off the plate
during two washes with cold 1× PBS followed by spinning at
1000g for 5 min at 4°C. Cell pellets were resuspended in 1mL
TRI-Reagent (Molecular Research Center) and extracted accord-
ing to manufacturer instructions.

For translation inhibition experiments, hORF cell line 1 or cell
line 4 cells growing in 10 mL DMEM+FBS in 10 cm dishes were
pretreated with either 0.1% DMSO or 100 µM 4EGI-1
(Cedarlane) dissolved in DMSO for 1 h. Following this, 100 µM
4SU was added to media for all plates, and the time course was
performed as described above.

Reversible biotinylation and fractionation of 4SU-labeled
mRNAs

RNA was labeled as described previously (Lugowski et al. 2017).
Briefly, 100 µg of total hORF RNAwasmixedwith 10 µg unlabeled
S. cerevisiae RNA (i.e., 10% w/w) and 10 µg 4SU-labeled S2 D.
melanogaster RNA (i.e., 10% w/w). Water was added to bring
the volume up to 120 µL. An amount of 1 mg/mL HPDP-biotin
(Thermo Fisher Scientific) was reconstituted in dimethylforma-
mide by shaking at 37°C for 30 min at 300 RPM. 120 µL of 2.5×
Citrate buffer (25 mM citrate, pH 4.5, 2.5 mL EDTA) and 60 µL
of 1 mg/mL HPDP-biotin were added to the premixed RNA sam-
ple for each time point. This solution was incubated at 37°C for 2 h
at 300 RPM on an Eppendorf ThermoMixer F1.5 in the dark.
Samples were extracted twice with acid phenol, pH 4.5
(Invitrogen), and once with chloroform. RNA was precipitated
with 18 µL 5M NaCl, 750 µL 100% ethanol, and 2 µL GlycoBlue
(Invitrogen) overnight at −20°C. Precipitated RNA was pelleted
for 30 min at 21,000g at 4°C. The RNA pellet was resuspended
in 200 µL of 1× wash buffer (10 mM Tris-HCl, pH 7.4, 50 mM
NaCl, 1 mM EDTA).

Biotinylated RNA was purified using the µMACS Streptavidin
microbeads system (Miltenyi Biotec). An amount of 50 µL
Miltenyi beads per sample were preblocked with 48 µL 1× wash
buffer and 2 µL yeast tRNA (Invitrogen), rotating for 20 min at
room temperature. µMACS microcolumns were washed 1× with
100 µL nucleic acid equilibration buffer (Miltenyi Biotec), followed
by 5× washes with 100 µL 1× wash buffer. Beads were applied to
microcolumns in 100 µL aliquots, and again washed 5× with 100
µL 1× wash buffer. Beads were demagnetized and eluted off the
column with 2× 100 µL 1× wash buffer, and columns were placed
back on the magnetic stand. A total of 200 µL beads was mixed
with each sample of biotinylated RNA and rotated at room tem-
perature for 20 min.

Samples were then applied to the microcolumns in 100 µL ali-
quots, washed 3× with 400 µL wash A buffer (10 mM Tris-HCl, pH
7.4, 6 M urea, 10 mM EDTA) prewarmed to 65°C, and then
washed 3× with 400 µL wash B buffer (10 mM Tris-HCl, pH 7.4,
1 M NaCl, 10 mM EDTA). RNA was eluted with 5× 100 µL of 1×
wash buffer supplemented with 0.1 M DTT, and flow through
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was collected in a tube. Purified RNA was precipitated with 30 µL
5 M NaCl, 2 µL GlycoBlue, and 1 mL 100% ethanol, incubated at
−20°C overnight. Samples were then spun at 21,000g at 4°C for
30min and resuspended in 20 µLwater. RNAquality was assessed
by running 3 µL of samples on a ∼1.5% agarose gel.

Generation of next-generation sequencing libraries
and RNA-sequencing

A total of 10 µL of purified 4SU-labeled RNA or unpurified total
RNA from the 24-h time point was used to prepare RNA-seq
libraries using the TruSeq Stranded mRNA Sample Preparation
Kit (Illumina), according to manufacturer’s instructions. Adapter-
ligated fragments were enriched with 14× PCR cycles. Approxi-
mately 16 to 22 samples were multiplexed on a single lane in
an Illumina HiSeq 2500 at The Centre for Applied Genomics
(The Hospital for Sick Children, University of Toronto) to obtain
∼10 million 50 bp single-end reads per sample. The data is avail-
able from GEO, accession GSE123165.

HEK293T endogenous and ORFeomemRNA half-life
calculations

Reference genome information

Human (hg38), D. melanogaster (dm6), and S. cerevisiae
(sacCer3) genomes were obtained in 2bit format using the
UCSC Table Browser (Karolchik et al. 2004). 2bit files were con-
verted to FASTA using the kentUtils command twoBitToFa, and
GTF annotations were downloaded using the kentUtils command
genePredToGtf. The three genomes were combined using cus-
tom bash scripts to make a hg38+dm6+ sacCer3 genome.

Initial processing of sequencing reads

Library quality was assessed using FastQC v0.11.5 (http://www
.bioinformatics.babraham.ac.uk/projects/fastqc). Reads were
trimmed and clipped for Illumina adapters using Trimmomatic
v0.36 (Bolger et al. 2014) using the following settings: -phred33
ILLUMINACLIP: TruSeq3-SE.fa:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:36.

Genome mapping and counting

Trimmed reads were aligned to the indexed hg38+dm6+
sacCer3 genome using STAR version 2.5.2 (Dobin et al. 2013)
with the following nondefault settings: –outFilterMultimapNmax
10 –outFilterMismatchNoverLmax 0.05 –outFilterScoreMinOver
Lread 0.75 –outFilterMatchNminOverLread 0.85 –alignIntron
Max 1 –outFilterIntronMotifs RemoveNoncanonical –outSAM
type BAM SortedByCoordinate –quantMode GeneCounts.

HTSeq version 0.6.1 (Anders et al. 2015) was then used to quan-
tify gene counts from aligned BAM files using the following set-
tings: –order=pos –stranded=reverse –minaqual=10 –mode=
intersection-strict. Note that counting of features from human
CDS and intronic GTF files were performed separately.

Defining hORF genes

Gene counts were loaded into RStudio version 3.3.1. Dplyr
package (https://CRAN.R-project.org/package=dplyrnn) was
used for all data manipulation and filtering. Steady state RNA-se-
quencing counts mapping to human CDS features were obtained
from each cell line and normalized to library size to allow compar-
isons across samples. For a given cell line X, genes were de-
scribed as “detectable hORF genes” if they met each of the
following conditions:

They were in the list of hORFs infected into cell line X;

Normalized steady state RNA-sequencing for cell line X was
greater than threefold that in the matched cell line;

Normalized steady state RNA-sequencing for cell line X was
greater than four reads.

Genes that were not infected into cell line Xwere described as en-
dogenous genes.

Calculation of mRNA half-lives

All half-life calculations were performed in RStudio version 3.3.1
as described previously (Lugowski et al. 2018). Briefly, read counts
for mature human mRNAs were filtered such that each gene had
at least one read mapped to its CDS at each time point, and at
least five reads mapped at any (at least one of six) time point.
CDS-mapping reads for each gene at each time point were
then normalized to the sum of all correspondingD. melanogaster
mapping reads.
Half-lives were calculated by fitting these normalized read

counts at each time point to a bounded growth equation using
weighted nonlinear least squares. The bounded growth equation
has been previously described (Lugowski et al. 2017). Briefly, the
equation states:

y(t) = yeq × (1− ekt ),

where y(t) is the amount of a given transcript remaining at time t,
yeq is the amount of that transcript at steady state, and k is the
transcript-specific decay constant.
The nls() function in the stats package was used to fit the time

points to the equation above, with settings equivalent to the
following:

• start = c(yeq =max(y), k=−0.5)

• algorithm= “port”

• weights = 1/y(t)

• lower = c(yeq =0, k=−Inf), upper = c(yeq = Inf, k=0)

If the data did not converge, a value of NA was returned. The
half-life of each transcript is then obtained using the following
equation:

HL = ln(2)
k

Calculation of local secondary structure

To measure local secondary structure, each gene’s coding se-
quence was assayed by sliding 100 bp windows, each starting
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3 bp apart. Each window was folded using ViennaRNA version
2.2.8 RNAfold function (Lorenz et al. 2011) using default parame-
ters. Minimum folding energy (MFE) for each 100 bp sequence
was extracted from output files using custom bash scripts.
Median and minimum MFEs across each CDS were determined
using group_by and summarize functions in the dplyr package
in RStudio.

Codon and amino acid stability coefficient
calculations

Codon usage frequency was calculated from each gene’s coding
sequence using the seqinr package’s uco function. For frame shift
controls, codon and amino acid usage were calculated after shift-
ing the frame by +1 (removing positions 1, n− 2, and n−1 from
CDS of length n) and +2 (removing positions 1, 2, and n− 1
from CDS of length n).

As described previously (Radhakrishnan et al. 2016), codon
stability coefficients (CSC) from a given half-life data set were cal-
culated by determining the Spearman correlation between the
codon frequency for each codon in a transcript with themeasured
half-lives of that transcript. Stop codons were excluded from CSC
calculations. AASCs were calculated by taking the arithmetic
mean of the CSC values for the corresponding codon(s).

Codon and amino acid-specific pause score
calculations using Ribo-Seq

Ribosome profiling data sets for HeLa cells were obtained from
GEO, accession GSE102113, and for HEK293T, U2OS, and
NIH3T3 cells from GEO, accession GSE83616. To identify co-
don enrichments in the A, P, and E sites of translating ribosomes
from ribosome profiling data, reads were first trimmed of their
adapters using cutadapt v2.1 (Bolger et al. 2014). Trimmed
reads were then aligned to the human genome (hg38,
Gencode version 28) or the mouse genome (mm10, Gencode
version 17) using STAR v2.5.2 (Dobin et al. 2013). Only uniquely
aligned reads of length 28, 29, or 30 were then used for further
analyses. The A, P, and E sites of these reads were defined as
positions 17–19, 14–16, and 11–13, respectively. If these sites
were not in-frame in a coding sequence, the read was ignored.
If they were, the codons in the A, P, and E sites were recorded,
allowing the calculation of the frequency with which each codon
appeared within each site. This frequency was then compared
to the null expected frequency. The null expected frequency
for a codon was calculated as its frequency in the longest
ORF of each gene weighted by the abundance of the gene in
the ribosome profiling data set, using only 28–30 nt, in-frame
reads. Amino acid pause scores were calculated by taking the
arithmetic mean of the codon scores for the corresponding co-
don(s).

Other statistical analyses

Number of replicates, statistical tests used, and P-values are spec-
ified in the figures and figure legends.

DATA DEPOSITION

The accession number for the raw data files reported in this paper
is GEO GSE123165. The accession number for the HeLa ribo-
some sequencing data used in this paper is GEO GSE102113.
The accession number for the HEK293T, U2OS, and NIH3T3 ribo-
some sequencing data used in this paper is GEO GSE60426.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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