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ABSTRACT

Protein–RNA recognition is highly affinity-driven and regulates a wide array of cellular functions. In this study, we have cu-
rated a binding affinity data set of 40 protein–RNA complexes, for which at least one unbound partner is available in the
dockingbenchmark. Thedata set covers awideaffinity rangeofeightordersofmagnitudeaswell as fourdifferent structural
classes.Onaverage,we find the complexeswith single-strandedRNAhave thehighest affinity,whereas the complexeswith
the duplex RNA have the lowest. Nevertheless, free energy gain upon binding is the highest for the complexes with ribo-
somal proteins and the lowest for the complexes with tRNAwith an average of −5.7 cal/mol/Å2 in the entire data set. We
train regressionmodels to predict the binding affinity from the structural and physicochemical parameters of protein–RNA
interfaces. The best fit model with the lowest maximum error is provided with three interface parameters: relative hydro-
phobicity, conformational change uponbinding and relative hydration pattern. Thismodel has been used for predicting the
binding affinity on a test data set, generated usingmutated structures of yeast aspartyl-tRNA synthetase, for which exper-
imentally determined ΔG values of 40mutations are available. The predicted ΔGempirical values highly correlate with the ex-
perimental observations. Thedata set provided in this study shouldbeuseful for further development of thebindingaffinity
prediction methods. Moreover, the model developed in this study enhances our understanding on the structural basis of
protein–RNA binding affinity and provides a platform to engineer protein–RNA interfaces with desired affinity.

Keywords: protein–RNA interaction; binding affinity; dissociation constant; conformation change; regression model

INTRODUCTION

Biomolecular assemblies involving proteins and RNAs
are essential for many cellular functions, and the stability
of these assemblies is mediated by the noncovalent in-
teractions (Pauling and Pressman 1945; Kauzmann 1959;
Chothia and Janin 1975; Janin 1995;Draper 1999;Nadassy
et al. 1999; Jones 2001; Treger andWesthof 2001; Bahadur
et al. 2008). These noncovalent forces are responsible for
the binding processes as well as for the folding of the
biomolecules; however, specificity plays an important
role in the recognition. Although the conformation of the
chemical groups, constituting the biomolecules in three
dimensions (3D), determine the specificity of binding, the
energy required for the biomolecules to adopt this confor-
mation is the determinant factor for the affinity of complex
formation and is termed as the free energy of binding. At
equilibrium, the change inGibbs free energy upon binding

(ΔG) can be determined from the reaction kinetics in terms
of the dissociation constant Kd. Although numerous bio-
physical and biochemical methods are available to deter-
mine the Kd (and consequently the ΔG) values, the gap
between the experimentally determined atomic structures
of the complexes available in the Protein Data Bank (PDB)
(Berman et al. 2002) and their corresponding free energy
of binding is still enormous. To bridge this gap,many phys-
ics-basedmethods have been developed to determine the
ΔGvalues theoretically (Kollman1993),which areoften cor-
relatedwith their corresponding experimental valueswhen
available in the literature (Horton and Lewis 1992; Murphy
et al. 1993; Vajda et al. 1994; Janin 1995; Ma et al. 2002;
Audie and Scarlata 2007; Su et al. 2009; Kastritis and Bon-
vin 2010). Although thesemethods are extensively used on
the protein–ligand and on the protein–protein complexes
(Ballester and Mitchell 2010; Moal et al. 2011), they are
yet to be tested on the protein–RNA complexes. One of
the major difficulties in testing them on the protein–RNA
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complexes is the scarcity of the available experimental data
ofprotein–RNAbindingaffinity.However, thegrowing inter-
est in the field of studying protein–RNA interactions made
available a handful of experimentally determined Kd values
for a diverse set of protein–RNA complexes.
Recently, we have assembled a protein–RNA docking

benchmark v2.0, which contains 126 complexes (Nithin
et al. 2017) as an update to the v1.0 of protein–RNA dock-
ing benchmarks (Barik et al. 2012b; Pérez-Cano et al. 2012;
Huang and Zou 2013). Of these complexes, the binding af-
finity values are available for 40 cases in the literature. The
curated data set represents a wide array of biological func-
tions with affinities covering eight orders of magnitude
(range between 10−4 and 10−11 M), as well as four different
structural classes. We train a mathematical model to pre-
dict the protein–RNA binding affinity using structural and
physicochemical parameters of the protein–RNA interfac-
es derived from this data set. In addition, we have success-
fully tested this model on a data set of mutated structures
of yeast Asp-tRNA synthetase complexed with its cognate
tRNA, for which experimental ΔG values of 40 mutations
are available in the literature (Eriani and Gangloff 1999).
Our findings will provide a basis for the quantitative de-
scription of protein–RNA binding affinity and may further
be extended to engineer protein–RNA interfaces with de-
sired affinity. Additionally, the curated data set can be
used for further development and testing of algorithms
to predict the protein–RNA binding affinity.

RESULTS

The data set of protein–RNA binding affinity

The starting point of the present study is the protein–RNA
docking benchmark v2.0 compiled by Nithin et al. (2017).
We performed an exhaustive literature survey to curate the
binding affinity data of the protein–RNA complexes, for
which at least one unbound structure is available. The
binding affinity data set contains 40 complexes, for which
the Kd values were determined by any of the six methods
described in the Materials and Methods section. For each
complex in this data set, we report the following parame-
ters in Table 1: PDB entry code and the chain identifiers
for the complex and its constituents, the length of the
RNA molecule in the crystal structure and in the solution,
the Kd value and the derived ΔG, the temperature and
the pH at which the measurements were done, the exper-
imental methodologies used, and the references reporting
the publications. In addition, we also report the values of
interface area (B), free energy gain upon binding of the
partner molecules, c-rmsd, p-rmsd, i-rmsd, and the flexibil-
ity of the interface.
There are different data sets available for protein–RNA

binding affinity values curated by multiple groups
(Nithin et al. 2018). With 73 cases, the first data set of affin-

ity values was developed in 2013 by the Liu group (Yang
et al. 2013). The PDBBind data set developed by the
Wang group reports affinity values for six protein–RNA
complexes (Liu et al. 2015). Similarly, the Bahadur group
had curated the data set of affinity values for alanine sub-
stitutions in protein components of protein–RNA complex-
es, which reports 94 experimental affinity values for 14
native structures (Barik et al. 2016). This data set was later
expanded by the Deng group to include 49 RNP complex-
es (Pan et al. 2018), which reports 334 experimental affinity
values. More recently, the Mitchell and Zhu groups devel-
oped the dbAMEPNI data set, which reports experimen-
tally determined affinity values for 51 protein–RNA
complexes (Liu et al. 2018) and for 193 alanine substitu-
tions in these RNA-binding proteins. In the current study,
we have used the data set of affinity values curated for
complexes available in the protein–RNA docking bench-
mark, which is highly nonredundant, making the choice
justified.

Experimental techniques used to measure
the affinity values

An important aspect to be considered about the binding
affinity data set is the methodological difference among
different experimental techniques used for affinity mea-
surements (Kastritis and Bonvin 2013). Protein–RNA bind-
ing affinity is highly dependent on temperature, pH, and
ionic strength, as well as the presence of a high concentra-
tion of other macromolecules. This has been carefully
checked for all the cases present in this data set and is re-
ported in Table 1. The affinity values reported in Table 1
were measured by the following experimental methods:
EMSA (Ryder et al. 2008), filter binding assay (Rio 2012),
fluorescence spectroscopy (Vivian and Callis 2001), kinetic
study (Goodrich and Kugel 2015), ITC (Feig 2009), and SPR
(Katsamba et al. 2002). All the experiments that measured
the reported dissociation constants in the present data set
have been performed in the temperature range between
273 K and 338 K.
In 13 cases, the Kd values were determined by EMSA,

which is routinely used to visualize the protein–RNA inter-
actions (Ryder et al. 2008). This method relies on the elec-
tronic property of the RNA surface, which helps them to
migrate toward an anode upon application of an electric
field in an agarose or polyacrylamide gel matrix. The aver-
age Kd value determined by EMSA is in the micromolar
range, although it reports both high affinity (Kd = 5.4 ×
10−11M) in the helicasedbpA-23S rRNA fragment complex
(Hardin et al. 2010) and low affinity (Kd= 1.0×10−6 M) in
elongation factor Sel B and the RNA complex (Yoshizawa
et al. 2005). The dissociation constants measured by
EMSA were at different temperatures, and the average
ΔG is −10.55 kcal/mol (Table 1). EMSA captures more sta-
ble interactions, which can tolerate electrophoresis

Protein–RNA binding affinity
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conditions and heat generated during the process
(Hellman and Fried 2007).
Fluorescent spectroscopy (Vivian and Callis 2001) makes

use of either the intrinsic tryptophan fluorescence
(Ghisaidoobe and Chung 2014) or fluorophore-labeled ol-
igonucleotide probes (Pagano et al. 2011) to quantitatively
monitor the protein–nucleic acid interactions. This method
is the second major method that reports nine Kd values
with an average of 1.25×10−5 M, and the corresponding
average for ΔG is −8.81 kcal/mol. The value ranges from
1.1×10−4 M in the complex between Nab3-RRM and
the UCUU recognition sequence (Lunde et al. 2011) to
4.0× 10−8 M in the complex between the ZnF domain
and pre-mRNA (Teplova and Patel 2008). The affinity mea-
surements by the fluorescence titration method could be
affected by the use of a labeling that may alter the binding
behavior of the complex (Klotz 1985).
Filter binding assay (Rio 2012) is the third major method

that reports Kd values for eight complexes. This methodol-
ogy is based on the assumption that proteins bind to nu-
cleic acids, and if a protein is associated with a nucleic
acid, then the complex can also be retained on a nitrocel-
lulose filter (Hall and Kranz 1999). This method is fully infor-
mative when there is a single binding site, but it fails at the
presence of multiple binding sites. The average Kd value
reported by this method is 6.44×10−7 M (corresponding
average ΔG value is −11.30 kcal/mol) with a range from
5.0×10−6M in the complex between the Rho transcription
termination factor and cytosine-rich RNA (Martinez et al.
1996) to 3.33×10−11 M in the complex between SRP
and 4.5S RNA (Batey et al. 2001). These values were mea-
sured either at 298 K or at 310 K. The association between
the protein and the nucleic acid must be tight enough to
survive the filtration, and the protein must be able to retain
the bound nucleic acid when it is in turn bound to the filter
(Oehler et al. 1999).
ITCmeasures the heat taken up or given off during inter-

action between protein and RNA (Feig 2009). The enthal-
py changes associated with the binding are measured by
calorimetry, which makes it the only method available for

directly determining the thermodynamic parameters asso-
ciated with an interaction (Ladbury and Chowdhry 1996).
ITC was used in the determination of Kd values for seven
complexes with an average Kd of 4.67×10−7 M, and the
values range from 1.2×10−6 M in the complex between
NS1 and dsRNA (Cheng et al. 2009) to 1.26× 10−8 M in
the complex between GTPase ERA and 16S rRNA (Tu
et al. 2011). Even though ITC has high sensitivity, the ex-
traction of heat effects of complex formation can be
challenging under certain conditions. For instance, when
the association of protein and RNA exhibits small binding
enthalpy, the signal-to-noise ratio is relatively low.
Similarly, when the complex formation is a rather slow pro-
cess, the kinetically low process can get neglected (Du
et al. 2016).
The other twomethods, SPR and kinetic study, report Kd

values for two (9.8 × 10−10 M and 5.3×10−9 M) and one
(3.6× 10−7 M) complex, respectively. SPR is an optical
technique that measures the refractive index near the sur-
face of the sensor (Yang et al. 2008). SPR (Biacore) is able to
detect more transient and less stable interactions in the
solution phase when the ligand molecule is provided at a
very low concentration ranging from picomolar to nano-
molar (Katsamba et al. 2002). However, the measurements
performed by SPR could be affected by mass transfer lim-
itations and the heterogeneity of the binding surface
(Schuck and Zhao 2010).

Affinity in different structural classes

In the present data set, nine out of 40 complexes have
both the protein and the RNA components in their free
forms. Table 2 represents the data set divided into four
structural classes as provided in the protein–RNA docking
benchmark: (A) complexes with tRNA, (B) complexes with
ribosomal protein, (C) complexes with duplex RNA, and
(D) complexes with single-stranded RNA. They represent
12.5%, 5%, 37.5%, and 45% of the cases, respectively. In
addition, Table 2 provides the mean value and the stan-
dard deviation for ΔG, B, and i-rmsd in each class. All the

TABLE 2. Affinity and structural classes of the complexes

Structural classa Number of complexes Mean (±SD) ΔGb kcal/mol Mean (±SD) Bc (Å2) Mean (±SD) i-rmsdd (Å)

A. Complexes with tRNA 5 −10.0 (0.9) 4022 (823) 7.4 (10)

B. Ribosomal proteins 2 −9.4 (0.4) 1404 (285) 2.1 (1.7)
C. Duplex RNA 15 −11.5 (1.8) 2313 (681) 5.8 (8.3)

D. Single-stranded RNA 18 −9.0 (1.5) 1950 (1087) 1.7 (1.9)

All 40 −10.1 (1.9) 2322 (1135) 3.2 (6.7)

aThe structural class for protein–RNA complexes is taken from Bahadur et al. (2008).
bThe mean ΔG value in each structural class is calculated from the reported Kd value using Equation 6 described in the Materials and Methods section.
cThe average interface area (B) in each structural class.
dThe average i-rmsd in each structural class.
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structures reported in this data set are of medium affinity
class as described in the affinity benchmark of protein–pro-
tein complexes by Kastritis et al. (2011).

The structural class A contains five complexes with ami-
noacyl tRNA synthetases and their corresponding tRNAs.
The Kd is in the range from 3×10−8 M to 3.6×10−7 M.
The average ΔG in this class is −9.97 kcal/mol, and the cor-
responding average interface area (B) is 4022 Å2. The data
set contains only two Kd values for the class B complexes
involving ribosomal protein and rRNA. For both of them,
the dissociation constant is ∼7×10−8 M. The average ΔG
in this class is −9.4 kcal/mol, and the average B is 1404
Å2. Class C, complexes with duplex RNA, exhibits a wide
Kd range from 1.2×10−6 M to 3.33×10−11 M with an aver-
age of 1.04×10−7 M (corresponding average ΔG value
is −11.47 kcal/mol). In this class, the highest affinity is
found in the complex between the SRP and 4.5S RNA
(Kd is 3.33×10−11 M). Here, the minor groove of 4.5S
RNA recognizes the M domain of SRP and the recognition
is highly sequence-specific (Batey et al. 2001). The buried
surface area between the protein and the RNA is 1364 Å2

(Fig. 1A) with a fully flexible interface (i-rmsdRNA=30.4 Å).
The average ΔG in class C complexes is −11.5 kcal/mol,
and the average B is 2313 Å2. Class D involves complexes
with single-stranded RNAwith a wide Kd ranging from 9.80
×10−10 M to 1.10×10−4 M. The average ΔG is −8.98 kcal/
mol, and the averageB is 1950 Å2. This structural class con-
tains the lowest affinity complex involving Nab3-RRM and
the UCUU recognition sequence (Kd is 1.1 × 10−4 M) in
which the protein–RNA recognition process is sequence-
specific (Lunde et al. 2011). The buried surface area be-
tween the protein and the RNA is very small (926 Å2)
(Fig. 1B) with a rigid interface (i-rmsd=1.2 Å). Table 2
shows that average ΔG is the highest for complexes involv-
ing single-stranded RNA and the lowest for complexes in-

volving duplex RNA with significant standard deviation in
each class.

Conformational changes and the binding affinity

Protein–RNA interactions are often associated with con-
formational changes in which both the protein and the
RNA molecules undergo significant rearrangements in
their 3D structures upon binding (Ellis et al. 2007). At
the protein side, the frequent changes include the side-
chain rotation, small adjustments of the main chain, or
large movements of the domains. Nevertheless, large
domain movement exhibited in the ribosomal protein
L1-mRNA complex (Tishchenko et al. 2006) or the transi-
tion of the polypeptide chain from disordered to ordered
state exhibited in the P22 N-peptide bound to boxB RNA
(Bahadur et al. 2009) and in the pseudouridine synthase
TruB-tRNA complex (Pan et al. 2003) are also associated
with RNA binding. Being more flexible than protein,
RNA undergoes larger conformational changes than its
partner protein at the protein–RNA binding site (Barik
et al. 2012b). The data set displays examples with varying
flexibility at the protein–RNA binding sites. While at
one end it has a full flexible protein exemplified in the
O-phosphoseryl-tRNA kinase-tRNA-Sec complex (i-rmsd:
27.3 Å; PDB ID: 3ADB), at the other end it has a rigid com-
plex formed between exosome and substrate RNA (i-
rmsd: 0.3 Å; PDB ID: 3IEV). The corresponding ΔG values
are −11.31 kcal/mol and −7.98 kcal/mol, respectively,
with a significant difference in their interface area, which
are 3014 Å2 and 1533 Å2, respectively (Table 1).
Average i-rmsd is the lowest in the complexes with sin-
gle-stranded RNA and the highest in the complexes with
double-stranded RNA (Table 2); however, the overall cor-
relation with the ΔG is poor (Table 3).

Variable length of the RNA and
affinity measurements

For each complex, Table 1 shows the
length of the RNA in the crystal struc-
ture, aswell as in the solutionprepared
for theKdmeasurement. Inmostcases,
the length of the RNA in the solution
used for determining the Kd values
are different from those available in
the crystal structures. In the structural
class A, in all but one case, the length
of the RNAs from crystal and from sol-
ution is identical. This exception is
found in the complexCCA-adding en-
zyme bound to 35-mer tRNA. Here,
the partial tRNA used in the crystal is
a synthetic construct (Tomita et al.
2006). In the structural class B, the

BA

FIGURE 1. Test cases in the protein–RNA affinity data set. (A) Structure of an SRP in complex
with 4.5 S RNA (PDB ID: 1HQ1; structural class C), and (B) structure of the Rho transcription ter-
mination factor in complex with cytosine-rich RNA (PDB ID: 2A8V; structural class D). In each
case, the bound form of the protein is in green, and the unbound form is in cyan. The bound
form of RNA is in gray, and the unbound is in olive.
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RNA molecules in the crystal are shorter than those in
the solution for Kd measurements. In the structural class
C, significant RNA length variability is observed in three
out of 15 cases. In the structural class D, significant RNA
length variability is observed in nine out of 18 cases. In
all of these cases, where the length variation exists, most
of the crystal structures contain a part of the full-length
RNA or synthetic RNA constructs, which are generally bio-
logically irrelevant. In such cases, to predict the binding af-
finity theoretically, predictors should start with the longer
RNA and model its conformation (Sim et al. 2012).

Mathematical model for the prediction of binding
affinity

The data set of affinity values curated in this study has been
used to generate a regression model to predict the bind-
ing affinity from various structural and physicochemical pa-
rameters (Supplemental Table S1). We have developed
mathematical models as described in the Materials and
Methods section using Eureqa (Schmidt and Lipson
2009). Models with R2 (the coefficient of determination)
below 0.8 were discarded. The models fitted with the low-
est error are selected and listed in Supplemental Table S2.
The best fit model withminimum values for maximum error
reported in the regression fitting is

DGempirical =
86.4× sin(86.8× i−rmsd) − 236− 5.95× i−rmsd

fnpp

− 5.43− 1.94× dr2 × sin fnpp

( )
× sin(dr

+ 270× i−rmsd),
(1)

where fnpp is the fraction of nonpolar interface atoms on the
protein side. The parameter dr quantifies the relative hy-
dration of interfaces. It is defined as the ratio of the average
distance of interface waters to the average distance of in-
terface atoms (Barik and Bahadur 2014). All the distances
were measured from the center of mass of the interface.

The above model has a goodness of fit (R2) value of 0.92
and a correlation coefficient of 0.96, with a mean absolute
error of 0.27 and mean squared error of 0.30. The good-
ness of fit is represented graphically as a plot of experi-
mental and predicted values of ΔG (Fig. 2).
The intrinsic variability embedded in different experi-

mental techniques for measuring the binding affinity may
account for the difference between the predicted and
the experimental values. To test the validity of the model
building process, different models were trained on data
derived from a single experimental method. The experi-
mental methods A, B, C, and E were used to train the mod-
els. The number of data points available for experimental
methods D and F was not sufficient to train mathematical
models. Equations 2 to 5 represent the best models from
training using data from A, B, C, and E, respectively:

DGempirical = 10.5× dr +−624
fnpp

− 7.38− 0.0221fnpp

− 0.231× i−rmsd, (2)
DGempirical = 163× dr + 0.169× i−rmsd− 69

− 0.000157× f 2npp
− 122× dr

× sin (dr ), (3)

DGempirical = 7.33× dr + 2.85× i−rmsd

+ 256− 161× i−rmsd
fnpp

− 22.4

− 1.74 sin
1232.95

fnpp

( )
, (4)

DGempirical = 98.7+ 2910.18
fnpp

− 0.14× i−rmsd

− 0.967× fnpp − 1.17 cos (3.86

× i−rmsd). (5)

TABLE 3. Pearson correlation coefficient between binding
affinity and structural parameters

Classa

Correlation of ΔG with

Interface area (B) (Å2) c-rmsd i-rmsd

A (5) 0.72 −0.76 −0.59
B (2) – – –

C (15) 0.49 0.26 −0.37
D (18) −0.50 0.002 −0.16
Overall (40) −0.12 −0.12 −0.41

aAffinity values are divided into different structural classes according to
Bahadur et al. (2008). The values in the parentheses represent the
number of complexes. Structural class B has only two complexes and
thus is removed from the statistics.

FIGURE 2. Observed ΔG (in kcal/mol) versus predicted ΔGempirical (in
kcal/mol) for the training data set.
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The models trained were tested on the data set and the
results are shown in Figure 3. The variable sensitivity report
for all the models is available in Supplemental Table S3.

Validation of the mathematical model
on the test data set

The model was tested on a data set of ΔG values curated
from literature for yeast aspartyl-tRNA synthetase (AspRS)
(Eriani and Gangloff 1999). Experimentally determined

ΔG values for 40 mutations are available for this complex.
Yeast AspRS (PDB ID: 1ASY) representing the various mu-
tated residues at interface and noninterface regions is
shown in Figure 4. We modeled each of these mutated
structures using the native structure as the template. The
various structural and physicochemical parameters were
calculated for the mutated structures and the ΔGempirical

values were calculated using the developed model (Sup-
plemental Table S4). The predicted ΔGempirical and experi-
mental ΔG are presented as a scatter plot in Figure 5. The
standard error, the mean absolute error, and the percent-
age relative error observed in this prediction are 1.69%,
1.42%, and 16.95% (Supplemental Table S4), respectively.

DISCUSSION

The availability of experimental binding affinity values fa-
cilitates correlating them with the structural data available
from the 3D structure determination methods. The bind-
ing affinity measures the strength of the association be-
tween the biomolecules, and because of the difficulty to
measure them directly from the experiments in some spe-
cific systems, efforts have been made to estimate them
from the correlation derived from the structural data. This
effort is very successful in the case of protein–protein com-
plexes correlating the binding free energy with the buried
surface area (Chothia and Janin 1975; Guharoy and
Chakrabarti 2005). The affinity benchmark for protein–pro-
tein complexes (Kastritis et al. 2011; Vreven et al. 2015) fa-
cilitates the progress of the theoretical models that uses
3D atomic structures to predict the binding free energy.
This was started almost 29 years ago by Horton and
Lewis (1992), with a handful of experimental dissociation
constants curated from the literature. Since then, many
computational methods have been developed based on

FIGURE 4. Mutated residues in yeast Asp-tRNA synthetase (PDB ID:
1ASY). The interface and the noninterface residues are shown in blue
andcyan, respectively. The residuesmutatedat the interfaceare shown
in red, whereas those at the noninterface region are shown in olive.

FIGURE 3. A comparison of predictions for models trained on four
data sets segregated based on the experimental method as well as
the overall training data set. The four segregated data sets include
Kd values determined by filtration assay (A), fluorescence titration (B),
EMSA (C ), and ITC (E). The number of data points available for Kd de-
termined by two experimental methods, binding kinetics (D) and SPR
(F ), was not sufficient to train independent mathematical models.
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empirical, semi-empirical, or knowledge-based approach-
es, which predict the binding affinity of protein–protein
(Baker and Murphy 1998; Ma et al. 2002; Audie and
Scarlata 2007; Kastritis et al. 2011; Tian et al. 2012; Janin
2014; Xue et al. 2016), protein–ligand (Böhm 1994;
Eldridge et al. 1997; Mitchell et al. 1999; Gilson and Zhou
2007; Kim and Skolnick 2008; Ballester and Mitchell
2010), and protein–DNA complexes (Selvaraj et al. 2002;
Zhang et al. 2005) with varied success. However, because
of lack of availability of data, implementation of these
methods on protein–RNA complexes is still in its infancy
(Yang et al. 2014). The success of all these binding affinity
prediction methods partially depends on the quality of
the data, which can often be contaminated by incorrect
Kd values or by the association of Kd with incorrect PDB en-
tries due to human error during the literature search.
However, even for a high-quality data set, these methods
fail to predict the binding affinity correctly because of the
lack of accountability for the conformational changes dur-
ing the binding process.
In this current study, we have developed a structure-

based mathematical model for the prediction of protein–
RNA binding affinity values. The model was trained on a
curated data set of protein–RNA binding affinity available
in the literature. In addition, the model was further validat-
ed on a protein–RNA complex, for which the binding affin-
ity values of 40mutations are available in the literature. The
affinity benchmark for the protein–protein complexes in-
cludes 179 entries (Vreven et al. 2015); however, because
of the scarcity of data on protein–RNA complexes, we are
restricted here to only 40 entries. Our data set is not only
diverse in terms of the RNA structural classes with com-
plexes involving tRNA and ribosomal RNA to duplex and

single-stranded RNA, but also diverse in terms of the part-
ners’ affinity with Kd ranging between 10−4 M and 10−11

M. This data set also represents a wide variety of complex-
es, resembling rigid body, semiflexible, and full flexible
based on the conformational changes upon complex for-
mation (Bahadur et al. 2008).
In the present data set of protein–RNA binding affinity,

the linear correlations (Pearson correlation coefficient r)
between ΔG and i-rmsd and between ΔG and p-rmsd
are mediocre, −0.41 and −0.51, respectively. However,
there is no observable correlation between ΔG and inter-
face area (B) and between ΔG and c-rmsd for the entire
data set (Table 3). In the unbound–unbound class, there
exists a good correlation between ΔG and i-rmsd (r=
−0.91). Except in class A, a mixed correlation is observed
between the affinity and the structural parameters among
different structural classes. We have calculated the free en-
ergy gain upon complex formation (the free energy per
unit buried surface area of the protein–RNA complex),
which is −5.7 cal/mol/Å2 for the entire data set (Table 2).
This gain is maximum for the complexes with ribosomal
proteins (−7.0 cal/mol/Å2) and minimum for the com-
plexes with tRNA (−2.7 cal/mol/Å2). For the other two
structural classes, this value is −5.6 cal/mol/Å2 (complexes
with duplex RNA) and −5.9 cal/mol/Å2 (complexes with
single-stranded RNA). We did not obtain a correlation co-
efficient of >0.73 in any class or in any temperature
category. This may be attributed to the effect of tempera-
ture, pH, and ionic strength on the measurement of Kd.
This is evident in our data set as the temperature, pH,
and ionic strength are different for different experimental
measurements.
The curated data set was trained to develop a mathe-

matical model to predict the values of binding free energy
of protein–RNA complexes from the structural parameters.
The mathematical model developed in this study depends
on structural and physicochemical parameters of both the
bound and the unbound structures, namely, the fraction of
nonpolar protein atoms at the interface, the interface
rmsd, and the distribution of water molecules at the inter-
face. Previous reports show that these three parameters
play crucial roles in determining protein–RNA recognition
(Bahadur et al. 2008; Barik and Bahadur 2014; Barik et al.
2015, 2016). Furthermore, these parameters were also
used quite efficiently by many research groups to address
various issues inmacromolecular recognition (Jayaram and
Jain 2004; Rodier et al. 2005; Li and Lazaridis 2007; Teyra
and Pisabarro 2007; Janin and Bahadur 2008; Reichmann
et al. 2008; Hou et al. 2011; Barik and Bahadur 2014;
Barik et al. 2015, 2016). For example, they are quite effi-
cient in discriminating the biological interfaces from the
crystal contacts in protein–protein complexes (Bahadur
et al. 2004; Rodier et al. 2005; Janin et al. 2008;
Terribilini 2008; Iwakiri et al. 2012) and are useful in effi-
cient scoring function for macromolecular docking (Chen

FIGURE 5. Observed ΔG (in kcal/mol) versus predicted ΔGempirical (in
kcal/mol) for the substitutions in yeast Asp-tRNA synthetase.
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et al. 2004; Zheng et al. 2007; Setny and Zacharias 2011;
Tuszynska and Bujnicki 2011; Zhao et al. 2011; Li et al.
2012; Huang et al. 2013, 2016; Huang and Zou 2014)
and the prediction of binding affinity and binding hotspots
(Yang et al. 2014; Barik et al. 2016; Krüger et al. 2018; Pan
et al. 2018). The model depends on the fraction of nonpo-
lar interface area, fnpp , which measures the hydrophobicity
at the binding sites. It is evident that the protein–RNA
binding is often driven by the conformational changes,
and the mathematical model includes the effect of confor-
mational flexibility in the empirical estimation of binding
free energy. The model has two terms with this parameter.
In the first term, the relationship is inverse, and this shows
that a highly polar interface is preferred for RNA binding.
This is typical of protein–RNA interfaces, as the polar resi-
dues contribute significantly to the binding to the nega-
tively charged phosphate of RNA (Bahadur et al. 2008;
Barik et al. 2015). Moreover, the nonpolar region of the in-
terface undergoes significant conformational changes and
higher changes in accessible surface area (Mukherjee and
Bahadur 2018). The dependence of binding affinity on the
parameter dr indicates the important role played by the
water molecules in protein–RNA recognition (Barik and
Bahadur 2014; Barik et al. 2016). The dr values indicate
the relative hydration of protein–RNA recognition sites.
Previous studies have demonstrated that the water-bind-
ing sites at the protein–RNA interfaces vary significantly
from the protein–protein interfaces (Rodier et al. 2005;
Barik and Bahadur 2014; Mukherjee et al. 2019). The con-
tribution of water-mediated interactions at the protein–
RNA interfaces is significantly higher than at the pro-
tein–protein interfaces, and a substantial amount of these
interactions are mediated by the 2′ OH group of the ri-
bose sugar. The mathematical model trained in this study
shows that the “dr” values contribute significantly to the
ΔGempirical values. This can be attributed to the higher
number of water-mediated interactions at the protein–
RNA interface.

The model was tested on AspRS (PDB ID: 1ASY), for
which experimentally determined affinity values of 40 mu-
tations are available (Eriani and Gangloff 1999), which
were not used in the training data set. Of these 40 muta-
tions, 29 are single, 10 are double, and one is a triple mu-
tant (Supplemental Table S4). All the affinity values for the
native and mutant structures were measured using nitro-
cellulose binding assay (Eriani and Gangloff 1999). The
majority (35) of thesemutations are at the interface, where-
as only five are at the noninterface region. Our model pre-
dicted the affinity values of 29 (75%) mutants with an
absolute error of < 2 kcal/mol. In the case of eight mutants,
the absolute error is within a limit of 3.5 kcal/mol. The re-
maining two cases, in which the absolute error is >3.5
kcal/mol, are double mutants at the interface. In these
two cases, the ΔΔG values are significantly higher, 2.68
and 2.97 kcal/mol.

The different amino acid substitutions in AspRS were at
four different binding regions: the terminal A binding re-
gion, the acceptor arm binding region, the anticodon
loop binding region and the central core binding region
(Eriani and Gangloff 1999). The terminal A binding region
does not influence the binding of tRNA to AspRS in the
ground state and is involved in acylation. The prediction
model shows the lowest root mean squared error
(RMSE)—0.83 kcal/mol—for these cases. The predicted
values in substitutions on the anticodon binding region
and central core binding region show comparable
RMSEs with 1.99 kcal/mol and 1.91 kcal/mol, respectively,
whereas the predictions for substitutions at the acceptor
arm binding region show a slightly lower RMSE of 1.66
kcal/mol. The predicted values for double substitutions
involving both anticodon loop binding and acceptor
arm binding regions show the highest RMSE—2.64 kcal/
mol (Supplemental Table S4). While testing the mathe-
matical model using the mutant structures of yeast
AspRS, the mean standard error, the mean absolute error,
and the mean percentage relative error observed are
1.69%, 1.42%, and 16.95%, respectively. However, the
correlation coefficient between the experimental ΔG
and predicted ΔGempirical values is poor (R2 = 0.12). This
poor correlation coefficient may be attributed to two rea-
sons: the errors introduced by modeling and the poor es-
timate of dr values from the modeled complexes. The
template-based modeling technique is unable to recapit-
ulate the structural changes introduced by the alanine
substitutions (Fiser 2010). The higher RMSE values ob-
served for the double mutants may be attributed to the
modeling error. However, for the mutants with higher
ΔΔG values, we observe higher relative error in the pre-
dicted ΔGempirical. The changes in binding affinity can
be quantified in terms of ΔΔG and are indicative of the
structural changes in the protein that affects the RNA
binding. The correlation coefficient between the experi-
mental and predicted ΔG values is 0.29 for mutants with
ΔΔG≤1.5 kcal/mol. To estimate the dr value with better
accuracy, we chose a subset of eight mutants with alanine
substitutions at the protein–RNA interface with ΔΔG≤ 2.0
kcal/mol and solvated them. The solvated structures were
further minimized and equilibrated and used to estimate
the dr values (Supplemental Table S5). The current force
fields available for simulations of protein–RNA complexes
have their own limitations (Šponer et al. 2018), which
might add additional errors to the modeled structures.
Despite this, the correlation between experimental ΔG
and predicted ΔGempirical values improves from 0.17 to
0.75 for this subset of mutants. Moreover, for this subset
of eight mutants, the RMSE values improve from 1.41
kcal/mol to 0.51 kcal/mol. The prediction accuracy is
very much dependent on the quality and accuracy of
the experimental data. The temperature, pH, ionic condi-
tion, and intrinsic variability embedded in different
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techniques may also account for the difference between
predicted ΔGempirical and experimental ΔG values.

Conclusion

The protein–RNA binding affinity data set curated in this
study contains a wide variety of complexes in terms of their
structural classes as well as their cellular functions.
Moreover, the complexes have a wide range of affinities
in which the dissociation constant spans eight orders of
magnitude. This data set should be a valuable resource
for the computational structural biologists attempting to
predict the binding affinity from atomic structures and
will also stimulate the development of novel methods ac-
counting for the flexibility in the assembly formation. The
major challenges in making this data set are the paucity
of binding affinity data and their reliable curation from
the literature. The curated data set of affinity values was
used to develop a structure-based mathematical model
for predicting the binding affinity of protein–RNA com-
plexes. The model developed in this study is highly accu-
rate and can be deployed for finding the affinity of all
known protein–RNA complexes. This model will enhance
our understanding of the structural basis of protein–RNA
binding affinity and may be valuable to the experimental-
ists aiming to engineer protein–RNA interfaces with de-
sired affinity.

MATERIALS AND METHODS

The data set of binding affinity

The protein–RNA docking benchmark was used to get the data
set of protein–RNA complexes for which bound and unbound
structures are available (Nithin et al. 2017). The binding affinity
values were manually curated from the available literature. The
publications available as references for the atomic structures sub-
mitted in the PDB were checked for the corresponding Kd values.
When the values were not found in the primary citation, they were
found by conducting an exhaustive search by clicking the button
“Search Related Articles in PubMed.” The experimental Kd values
were taken only if the protein from the publication was the same
as that in the published crystal structure and if therewas amatch in
the organism name. In most of the cases, when the reported Kd

values were taken from sources other than the published X-ray
structure in the PDB, the affinity measurements were done on pro-
tein samples or genetic constructs that were different from the
X-ray studies and under different experimental conditions. The
various experimental methods used to calculate the dissociation
constants are the filter binding assay (Rio 2012), EMSA (Ryder
et al. 2008), fluorescence spectroscopy (Vivian and Callis 2001),
kinetic study (Goodrich and Kugel 2015), ITC (Feig 2009), and
SPR (Katsamba et al. 2002). The temperature, pH, and the exper-
imental conditions were recorded for all 40 cases from the same
publication if available or from the references or protocols fol-
lowed by the authors. The Gibbs free energy of dissociation
was calculated by taking the temperature stated and using the fol-

lowing equation (c0 = 1M standard state):

DG = RT∗ lnKd

c0
. (6)

Structural and physicochemical parameters used
in the prediction of binding affinity

The following parameters of protein–RNA interfaces were consid-
ered in the prediction model: number of amino acids, number of
nucleotides, number of interfacewater molecules, number of pre-
served interface waters, number of water bridges, dr (parameter
to quantify the dry and wet protein–RNA interfaces), number of
hydrogen bonds, fraction of nonpolar area on the protein and
the RNA sides, fraction of buried atoms on the protein and the
RNA sides, local density (LD) indices on the protein and the
RNA sides, number of salt bridges and stacking interactions,
shape complementarity index, and gap volume (GV) index. All
these parameters are calculated following Barik et al. (2015) and
Barik and Bahadur (2014).
The size of the protein–RNA interfaces was estimated by mea-

suring the solvent accessible surface area (SASA) buried in the
contact. The interface area (B) is the sum of the SASA of the two
components less that of the complex and was calculated using
the PRince web server (Barik et al. 2012a). The SASA values
were measured with the program Naccess (Hubbard and
Thornton 1993), which implements the Lee and Richards (1971)
algorithm with a probe radius of 1.4 Å and default group radii:

B = SASAProtein + SASARNA − SASAComplex. (7)

During complex formation, an atom may lose its SASA
completely and thus become fully buried in the interface. Those
atoms that lose SASA upon complexation were identified as the
interface atoms. The fraction of such buried atoms ( fbu) was calcu-
lated at the binding regions on both the protein and the RNA side
of the interface using the following equation:

fbu = Number of buried interface atoms
Total number of interface atoms

. (8)

Although fbu measures the compactness of the atomic packing
at the interface, the LD index is used to measure the atomic den-
sity at each point of the interface (Bahadur et al. 2004). In brief, LD
is defined as the mean number of interface atoms that are within
12 Å of another interface atom. If an interface has N atoms, and if
ni atoms are within a distance of 12 Å from a given interface atom
i, the LD for that subunit is calculated as below:

LD =
∑

ni
N

. (9)

Hydrogen bonds (H-bonds) at the protein–RNA interfaces were
calculated using the software HBPLUS (McDonald and Thornton
1994) with default parameters. The salt bridges at protein–RNA
interfaces were calculated when the distance between the side-
chain nitrogen atoms of positively charged residues and the neg-
atively charged phosphate group of the nucleotides is within 4 Å
(Barlow and Thornton 1983; Xu et al. 1997). Stacking interactions
at protein–RNA interfaces are usually defined as the π–π interac-
tions that can occur between the side chains of Tyr, Trp, Phe,
His, and the RNA bases. Moreover, the π–π and π-cation stacking
of Arg through its guanidinium moiety with nucleosides were
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included in the calculation of stacking interactions (Allers and
Shamoo 2001). The planes were defined at both sides by consid-
ering the atoms constituting the aromatic rings, and the center of
the plane was calculated as the midpoint of all these atoms. The
cutoff distance between the centers of both the planes was kept
at ≤5 Å, and the dihedral angle between the two planes was con-
strained to ≤30° (Allers and Shamoo 2001). The stagger angle is
defined as the angle between the normal to the first plane and
the vector joining the centers of the two planes. The shape corre-
lation index (Sc) (Lawrence and Colman 1993; Allers and Shamoo
2001) was used to quantify the shape complementarity at pro-
tein–RNA interfaces. Atomic packing at protein–RNA interfaces
was also evaluated using the gap volume index (GV) (Jones and
Thornton 1996) given by the following equation:

GV Index (in A
◦
) = Gap volume between molecules

B
. (10)

The GV for each complex was calculated using the SURFNET
program (Laskowski 1995).

The structural parameter dr was used to quantitatively define
the distribution of the water molecules at the protein–RNA inter-
face. Briefly, dr is a ratio of the average distance of interface water
molecules to the average distance of interface atoms contributed
by the protein and the RNA chains. In both cases, distances were
measured from the center of mass of the interface:

dr = Average distance of water from center of mass of interface
Average distance of interface atoms from center of mass of interface

.

(11)

The superposition of the structures was performed using the
distancematrix alignmentmethod implemented in the Dali server
(Holm and Laakso 2016). The root-mean-squared displacement
(rmsd) values were calculated from the interface amino acids
and nucleotides after superposing the respective bound and un-
bound structures of the protein and the RNA components when
available in their free form. For each polypeptide chain, c-rmsd
was calculated, which is the displacement of all the equivalent
Cα atoms between the superposed bound and the unbound pro-
teins. For the RNA chains, the p-rmsd val-
ues were calculated in a similar way over
the superposed equivalent backbone
phosphorus (P) atoms. Interface rmsd
(i-rmsd) values were calculated for each
complex considering only the equivalent
Cα atoms of the interface residues and/or
the equivalent P atoms of the interface nu-
cleotides. The different structural and
physicochemical parameters used in this
study are available in Supplemental
Table S1.

Development of the mathematical
model for prediction of binding
affinity

The mathematical models were generated
using regression analysis following Sch-
midt and Lipson (2009) implemented in
Eureqa software. The different physico-

chemical and structural parameters for the protein–RNA com-
plexes were provided as inputs to the software. The data set
was split randomly into a training data set and a validation data
set by the Eureqa software used in this study. The training set
is used to generate and optimize solutions, and the validation
set is used to test how well those models generalize to new
data. Eureqa also uses the validation data to filter out the best
models. The following mathematical operations were applied
to the input variables while searching for equations that fit the in-
put data: addition, subtraction, multiplication, division, sine, co-
sine, and constants. For each pair of variables, the numerical
partial derivatives were calculated, and these partial derivatives
were used to evaluate the symbolic functions generated in the
subsequent steps. Candidate symbolic functions were generated
to represent the relationship between different parameters pro-
vided as input. Initially, these functions generated were random;
however, the subsequent filtering of the generated equations al-
lows them to converge to the mathematical representation of in-
put data. In symbolic regression, many initial random symbolic
equations compete to model input data in themost parsimonious
way. New equations are formed by recombining previous equa-
tions and probabilistically varying their subexpressions. The
equations that model the input data well were retained, whereas
unpromising solutions were removed. To evaluate the predictive
ability, the partial derivatives for each pair of variables were com-
puted for the candidate functions, and cross-validation analysis
was performed with the partial derivatives derived from the input
data. The best matching equations were selected, and this pro-
cess was repeated iteratively until the predictive ability of these
equations reached sufficient accuracy. The most parsimonious
equation generated from this process was returned as the best
mathematical model (Fig. 6). For each equation, the predictive
ability is measured in terms of goodness of fit (R2), correlation co-
efficient, maximum error, mean squared error, and mean abso-
lute error. The equations with R2≥ 0.80 were selected as
plausible models (Supplemental Table S2). The best fit model
was selected from these plausible models, and used for predict-
ing the ΔGempirical.

FIGURE 6. Schematic representation of the workflow followed in mathematical modeling for
prediction of binding affinity in protein–RNA complexes.
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Validation of the mathematical model on
a test data set

The model was tested on a data set generated using mutated
structures of yeast AspRS, which reports experimentally deter-
mined ΔG values of 40 mutations (Eriani and Gangloff 1999).
The experimental Kd values were used to calculate both ΔG (using
Equation 6) and ΔΔG values of the mutants (using Equation 12):

DDG = RT ln
Kdmutant
KdWT

. (12)

The wild-type PDB structures (PDB ID: 1ASY, IEOV) were used as
the templates for modeling all the bound and unbound forms of
the proteins with alanine substitutions. The modeling and energy
minimization were performed using Modeler (Webb and Sali
2016). The energy-minimized modeled structures are used to cal-
culate structural and physicochemical parameters described
above for evaluating the mathematical model for predicting ΔG.
For each of the 40 mutant structures, the ΔGempirical was calculat-
ed using the equation modeled in this study. To evaluate the ac-
curacy of predictions, the RMSE was calculated using the
following equation:

RMSE =
��������������������������������������∑N

i=1 (DGempirical i − DGobserved i)
2

N

√
. (13)

A subset of eight mutants with ΔΔG≤ 2.0 kcal/mol was further
optimized using AMBER. The complexes and their unbound
structures were solvated using the TIP3P (Sun and Kollman
1995) water model with a truncated octahedral box of 10 Å.
The solvated structures were energy-minimized for 10,000 cycles
with restraint, followed by 10,000 cycles without restraint. The
minimized structures were subjected to heating, density equili-
bration, and short runs of equilibration. The heating was done
from 100K to 300 K for 500 psec with restraints on the entire struc-
ture. The density equilibration was performed for 500 psec with
restraints on the entire structure. The equilibration of the struc-
tures was run for four short rounds. The first three rounds of equil-
ibration were run for 200 psec each with main chain atoms
constrained. The final round of equilibration was performed for
2 nsec. Amber ff14sb force field (Maier et al. 2015) and χOL3
(Banáš et al. 2010; Zgarbová et al. 2011) were used for this study.
The minimization was performed using Sander, and the subse-
quent steps were performed using the CUDA version of
PMEMD available in the AMBER package (Götz et al. 2012; Le
Grand et al. 2013; Salomon-Ferrer et al. 2013).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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