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ABSTRACT

Circular RNAs (circRNAs), with their crucial roles in gene regulation and disease development, have become rising stars in
the RNA world. To understand the regulatory function of circRNAs, many studies focus on the interactions between
circRNAs and RNA-binding proteins (RBPs). Recently, the abundant CLIP-seq experimental data has enabled the large-
scale identification and analysis of circRNA–RBP interactions, whereas, as far as we know, no computational tool based
on machine learning has been proposed yet. We develop CRIP (CircRNAs Interact with Proteins) for the prediction of
RBP-binding sites on circRNAs using RNA sequences alone. CRIP consists of a stacked codon-based encoding scheme
and a hybrid deep learning architecture, in which a convolutional neural network (CNN) learns high-level abstract features
and a recurrent neural network (RNN) learns long dependency in the sequences. We construct 37 data sets including se-
quence fragments of binding sites on circRNAs, and each set corresponds to an RBP. The experimental results show that
the new encoding scheme is superior to the existing feature representation methods for RNA sequences, and the hybrid
network outperforms conventional classifiers by a large margin, where both the CNN and RNN components contribute to
the performance improvement.
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INTRODUCTION

Circular RNAs (circRNAs) are a special type of noncoding
RNAs, whose structures are characterized by nonlinear
back-splicing. Although circRNAs are categorized as non-
coding RNAs, their potential to code for proteins has been
reported recently (Pamudurti et al. 2017). Compared to lin-
ear RNA molecules, circRNAs are more stable and con-
served across species (Jeck et al. 2013). Natural circRNAs
were discovered 20 years ago, whereas their important
roles in gene regulation and disease development have at-
tracted public attention only in recent years (Hansen et al.
2013a; Li et al. 2015).

Benefiting from the high-throughput sequencing
techniques, a large number of circRNA loci have been dis-
covered in human genomes. Various databases and com-
putational methods have been developed for circRNAs.
For instance, circBase provides visualization tools for

browsing a large number of circRNAs at the genome scale
and identifying circRNAs in sequencing data (Glažar et al.
2014). CIRCpedia also allows users to search, browse,
and download circRNAs with expression profiles in various
cell types/tissues including disease samples (Wang et al.
2017). CircR2Disease focuses on the associations between
circRNAs and diseases (Fan et al. 2018), and CircInterac-
tome houses the RBP/miRNA-binding sites on human
circRNAs (Dudekula et al. 2016).

According to previous studies, circRNAs play their
regulatory functions via sponging microRNAs (miRNAs)
(Hansen et al. 2013a,b; Memczak et al. 2013) and RNA-
binding proteins (RBPs) (Du et al. 2016; Xia et al. 2016).
To detect the interactions between proteins and RNAs,
high-throughput techniques havebeendeveloped, includ-
ing both in vivo and in vitro experiments (Ray et al. 2013;
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Van Nostrand et al. 2016). Based on the high-throughput
data, a lot of computational tools have been developed.
For instance, Li et al. (2017b) applied a soft-clustering
method, RBPgroup, to various CLIP-seq data sets, and
grouped RBPs that specifically bind to the same RNAs. Li
et al. (2017a) reported an approach circScan to identify
regulatory interactions between circRNAs and RBPs by
discovering back-splicing reads from cross-linking and
immunoprecipitation followed by CLIP-seq data. In recent
years, the identification of protein–RNA interactions based
on machine learning methods has been a hot topic in the
bioinformatics field (Li et al. 2013). The existing methods
fall into two categories, predicting the binding sites in the
protein chains and RNA chains, respectively. The pre-
diction in the RNA chains is more difficult because of the
limited information source (mainly the RNA sequences),
whereas for proteins, functional annotation knowledge or
signal peptide could be utilized (Zhang et al. 2010; Yan
et al. 2016).
The prediction of protein–RNA-binding sites is essen-

tially a classification problem, involving both feature re-
presentations for sequences and classification models.
Traditionally, RNA sequence classification adopts hand-
crafted features, which are mainly extracted from statistical
properties. For instance, k-tuple nucleotide composition
(Zhang et al. 2011) is the most basic method, which lays
the foundation for a series of statistical feature extraction
methods of RNAs. Note that RNAs have four different nu-
cleotides, “A (adenine),” “G (guanine),” “C (cytosine),”
and “U (uracil)”; thus, k-tuples have 4k different combina-
tions, which means that each RNA sequence corresponds
to a 4k-dimensional feature vector. This type of feature can
capture the short-range or local sequence order informa-
tion (Chen et al. 2014).
In the past decade, with the rise of deep learning, se-

quence encoding methods have attracted more and
more attention. One-hot encoding is a simple and com-
mon feature representation method, which has been wide-
ly used in biological sequence classification (Baldi et al.
2002). For RNA/DNA sequences, each nucleotide is en-
coded as a four-dimensional binary vector, which can
work with both traditional classifiers and deep learning
models. Furthermore, researchers have incorporated the
secondary structure of RNAs into the one-hot encoding
method (Park et al. 2017).
In addition to the feature representation, various

machine learning methods have been proposed in the
prediction of molecular interactions. For instance, support
vector machines (SVMs) and random forests (RFs) have
been applied to protein–protein prediction (Shen et al.
2007) and RNA–protein prediction (Muppirala et al.
2011). Deep learning models have also emerged—for
example, DeepBind based on convolutional neural net-
works (CNNs) (Alipanahi et al. 2015), iDeep based on
fusing multiple features (Pan and Shen 2017), and

iDeepE based on local and global CNNs (Pan and Shen
2018).
Despite the progress on predicting interactions be-

tween linear RNAs and RBPs, to the best of our knowledge,
computational tools for identifying the interactions be-
tween circRNAs and RBPs have not been reported yet.
Although the existing methods for linear RNAs could be
applied, customized tools for circRNAs are needed for
the following reasons. First, the mechanisms of circRNAs
interacting with RBPs are different from those of other
types of RNAs, thus the existing methods may not gener-
alize well to circRNAs. Second, circRNAs have limited in-
formation for the prediction. For linear RNAs, besides
the sequences, secondary structures information is usually
extracted and incorporated into the predictor. Compared
to linear RNAs, which have free ends and diversified
secondary structure elements, circRNAs aremore topolog-
ically constrained (a covalently closed continuous loop).
Third, there is still room to improve the current predictors
for RNA–protein interactions: (i) The conventional one-hot
representation may lose much information of sequence
patterns because of the low dimensionality and simple en-
coding scheme; and (ii) the capabilities of deep learning
models have not been fully exploited.
In this study, we propose a deep learning–based model

for predicting RBP-binding sites on circRNAs using se-
quences alone, named CRIP. The contributions include:

1. Construct benchmark data sets of circRNA segments
binding to RBPs, and propose the specific predictor
for the identification of RBP-binding sites on circRNAs.

2. Design a new encoding scheme to represent RNA se-
quences, and apply it to the prediction of RBP-binding
sites on both circRNAs and linear RNAs.

3. Use a hybrid deep neural network to further improve
the prediction performance.

RESULTS

As the information source for predicting circRNA–RBP in-
teractions is limited, the feature extraction from circRNA
sequences is crucial to the prediction system. Instead of
using the traditional one-hot encoding method, we pro-
pose a stacked codon-based encoding method to get an
initial representation for the RNA sequences. Then we
adopt a CNN to learn high-level features from the initial
representation and a long short-term memory (LSTM) net-
work to capture the long dependency within the sequenc-
es. The outputs of all the time steps are concatenated and
fed into two fully connected layers to yield the final output
probability. The whole pipeline is shown in Figure 1.
In the following sections, we first investigate the con-

tributions of feature encoding and deep learning models,
respectively. Then, we compare CRIP with the existing
methods for predicting RNA–protein interactions. Last,
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we discuss the performance difference between the pre-
dictions of linear RNAs and circRNAs.

Both the new feature encoding scheme and hybrid
DNN contribute to the performance improvement

Investigation on feature encoding

The methods for representing RNA sequences fall into
two categories (i.e., feature engineering and sequence en-
coding), which work with traditional machine learning
methods and deep learning methods, respectively. For in-
stance, in Shen et al. (2007) and Muppirala et al. (2011),
k-mer frequencies were used as features and classified
by SVMs and RFs, whereas some recent methods—for ex-
ample, DeepBind (Alipanahi et al. 2015), iDeep (Pan and
Shen 2017), and iDeepS (Pan et al. 2018)—adopted one-
hot encoding and deep learning models as classifiers.

With the increasing applications of deep learning in se-
quence analysis, traditional feature extraction methods
have been largely replaced by sequence encoding meth-
ods. However, the classic one-hot encoding has obvious
drawbacks. For RNA/DNA sequences, each nucleotide is
encoded as a four-dimensional binary vector. Such a low-
dimensional feature representation may be incompetent
to characterize the sequence information well; in particu-

lar, the sequence context information is not encoded in
the one-hot encoding method.

To incorporate context information and get an ex-
panded vector space retaining more sequence features,
we propose a new method, called stacked codon–based
encoding.

Inspired by the coding potential of circRNAs (Pamudurti
et al. 2017), we map each group of three consecutive nu-
cleotides (i.e., 3-mer) in the circRNA sequences into a
pseudo–amino acid. The mapping is similar to the transla-
tion of codons, except that themapping is conducted in an
overlapping manner because of the indeterminacy of the
starting site. Also, because this is not a real translation pro-
cess, we allow stop codons in the middle of sequences. As
we extract 3-mers fromRNA sequences using a sliding win-
dow with step size 1, the stacked codon–based encoding
method can be regarded as a variant of the k-mer method
(k=3). Because there are 64 combinations of 3-mers and
only 21 different symbols (20 amino acids plus a stop co-
don), each amino acidmay correspond tomultiple codons.
This method not only reduces the feature dimensionality of
a classic k-mer method but also groups the 3-mers with
common biological properties. Finally, we encode the
“amino acid” sequences by the conventional one-hot
method—that is, each symbol is converted into a 21-D bi-
nary vector, where only one element is nonzero. (The new
method is formularized in Materials and Methods.)

To demonstrate the advantage of the stacked codon en-
coding method, we consider another encoding scheme,
called IUPAC (Cornishbowden 1985), which provides an-
other alphabet consisting of 16 characters. IUPAC consid-
ers the genetic variation; thus, each symbol in its alphabet
corresponds to a polymorphic status of nucleic acids, like
“A or C” and “not G”, as shown in Supplemental Table
S1 (Johnson 2010). In this paper, the IUPAC method refers
to the extended one-hot encoding using the IUPAC
alphabet.

We compare the average AUCs of classic one-hot,
IUPAC encoding, and the stacked codon-based encoding
in Table 1. These encoding methods work with two differ-
ent classifiers, namely, BiLSTM (i.e., the RNNpart in the hy-
brid neural network) and the hybrid neural network,
respectively. In both cases, our method achieves the best
performance, and IUPAC outperforms one-hot slightly.

TABLE 1. Comparison of different encoding methods on 37
circRNA data sets

Method

Average AUC

BiLSTM Hybrid neural network

Codon-based encoding 0.845 0.872

One-hot 0.821 0.862

IUPAC 0.828 0.868

FIGURE 1. Flowchart of CRIP. CRIP represents RNA sequences by
stacked codon-based encoding method. The encoded vectors are
fed into a CNN module followed by a BiLSTM module and further
classified via two fully connected layers.
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Obviously, our method and IUPAC have larger alphabets
than the conventional one-hot encoding, and the extend-
ed encoding space is helpful to retain sequence features.
As can be seen, benefiting from the CNN module, all the
three encoding methods get improved accuracy, and the
performance gap becomes smaller compared to using
only the LSTM component, suggesting that the deep

learning architecture can compensate for the initial simple
features.

Investigation on learning models

As our model includes a CNNmodule and a BiLSTMmod-
ule, to evaluate the contribution of each module in the hy-
brid neural network, we examine the performance of
individual modules. The results are shown in Figure 2.
Apparently, the single modules do not perform as well

as the hybrid model, which has an average AUC of
0.872. The ROC curves of CRIP on 37 data sets are shown
in Figure 3. The CNN module is better than the BiLSTM
module (0.861 vs. 0.845). The results suggest that CNN
can extract more accurate sequence information for the
detection of RNA–protein interactions.

CRIP outperforms the existing predictors designed
for linear RNAs

Comparison with traditional machine learning methods

Regardless of structure, the identification of RBP-binding
sites for any types of RNAs relies on the same information
source (i.e., RNA sequences). Thus, we apply previous
methods designed for linear RNAs to circRNAs. In

FIGURE 3. The ROC curves obtained by CRIP for 37 circRNA data sets.

FIGURE 2. The AUCs of the LSTMmodule, CNNmodule, and the hy-
brid model on 37 circRNA data sets.

CRIP: predicting circRNA–RBP interactions
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Muppirala et al. (2011), the authors proposed RPISeq-SVM
and RPISeq-RF to identify RNA–protein interactions, which
used two classic shallow learning models, SVMs and RFs.
And the RNA sequence features were represented by nor-
malized 4-mer composition. Herewe implement these two
methods, which are trained and evaluated using the same
37 circRNA data sets as CRIP. The results are shown in
Figure 4.

The advantages of CRIP over the traditional learning
methods are obvious. Of the 37 data sets, CRIP achieves
the best results on 30 data sets. The average AUC of
CRIP is 0.872, which is 4.6% higher than that of the SVM
(0.834), and 13.4% higher than that of RF (0.769), demon-
strating the advantages of the proposed deep model over
traditional learning methods.

Comparison with the existing deep learning methods

To further assess the performance of CRIP, we compare it
with the deep learning–based predictors, including
DeepBind (Alipanahi et al. 2015) and iDeepS (Pan and
Shen 2018). Here iDeep is excluded in the comparison
because it requires annotation information of gene regions
and clip-cobinding (Pan and Shen 2017). DeepBind utilizes
only sequence features and adopts a sequence CNN,
whereas iDeepS integrates both sequence and secondary
structure information and adopts a similar model architec-
ture as CRIP. Because these two methods were designed
for linear RNAs rather than circRNA, to perform a fair com-
parison, we conduct the experiments on the benchmark
sets of linear RNAs, including 31 data sets (Pan and Shen
2017).

As shown in Figure 5, CRIP achieves the best results for
most of the RBPs. For some RBPs, like the Argonaute fam-
ily of proteins (AGO), CRIP performs much better than the

two other methods. iDeepS has a slight advantage over
DeepBind because the secondary structure information in-
corporated in iDeepS improves the prediction accuracy.
On average, CRIP obtains an AUC value of 0.856, which
is higher than that of DeepBind (0.835) and iDeepS
(0.839). The results demonstrate that CRIP not only applies
to linear RNAs, but also improves the average AUC by
∼0.02 comparedwith the state-of-the-art deepmodels de-
signed for linear RNAs.

The models trained on linear RNAs could not simply
be applied to circRNAs

Previous studies have used both shallow and deep learn-
ing models for predicting RNA–protein interactions, but
none of them was designed for circRNAs. Note that there
are some RBPs shared by circRNAs and other types of
RNAs, thus we compare the RBPs used in this study and
in previous studies (Pan and Shen 2018; Pan et al. 2018).
There are 11 RBPs common to linear RNAs and
circRNAs; we first check whether the predictors trained
on linear RNAs can be generalized to circRNAs.

For each circRNA test set of the 11 shared RBPs, we
compare the performance of CRIP with iDeep∗.6 Figure 6
shows the prediction results of iDeep∗ and CRIP for the
11 common RBPs. As can be seen, CRIP outperforms
iDeep∗ on all of the 11 data sets. Especially for FUS,
HNRNPC, and MOV10, CRIP improves the AUC by
>10%, indicating that the training sequences in iDeep∗

(linear RNAs) may be very different from the test sequenc-
es (circRNAs), and that these two types of RNAs may differ
in the interaction mechanisms with the same RBPs. The

FIGURE 5. Performance comparison of the AUCs of DeepBind,
iDeepS, and CRIP on 31 linear RNA data sets.

FIGURE 4. Comparison of AUCs between CRIP and the predictors
based on traditional machine learning models on 37 circRNA data
sets.

6Because circRNAs only have sequence information, we retrain the iDeep (Pan
and Shen 2017) using linear RNA sequence information alone and name it
iDeep∗.
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results demonstrate the necessity of developing a specific
predictor for identifying binding sites on circRNA sequenc-
es, not only for new RBPs but also for the shared RBPs with
linear RNAs.

Linear RNAs and circRNAs binding to the same RBPs
differ in their prediction accuracy

Compared with linear RNAs, circRNAs have their dis-
tinct structure and mechanism for binding to proteins,
which motivates us to develop a new tool for identifying
circRNA–protein interactions. As mentioned earlier in the
subsection “CRIP outperforms the existing predictors
designed for linear RNAs,” the proposed method is also
applicable to any type of RNA, and circRNAs share some
RBPs with linear RNAs. Thus, we compare the prediction
performance of CRIP on the common RBPs for linear
RNAs and circRNAs, as shown in Figure 7. As can be
seen, the AUC values of linear RNAs and circRNAs differ
a lot for some RBPs (e.g., FUS and SFRS1), and the AUCs
for circRNAs are generally lower (on eight of 11 RBPs).
The reasons for the performance difference are manifold.
As a machine learning–based method, the performance
of CRIP heavily relies on the scale of training data. In the
linear RNA data sets, the number of training samples is
fixed to be 5000 for each RBP. In contrast, when we con-
struct the circRNA data set, we extract fragments from all
binding sites, and the data sets vary in scale. Thus, if there
are a lot of circRNA-binding sites for an RBP, the corre-
sponding data set will have abundant training samples.
Generally, a large training set will lead to good perfor-
mance. For instance, the FUS and HNRNPC data sets of
circRNA-binding sites are the two biggest, with 20,000
and 14,224 positive samples, respectively. CRIP achieves

much better prediction performance on circRNAs than
on linear RNAs for these two RBPs (the AUCs for the FUS
data set are 0.930 and 0.849 for circRNAs and linear
RNAs, respectively). However, there are a few exceptions.
For the QKI data set, CRIP also performs better on
circRNAs than on linear RNAs (0.960 vs. 0.904), whereas
the number of positive training samples is only 1033, indi-
cating that other factors also affect the prediction per-
formance. Through a motif search using the MEME suite,
we identify a conserved and concentrated pattern,
“ACUAAC,” on the circRNAs binding to QKI. This motif
has been verified andwas included in theCISBP-RNAdata-
base (Ray et al. 2013). Similarly, we also find two other con-
servedpatterns that are consistentwith themotifs inCISBP-
RNA: namely, “UGUA” for the binding to Pum2 and
“UUUU” for the binding to TIA1 (Table 2). These two data
sets have only 2829 and 2202 positive samples, respective-
ly, whereas their accuracies are very close to those of their
corresponding sets on linear RNAs. From these observa-
tions, we conclude that conservedmotifs may also help im-
prove model accuracy.

CRIP is able to detect RBP-binding sites on full-length
circRNAs

In this section, we assess the capability of CRIP for predict-
ing RBP-binding sites on full-length circRNAs. For each
RBP, we randomly select 20 circRNAs with full-length se-
quences, half of which are bound to the RBP and half are
not. Because the training and test sequences of CRIP are
101-bp segments, when testing for a new circRNA, we first
segment the whole sequence into segments without over-
lap, and then we predict the binding potential for each
segment to determine whether the segment contains a

FIGURE 6. Comparison of AUCs of CRIP and iDeep∗ on the common
RBPs. iDeep∗ is trained on linear RNAs and evaluated on the circRNA
test set. CRIP is both trained and tested on circRNAs.

FIGURE 7. Comparison of AUCs for common RBPs shared by linear
RNAs and circRNAs, in which the AUCs for linear RNAs and
circRNAs are both obtained by CRIP using sequence information.

CRIP: predicting circRNA–RBP interactions
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binding site or not. Therefore, all the 740 (37×20)
circRNAs are segmented into fragments of length 101
(these fragments have been removed from the training
set). CRIP outputs a probability of being a binding site
for each segment. Then the output probabilities of all seg-
ments are averaged for each circRNA. To assess the perfor-
mance of CRIP, we compute the Pearson correlation
score between the average probability obtained by CRIP
and the true probability for a segment being a binding site

(i.e.,
# segments containing binding sites

# total segments
)

on the circRNA. The correlation scores are listed in
Supplemental Table S2. The score averaged over 37 RBP
data sets is 0.48, and 10 of them are >0.8, showing a strong
positive correlation between the predicted probability and
the true probability. Generally, the higher the percentage
of the segments predicted to be bound by the given RBP,
the more chances this circRNA will interact with the RBP.

Take the RBP AUF1 as an example. Given the model
trained for AUF1, the test results of CRIP on three
circRNAs—hsa_circ_0000892, hsa_circ_0123804, and
hsa_circ_0114424—are shown in Figure 8. They have
very different lengths and are segmented into 716, 215,
and 56 fragments of length 101 without overlap, respec-
tively. According to the circRNA Interactome database
(Dudekula et al. 2016), hsa_circ_0000892 has no segment
binding to AUF1, whereas hsa_circ_0123804 and hsa_
circ_0114424 have 15 and one segments binding to
AUF1, respectively. As for hsa_circ_0123804, which has a
close interaction with AUF1, many more segments are as-
signed with high probabilities compared with two other
circRNAs. Using the default threshold (0.5) of classification,

the false-positive percentages (
# false positives
# total segments

) of hsa_

circ_0000892 and hsa_circ_0114424 are 11.9% (85/716)

and 5.4% (3/56), respectively. If using a higher cutoff, we
can get a much lower false-positive rate. A major reason
for the false positives is the procedure of training data
generation.

Following the practice of previous studies, when prepar-
ing the training and test data sets of CRIP, we segment the
original sequences of circRNAs into pieces of length 101.
The segments containing the peaks of CLIP-seq reads are
regarded as positive samples, and the negative samples
are randomly selected from the remaining segments. The
positive-to-negative ratio is 1:1, whereas the binding sites
on RNA sequences are very rare (i.e., there are many
more negative samples than positive samples). CRIP can
provide a helpful prediction on whether or not the given
circRNA and RBP interact and also the specific binding
sites. A future development direction of CRIP is to reduce
the false-positive rate when handling full-length circRNAs.

DISCUSSION

The stacked codon encoding versus random
encoding

The success of CRIP lies in the enriched feature represen-
tation and powerful deep learning model. The coding po-
tential of circRNAs inspired us to develop a codon-based
encoding method. Although most circRNAs are still non-
coding, the codon-based encoding outperforms the clas-
sic one-hot encoding by a large margin. A major reason
is the expanded feature space, as the classic one-hot has
only four symbols, whereas the codon-based encoding
has 21 symbols.

Unlike the conventional one-hot method which encodes
nucleotides one by one, the new encoding method tra-
verses the 3-mers sequentially in an overlapping manner,
just like the traditional k-mer feature extraction. Then, it en-
codes the 3-mers into binary vectors according to the

TABLE 2. Some common motifs shared by circRNAs and linear RNAs

RBP Known Mo�f* Mo�f logo generated by circRNA binding sites 

QKI ACUAACV 

Pum2 UGUAHAUA 

TIA1 UUUUUBK 

∗The known motifs are represented by IUPAC code in the CISBP-RNA database [14] and extracted
from linear RNAs.

Zhang et al.

1610 RNA (2019) Vol. 25, No. 12

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.070565.119/-/DC1


codons for amino acids. Benefiting from the context infor-
mation retained in the 3-mers and the expanded feature
space, the new codon-based encoding method produces
more informative representations.
The codons provide us a guideline on how to design the

symbols and their corresponding triplets. Actually, the
combinations of nucleotides can be arbitrarily mapped to
a new alphabet, thus resulting in a new encoding scheme.
To demonstrate the superiority of the codon-based map-
ping over random mappings, we construct six random en-
coding systems for comparison. The first three systems
have the same number of symbols (21) as the codon-based
encoding, whereas the other three systems have 10 sym-
bols (i.e., a greater reduction on the original 3-mer space).
Supplemental Table S3 shows the average AUCs across 10
RBP data sets of the seven encoding systems. Generally,
the 10-symbol encoding methods perform worse than
21-symbol methods, suggesting that further reduction of
the encoded feature space may hurt the discrimination ac-
curacy. Among the seven encoding schemes, the codon-
based method performs the best. Especially, we find that
the codon-based method has more advantage on the
data sets with low prediction accuracy. For example, on
ALKBH5, the AUC obtained by codon-based encoding is

0.771, whereas the highest AUC by other systems is only
0.688. The experimental results demonstrate that the 3-nt
combinations defined by codons are superior to random
combinations defined in other encoding systems.

Motif analysis

To further explore the sequence patterns of RBP-binding
sites on circRNAs, we search motifs from the positive se-
quence fragments using the MEME suite (Bailey et al.
2009). The motifs are extracted for each RBP data set,
and the most significant motif of each RBP is shown in
Supplemental Table S4, in which thewidth ofmotifs ranges
from8 to 15.Asmentionedearlier in the subsection “Linear
RNAs and circRNAs binding to the same RBPs differ in the
prediction accuracy,”we find that some circRNAs have the
samemotifs as linear RNAswhenbinding to the sameRBPs,
indicating the two types of RNAs may share a common
binding mechanism. We also find that the binding sites
for some RBPs exhibit a common pattern (i.e., “GAAG
AAG”), including AGO2, ALKBH5, CAPRIN1, LIN28B,
and IGF2BP3. Actually, it is a common motif related to
RNA modification (Dominissini et al. 2016; Li et al. 2016).

BA

C

FIGURE 8. Prediction probability distributions on full-length circRNAs. The numbers before and after “/” denote the number of positive seg-
ments and the total number of segments, respectively.
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Despite the common motifs, for the same RBP, binding
sitesoncircRNAsand linearRNAsmayhave large sequence
diversity. A typical example is the circRNAs and linear
RNAs binding to FUS. The model trained on linear RNAs
has a very low prediction accuracy on circRNAs (Fig. 6),
whereas when using CRIP trained on circRNAs, the accura-
cy becomes much higher than that of linear RNAs.
Therefore, it would be interesting to explore the different
binding mechanisms that lead to performance variance.

Limitations and potential applications of CRIP

CRIP is an RBP-specific model because the binding prefer-
ence of individual RBPs is specific. Thus, for an RBP not in
the trained models, CRIP cannot be directly used to pre-
dict circRNA targets for this RBP. However, if this RBP
has homologous RBPs in the trained models, the trained
model of its homologous RBPmight be used to predict tar-
gets for this RBP.

There exist some potential applications of CRIP. RBPs
have been discovered to play important roles in circRNA
production. To identify those RBPs related to circNRA bio-
genesis, we need to first predict the interactions between
circRNAs and all available RBPs. As some RBPs—for exam-
ple, FUS (Errichelli et al. 2017) andQKI (Conn et al. 2015)—
have been experimentally verified to be involved in
circRNA biogenesis, through the analysis on the binding
sequence patterns from these verified interactions, we
can identify novel RBPs involved in circRNA biogenesis.

Conclusion

This study aims to identify circRNA–protein interactions by
using a machine learning model. By treating the task as a
binary classification problem, we propose a new sequence
encoding scheme and a hybrid neural network model. The
idea of the new encoding method is to convert RNA trip-
lets into pseudo–amino acids based on nucleotide codons
in an overlapping manner and represent the pseudo–ami-
no acids via one-hot encoding. And the hybrid neural net-
work consists of a CNNmodule and a BiLSTMmodule. The
goal of using a hybrid model is to combine the advantages
of both the deep architectures and obtain better high-level
abstraction features for the classification. The results show
that both the new sequence encoding method and the hy-
brid model contribute to the performance improvement.
Compared to the existing predictors, our model has an ad-
vantage in the prediction accuracy. We believe that this
tool will contribute to uncovering functions of circRNAs.

MATERIALS AND METHODS

Data preparation

To assess the prediction performance of CRIP, we construct a
benchmark set of RBP-binding sites on circRNAs. The bound se-

quences are extracted from the circRNA Interactome database
(https://circinteractome.nia.nih.gov/), which houses more than
120,000 human circRNA sequences (Dudekula et al. 2016).
Considering that our model is based solely on circRNA sequences
and that a high sequence similarity may cause biased results for
machine learning methods, we use the CD-HIT package (Fu
et al. 2012) with a threshold of 0.8 to eliminate redundant se-
quences. Finally, we have a total of 32,216 circRNAs associated
with 37 RBPs.

For each RBP, we build a classification model, in which the pos-
itive samples are derived from verified binding sites on circRNAs.
Following our previous work (Pan and Shen 2017), from each
binding site corresponding to the CLIP-seq read peak, we extract
a 101-bp segment by extending 50 nt upstream and 50 nt down-
stream from the center of the binding site. The negative samples
are extracted from the remaining fragments of the circRNAs, with
the same length as positive samples. To examine the impact of
segment length, we experiment with two other lengths, namely,
201-bp and 501-bp. We find that longer fragments lead to an ob-
vious drop in the prediction accuracy. Generally, the longer the
fragment, the more decrease in the accuracy. There are two po-
tential reasons: (i) The model is unable to handle very long se-
quences because of the nature of the LSTM; and (ii) long
segments contain much noise. According to our statistics of the
data sets, the average length of the known binding sites on
circRNA sequences is 47, and most of them are shorter than
101. Thus, 101 is a proper choice. The longer segments (e.g.,
201- or 501-bp) may contain a large proportion of nonbinding nu-
cleotides, which may distract learning the informative features
from binding sites.

The positive samples and negative samples are filtered to re-
move redundant sequences with a cutoff of 0.8 using CD-HIT.
The positive-to-negative ratio is 1:1, and the detailed data statis-
tics are listed in Supplemental Table S5.

In addition, because CRIP is also applicable to linear RNAs, we
compare the performance of CRIP with the existing tools on the
prediction of interactions between linear RNAs and RBPs, using
previously published benchmark sets of linear RNAs—that is,
the same data set used in iONMF (Stražar et al. 2016) and
iDeep (Pan and Shen 2017), retrieved from DoRiNA (Blin et al.
2015) and iCount (http://icount.biolab.si/). There are 31 data
sets derived from CLIP-seq data, corresponding to 31 experi-
ments and covering 19 RBPs. The positive and negative samples
are generated in the same way as described above, and each of
the 31 data sets has 5000 training samples and 1000 test samples.

Stacked codon–based encoding

Let S be an RNA sequence of a length L. It will be converted into a
pseudo–amino acid sequence, whose alphabet is A= {A, C, D, E,
F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, Z}, where Z denotes the
stop codon.S is representedby a 21× (L− 2)-DmatrixM (there are
a total of L− 2 overlapping codons for a sequence of the length L).
The jth column of the matrix is a one-hot vector for the jth lett-
er in the converted sequence S′′′′′, where j [ {1, 2, . . . , L− 2}.
Then the elements of M are represented by

Mi,j =
1 if i = IS′

j

0 otherwise

( ){
, (1)
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where S′
j is the jth character of S′, IS′

j
denotes the index of S′

j in the
alphabet A, and i [ {1, 2, . . . , 21}.

As illustrated in Figure 1, the corresponding pseudo–amino
acid sequence of the input sequence GAGUAA is ESVZ, where
GAG codes for E, AGU codes for S, GUA codes for V, and UAA
is a stop codon. Because the indexes of E, S, V, and Z in the alpha-
bet are 4, 16, 18, and 21, respectively, the generated matrix M is
21× (L−2)-D, and M4, 1, M16, 2, M18, 3, and M21, 4 are equal to 1,
and other elements are zero.

The CNN layers

The CNN has been demonstrated to have a powerful capability to
extract high-level abstract features, not only for image processing
but also for natural language processing tasks (Yin et al. 2017). In
this study, we also use a CNN as a feature extractor, whose input is
the sequence encoding (i.e., the matrix M described in the pre-
vious subsection). Assume the size ofM is d× l, where d is the di-
mensionality of the one-hot vectors (d=21 for the stacked
codon–based encoding) and l is the length of the converted pseu-
do–amino acid sequence. We take a one-dimensional convolu-
tion along the sequence. For the convolutional layer, we set the
length of a filter as hf, which means that the filters are operated
on hf words/tokens. Let Xi be the original encoding matrix for
the segment of the input sequence processed by the sliding ker-
nels at the ith time step, which is actually a submatrix of M, con-
sisting of the ith to (i+hf−1)th columns of M. For convenience,
we take the transposed submatrix of M as Xi. Then the size of Xi
is (i+ hf− 1) ×d. The corresponding outputs of all Xi passing
through the jth sliding kernel turns out to be a column vector y j.
Each element, yji is defined as

yji = g(Xi∗W[:, :, j] + bj ),
i [ {1, 2, . . . , l − hf + 1}, j [ {1, 2, . . . , n},

(2)

where g(·) is an ReLU function, n is the number of the filters, W is
the convolutional filter (W [ Rhf×d×n), and b is the bias. In the
pooling layer, we choose an average pooling over the sequence
with the length of hp. The output of the pooling layer for the jth
filter is a column vector defined as z j, where the mth element
zjm is computed by

zjm = 1
hp

∑k+hp−1

t=k

yjt ,

m [ {1, 2, . . . , l − hf + 1
hp

⌊ ⌋
}, k = (m− 1)× hp + 1.

(3)

Let Z be the matrix whose column vectors are z j (i.e., the high-
level features learned by the CNN model). Z is fed to the subse-
quent BiLSTM model for classification.

The BiLSTM layer

Through the convolutional filters and average pooling layers, the
CNN module learns and integrates local information of RNA se-
quences. Then we stitch the data of all the channels of each sub-
unit into a new feature vector. To further exploit the sequence
information, we adopt a bidirectional long- and short-term mem-
ory network (BiLSTM). Compared with traditional recurrent neural
networks (RNNs), LSTM has advantages in addressing the vanish-

ing/exploding gradient problem and long-term dependency. In
particular, BiLSTM exploits the contextual information on both
sides. Let st and s′t be the hidden states for the forward and back-
ward computation at the tth time step. The calculation of st and s′t
relies on st−1 and s′t+1, respectively, as defined in Eqs. (4) and (5):

st = f (Uzt +Wst−1), (4)

where U andW are the weight matrices for the input and the hid-
den state, respectively, and zt is the input vector in the tth step(i.e.,
the tth row vector of Z), and

s′t = f (U′zt + W′s′t+1), (5)

where U
′
and W

′
are the weight matrices for the input and the

hidden state used in the backward computation, respectively.
To integrate contextual information, the output for tth step is de-
fined as

Outt = g(Vst + V′s′t ), (6)

where V and V
′
are the transformation matrices of the preceding

and following context for the current time step.

Output concatenation and the fully connected layers

By convention, only the outputs of the last LSTM are fed to the ful-
ly connected layer for final classification. In this study, we find that
the outputs of previous time steps also contain some informative
signals for the classification. Therefore, we concatenate the out-
put vectors of all the time points:

Outall = Out1⊕Out2⊕ . . .⊕Outn. (7)

In addition, because the concatenated output has a high di-
mensionality, we add two fully connected layers to gradually re-
duce the dimensionality for the final classification, and the
softmax layer maps all outputs to probabilities:

Out1fc = g(W1
fcOutall + b1

fc ), (8)
Out2fc = g(W2

fcOut1fc + b2
fc ), (9)

Out = softmax(Out2fc ), (10)

where g is the ReLU function, W1
fc and W2

fc are the weight matri-
ces, and b1

fc and b2
fc are the bias terms.

Experimental settings

In CRIP, the convolution layers have 102 filters of size 7×21, and
the kernel size is fixed to be 7.We also test different sizes (i.e., 3, 5,
9, 11) and a combination of kernels. The kernel size 7 yields a
slightly higher AUC than other kernel sizes, and the combination
of kernels performs a little bit better than the single-kernel meth-
ods, whereas the performance difference is not significant
(Supplemental Table S6). In this model, different kernels of the
CNNmayextract similar high-level features and their combination
may obtain redundant features. The kernel size 7 is a moderate
size for extracting features from RNA sequences.
For each data set, we extract 20% of the data as the test set and

adopt fivefold cross-validation within the training set to select pa-
rameters. The batch size 50 and training epoch number 30
achieve the optimum results. The source code and data sets are
available at https://github.com/kavin525zhang/CRIP.
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