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Abstract

The field of brain-computer interfaces is poised to advance from the traditional goal of controlling 

prosthetic devices using brain signals to combining neural decoding and encoding within a single 

neuroprosthetic device. Such a device acts as a “co-processor” for the brain, with applications 

ranging from inducing Hebbian plasticity for rehabilitation after brain injury to reanimating 

paralyzed limbs and enhancing memory. We review recent progress in simultaneous decoding and 

encoding for closed-loop control and plasticity induction. To address the challenge of multi-

channel decoding and encoding, we introduce a unifying framework for developing brain co-

processors based on artificial neural networks and deep learning. These “neural co-processors” can 

be used to jointly optimize cost functions with the nervous system to achieve desired behaviors 

ranging from targeted neuro-rehabilitation to augmentation of brain function.

Introduction

A brain-computer interface (BCI) [1,2,3,4] is a device that can (a) allow signals from the 

brain to be used to control devices such as prosthetics, cursors or robots, and (b) allow 

external signals to be delivered to the brain through neural stimulation. The field of BCIs has 

made enormous strides in the past two decades. The genesis of the field can be traced to 

early efforts in the 1960s by neuroscientists such as Eb Fetz [4] who studied operant 

conditioning in monkeys by training them to control the movement of a needle in an analog 

meter by modulating the firing rate of a neuron in their motor cortex. Others such as 

Delgado and Vidal explored techniques for neural decoding and stimulation in early versions 

of neural interfaces [6,7]. After a promising start, there was a surprising lull in the field until 

the 1990s when, spurred by the advent of multi-electrode recordings as well as fast and 

cheap computers, the field saw a resurgence under the banner of brain-computer interfaces 

(BCIs; also known as brain-machine interfaces and neural interfaces) [1,2].
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A major factor in the rise of BCIs has been the application of increasingly sophisticated 

machine learning techniques for decoding neural activity for controlling prosthetic arms 

[8,9,10], cursors [11,12,13,14,15,16], spellers [17,18] and robots [19,20,21,22]. 

Simultaneously, researchers have explored how information can be biomimetically or 

artificially encoded and delivered via stimulation to neuronal networks in the brain and other 

regions of the nervous system for auditory [23], visual [24], proprioceptive [25], and tactile 

[26,27,28,29,30] perception.

Building on these advances in neural decoding and encoding, researchers have begun to 

explore bi-directional BCIs (BBCIs) which integrate decoding and encoding in a single 

system. In this article, we review how BBCIs can be used for closed-loop control of 

prosthetic devices, reanimation of paralyzed limbs, restoration of sensorimotor and cognitive 

function, neuro-rehabilitation, enhancement of memory, and brain augmentation.

Motivated by this recent progress, we propose a new unifying framework for combining 

decoding and encoding based on “neural co-processors” which rely on artificial neural 

networks and deep learning. We show that these “neural co-processors” can be used to 

jointly optimize cost functions with the nervous system to achieve goals such as targeted 

rehabilitation and augmentation of brain function, besides providing a new tool for testing 

computational models and understanding brain function [31].

Simultaneous Decoding and Encoding in BBCIs

Closed-Loop Prosthetic Control

Consider the problem of controlling a prosthetic hand using brain signals. This involves (1) 

using recorded neural responses to control the hand, (2) stimulating somatosensory neurons 

to provide tactile and proprioceptive feedback, and (3) ensuring that stimulation artifacts do 

not corrupt the recorded signals being used to control the hand. Several artifact reduction 

methods have been proposed for (3) – we refer the reader to [32,33,34]. We focus here on 

combining (1) decoding with (2) encoding.

Most state-of-the-art decoding algorithms for intracortical BCIs are based on a linear 

decoder such as the Kalman filter. Typically, the state vector x for the Kalman filter is 

chosen to be a vector of kinematic quantities to be estimated, such as hand position, velocity, 

and acceleration. The likelihood (or measurement) model for the Kalman filter specifies how 

the kinematic vector xt at time t relates linearly (via a matrix B) to the measured neural 

activity vector yt:

yt = Bxt + mt

while a dynamics model specifies how xt linearly changes (via matrix A) over time:

xt = Axt − 1 + nt
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nt and mt are zero-mean Gaussian noise processes. The Kalman filter computes the optimal 

estimates for kinematics xt (both mean and covariance) given current and all past neural 

measurements.

One of the first studies to combine decoding and encoding was by O’Doherty, Nicolelis, and 

colleagues [35] who showed that stimulation of somatosensory cortex could be used to 

instruct a rhesus monkey which of two targets to move a cursor to; the cursor was 

subsequently controlled using a BCI based on linear decoding to predict the X- and Y-

coordinate of the cursor. A later study by the same group [36] demonstrated true closed-loop 

control. Monkeys used a BCI based on primary motor cortex (M1) recordings and Kalman-

filter-based decoding to actively explore virtual objects on a screen with artificial tactile 

properties. The monkeys were rewarded if they found the object with particular artificial 

tactile properties. During brain-controlled exploration of an object, the associated tactile 

information was delivered to somatosensory cortex (S1) via intracortical stimulation. Tactile 

information was encoded as a high-frequency biphasic pulse train (200 Hz for rewarded 

object, 400 Hz for others) presented in packets at a lower frequency (10 Hz for rewarded, 5 

Hz for unrewarded objects). Because stimulation artifacts masked neural activity for 5–10 

ms after each pulse, an interleaved scheme of alternating 50 ms recording and 50 ms 

stimulation was used. The monkeys were able to select the desired target object within a 

second or less based only on its tactile properties as conveyed through stimulation.

Klaes, Andersen and colleagues [37] have also demonstrated that a monkey can utilize 

intracortical stimulation in S1 to perform a match-to-sample task where the goal is to move a 

virtual arm and find a target object that delivers stimulation similar to a control object. In 

their experiment, the monkey controlled a virtual arm using a Kalman-filter-based decoding 

scheme where the Kalman filter’s state was defined as the virtual hand’s position, velocity 

and acceleration in three dimensions. The encoding algorithm involved stimulating S1 via 

three closely located electrodes using a 300 Hz biphasic pulse train for up to 1 second while 

the virtual hand held the object. After training, the monkey was able to move the virtual 

hand to the correct target with success rates between 70% and more than 90% over the 

course of 8 days (chance level was 50%).

Finally, Flesher and colleagues [38] have recently shown that a paralyzed patient can use a 

bidirectional BCI for closed-loop control of a prosthetic hand in a continuous force matching 

task. Control signals were decoded from multi-electrode recordings in M1 using a linear 

decoder that mapped M1 firing rates to movement velocities of the robotic arm. Initial 

training data for the linear decoder was obtained by asking the subject to observe the robotic 

hand performing hand shaping tasks such as “pinch” (thumb/index/middle flexion-

extension), “scoop” (ring/pinky flexion/extension) or grasp (all finger flexion) and recording 

M1 firing rates, followed by a second training phase involving computer-assisted control to 

fine tune the decoder weights. The subject then performed a 2D force matching task with the 

robotic hand using the trained decoder to pinch, scoop or grasp a foam object either gently 

or firmly while using stimulation of S1 to get feedback on the force applied. The encoding 

algorithm linearly mapped torque sensor data from the robotic hand’s finger motors to pulse 

train amplitude of those stimulating electrodes that previously elicited percepts on the 

corresponding fingers of the subject. The researchers showed that the subject was able to 
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continuously control the flexion/extension of the pinch and scoop dimensions while 

evaluating the applied torque based on force feedback from S1 stimulation. The success rate 

for pinch, scoop or grasp with gentle or firm forces) was significantly higher with 

stimulation feedback compared to feedback from vision alone.

Reanimating Paralyzed Limbs

Rather than controlling a prosthetic limb, BBCIs can also be used to control electrical 

stimulation of muscles to restore movement in a paralyzed limb. Moritz, Perlmutter, and 

Fetz [39] demonstrated this approach in two monkeys by translating the activity of single 

motor cortical neurons into electrical stimulation of wrist muscles to move a cursor on a 

computer screen. The decoding scheme involved operant conditioning to volitionally control 

activity of a motor cortical neuron to initially move a cursor into a target. After training, the 

activity from the motor cortical neuron was converted into electrical stimuli which was 

delivered to the monkey’s temporarily paralyzed wrist muscles (this type of stimulation is 

called functional electrical stimulation, or FES). Flexor FES current was set to be 

proportional to the rate above a threshold (0.8 x [firing rate – 24] with a maximum of 10 

mA), and extensor FES was inversely proportional to the rate below a second threshold (0.6 

x [12 – firing rate] with a maximum of 10 mA). Both monkeys were able to modulate the 

activity of cortical neurons to control their paralyzed wrist muscles and move a 

manipulandum to acquire five targets. Ethier et al. [40] extended these results to grasping 

and moving objects using a linear decoder with a static nonlinearity applied to about 100 

neural signals from M1.

Extending the approach to humans, Bouton et al. [41] showed that a quadraplegic man with 

a 96-electrode array implanted in the hand area of the motor cortex could use cortical signals 

to electrically stimulate muscles in his paralyzed forearm and produce six different wrist and 

hand motions. For decoding, six separate support vector machines were applied to mean 

wavelet power features extracted from multiunit activity to select one out of these six 

motions. The encoding scheme involved activating the movement associated with the highest 

decoder output using an electrode stimulation pattern previously calibrated to evoke that 

movement. Surface electrical stimulation was delivered as monophasic rectangular pulses at 

50 Hz pulse rate and 500 μs pulse width, with stimulation intensity set to a piecewise linear 

function of decoder output. These results were extended to multi-joint reaching and grasping 

movement by Ajiboye et al. [42]: a linear decoder similar to a Kalman filter was used to map 

neuronal firing rates and high frequency power at electrodes in the hand area of the motor 

cortex to percent activation of stimulation patterns associated with elbow, wrist or hand 

movements. The researchers showed that a tetraplegic subject could perform multi-joint arm 

movements for point-to-point target acquisitions with 80–100% accuracy and volitionally 

reach and drink a mug of coffee.

One shortcoming of the above approaches is that continued electrical stimulation of muscles 

results in muscle fatigue, rendering the technique impractical for day-long use. An alternate 

approach to reanimation is to use brain signals to stimulate the spinal cord. Spinal 

stimulation may simplify encoding and control because it activates functional synergies, 

reflex circuits, and endogenous pattern generators. Capogrosso, Courtine, and colleagues 
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[43] demonstrated the efficacy of brain-controlled spinal stimulation for hind limb 

reanimation for locomotion in paralyzed monkeys. They used a decoder based on linear 

discriminant analysis to predict foot-strike and foot-off events during locomotion. The 

encoder used this prediction to activate extensor and flexor “hotspots” in the lumbar spinal 

cord via epidural electrical stimulation to correctly produce the extension and flexion of the 

impaired leg.

Restoring Motor and Cognitive Function

One of the early pioneers exploring bidirectional BCIs for restoration of brain function was 

Jose Delgado [6] who designed an implantable BBCI called the stimoceiver that could 

communicate with a computer via radio. Delgado was the first to combine decoding with 

encoding to shape behavior: his decoding algorithm detected spindles in the amygdala of a 

monkey and for each detection, triggered stimulation in the reticular formation, which is 

associated with negative reinforcement. After six days, spindle activity was reduced to 1 

percent of normal levels, making the monkey quiet and withdrawn. Unfortunately, efforts to 

extend this approach to humans to treat depression and other disorders yielded inconsistent 

results.

Delgado’s work did eventually inspire commercial brain implants such as Neuropace’s RNS 

system that detects onset of seizures using time- and frequency-based methods from brain 

surface recordings (ECoG) and stimulates the region where the seizure originates. Also 

inspired by Delgado’s work is the technique of deep brain stimulation (DBS), a widely 

prescribed form of neurostimulation for reducing tremors and restoring motor function in 

Parkinson’s patients. Current DBS systems are open-loop but Herron et al. have recently 

demonstrated closed-loop DBS [44] by triggering DBS based on movement intention, which 

was decoded as reduction in ECoG power in the low frequency (“mu”) band over motor 

cortex.

Enhancing Memory and Augmenting Brain Function

Besides restoration of lost function, BBCIs can also be used for augmentation of brain 

function. Berger, Deadwyler and colleagues [45,46] have demonstrated that BBCIs 

implanted in the hippocampus of monkeys and rats can be used to enhance memory in 

delayed match-to-sample (DMS) and nonmatch-to-sample tasks. They first fit a multiinput/

multi-output (MIMO) nonlinear filtering model to simultaneously recorded spiking data 

from hippocampal CA3 and CA1 during successful trials, with CA3 as input to the model 

and CA1 as output. The trained MIMO model was later used to decode CA3 activity and 

predict CA1 activity encoded as patterns of biphasic electrical pulses. Deadwyler et al. [46] 

showed that in the four monkeys tested, performance in the DMS task was enhanced in the 

difficult trials, which had more distractor objects or required information to be held in 

memory for longer durations. However, it is unclear how the approach could be used when 

the brain is not healthy such as in Alzheimer’s patients [47] where simultaneous recordings 

from areas such as CA3 and CA1 for training the model in successful trials will not be 

available.
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Nicolelis suggested several brain augmentation schemes based on BBCIs in his book [48], 

including direct brain-to-brain communication. He and his colleagues subsequently showed 

how rats can use brain-to-brain interfaces (BBIs) to solve sensorimotor tasks [49]: an 

“encoder” rat identified a stimulus and pressed one of two levers while its M1 cortex activity 

was transmitted to the M1 cortex of a “decoder” rat. The stimulation pattern was based on a 

Z score computed from the difference in the number of spikes between the current trial and a 

template trial. If the decoder rat made the same choice as the encoder rat, both rats were 

rewarded for the successful transfer of information between their two brains. Rao, Stocco 

and colleagues utilized noninvasive technologies to demonstrate the first human brain-to-

brain interface [50,51,52]. The intention of a “Sender” who could perceive but not act was 

decoded from motor or visual cortex using EEG; this information was delivered via 

transcranial magnetic stimulation (TMS) to the motor or visual cortex of a “Receiver” who 

could act but not perceive. The researchers showed that tasks such as a video game [50] or 

“20 questions” [52] could be completed successfully through direct brain-to-brain 

collaboration (see [53,54] for other examples). More recently, brain-to-brain interfaces have 

been used to create a network of brains or “BrainNet” allowing groups of humans [55] or 

rats [56] to solve tasks collaboratively.

Inducing Plasticity and Rewiring the Brain

Hebb’s principle for plasticity states that connections from a group A of neurons to a group 

B are strengthened if A consistently fires before B, thereby strengthening the causal 

relationship from A to B. Jackson, Mavoori and Fetz [57] demonstrated that such plasticity 

can be artificially induced in the motor cortex of freely behaving primates by triggering 

stimulation at a site B a few milliseconds after a spike was detected at site A. After two days 

of continuous spike-triggered stimulation, the output generated by site A shifted to resemble 

the output from B, consistent with a strengthening of any weak synaptic connections that 

may have existed from neurons in A to neurons in B. Such an approach could be potentially 

quite useful for neurorehabilitation by rewiring the brain for restoration of motor function 

after traumatic brain injury, stroke or neuropsychiatric disorders such as depression and 

PTSD. Along these lines, Guggenmos, Nudo, and colleagues [58] have shown that the 

approach can be used to improve reaching and grasping functions in a rat after traumatic 

brain injury to the rat’s primary motor cortex (caudal forelimb area). Their approach 

involves creating an artificial connection between the rat’s premotor cortex (rostral forelimb 

area or RFA) and somatosensory cortex S1 and for each spike detected by an electrode in 

RFA, delivering an electric pulse to S1 after 7.5 milliseconds. All of these prior approaches 

have relied on 1-to-1 spike-to-stimulation-pulse protocols, leaving open the question of how 

the approach can be generalized to induction of goal-directed multi-electrode plasticity.

From Proof-of-Concept to Real-World Applications

Most of the BBCIs reviewed above (see Table 1) involved proof-of-concept demonstrations. 

An important question is how close are we to real-world applications of BCIs. While a small 

number of BCIs such as deep brain stimulators and Neuropace’s RNS epilepsy control 

system are already being used for medical applications, the vast majority of BCIs are still in 

their “laboratory testing” phase. Consider, for example, the most commonly cited BCI 

application of communication using brain signals alone. The maximum bit rate achieved by 
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a human using an invasive BCI is currently about 3.7 bits/sec and 39.2 correct characters per 

minute [16]. This is an order of magnitude lower than average human typing speeds of about 

150-200 characters per minute. In noninvasive EEG-based BCIs, the highest bit rate has 

been achieved using steady state visually evoked potentials (SSVEP): each choice on a menu 

is associated with a flickering visual stimulus (e.g., an LED) flashing at a specific known 

frequency. SSVEP BCIs have achieved bit rates as high as 5.3 bits/sec or 60 characters per 

minute [59], which is again an order of magnitude less than manual typing speeds, with the 

added drawback of visual fatigue. BBCIs are even more in their infancy. For example, the 

noninvasive brain-to-brain interfaces in humans cited above have bit rates of less than 1 bit/

sec, partly due to safety considerations of transcranial magnetic stimulation.

Towards A Unifying Framework: Neural Co-Processors based on Deep 

Learning

A major limitation of current BBCIs is that they treat decoding and encoding as separate 

processes, and they do not co-adapt and jointly optimize a cost function with the nervous 

system. We propose that these limitations may addressed using a “neural coprocessor” as 

shown in Figure 1. A neural co-processor uses two artificial neural networks, a co-processor 

network (CPN) and an emulator network (EN), combined with a new type of deep learning 

that approximates backpropagation through both biological and artificial networks.

Suppose the goal is to restore movement in a stroke or spinal cord injury (SCI) patient, e.g., 

to enable the hand to reach a target object (see Figure 1). The CPN is a multilayered 

recurrent neural network that maps neural activity patterns from a large number of electrodes 

in areas A1, A2, etc. (e.g., movement intention areas spared by the stroke) to appropriate 

stimulation patterns in areas B1, B2, etc. (e.g., intact movement execution areas in the cortex 

or spinal cord). When the subject forms the intention to move the hand to a target (e.g., 

during a rehabilitation session), the CPN maps the resulting neural activity pattern to a 

stimulation pattern. Unfortunately, to train the CPN, we do not have a set of “target 

stimulation patterns” that produce the intended movements. However, for any stimulation 

pattern, we can compute the error between the resulting hand movement and the target. How 

can this behavioral error be translated and backpropagated through the CPN to generate 

better stimulation patterns?

We propose the use of an emulator network (EN) that emulates the biological transformation 

between stimulation patterns and behavioral output. The EN is a deep recurrent neural 

network whose weights can be learned using standard backpropagation from a dataset 

consisting of a large variety of stimulation (or neural activity) patterns in areas B1, B2, etc. 

and the resulting movements or behavior. After training, the EN acts as a surrogate for the 

biological networks mediating the transformation between inputs in B1, B2, etc. and output 

behavior.

With the help of a trained EN, we can train the weights of the CPN to produce the optimal 

stimulation patterns for minimizing behavioral error (e.g., error between current hand 

position and a target location). For each neural input pattern X (e.g., movement intention) 
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that the subject produces in areas A1, A2 etc., the CPN produces an output stimulation 

pattern Y in areas B1, B2 etc., which results in a behavior or movement Z.

The error E between actual movement Z and the intended movement target Z’ is first 

backpropagated through the EN but without modifying its weights. We continue to 

backpropagate the error through the CPN, this time modifying the CPN’s weights. In other 

words, the behavioral error is backpropagated through a concatenated CPN-EN network but 

only the CPN’s weights are changed. This allows the CPN to progressively generate better 

stimulation patterns that enable the brain to better achieve the target behavior, thereby 

resulting in a co-adaptive BBCI.

Furthermore, by repeatedly pairing patterns of neural inputs with patterns of output 

stimulation, the CPN promotes neuroplasticity between connected brain regions via Hebbian 

plasticity. Note that unlike previous plasticity induction methods [57,58], the plasticity 

induced spans multiple electrodes and is goal-directed since the CPN is trained to minimize 

behavioral errors. After a sufficient amount of coupling between regions X and Y, neurons in 

region X can be expected to automatically recruit neurons in region Y to achieve a desired 

response (such as a particular hand movement). As a result, in some cases, the neural co-

processor system may eventually be no longer required after a period of use and may be 

removed once function is restored or augmented to a satisfactory level.

To illustrate the generality of the neural co-processor framework beyond restoring motor 

function, consider a co-processor for emotional well-being (e.g., to combat trauma, 

depression, or stress). The emulator network could first be trained by stimulating one or 

more emotion-regulating areas of the brain and noting the effect of stimulation on the 

subject’s emotional state, as captured, for example, by a mood score based on a 

questionnaire answered by the subject [60]. The CPN could then be trained to map 

emotional intentions or other brain states to appropriate stimulation patterns that lead to a 

desired emotional state (e.g., less traumatic, stressful or depressed state).

Another example is using a neural co-processor to create a sensory prosthesis that converts 

sensory stimuli from an external sensor (Figure 1), such as a camera, microphone, or even 

infrared or ultrasonic sensor, into stimulation patterns that take into account the ongoing 

dynamics of the brain. In this case, the CPN in Figure 1 takes as input both external sensor 

information and current neural activity to generate an appropriate stimulation pattern in the 

context of the current state of the brain. The emulator network could be trained based on the 

subject’s reports of perceptual states generated by a variety of stimulation patterns.

More generally, the external input to the CPN could be from any information source, even 

the internet, allowing the brain to request information via the external actuator component in 

Figure 1. The resulting information is conveyed via the CPN’s input channels and processed 

in the context of current brain activity. The emulator network in this case would be trained in 

a manner similar to the sensory prosthesis example above to allow the CPN to convert 

abstract information (such as text) to appropriate stimulation patterns that the user can 

understand.

Rao Page 8

Curr Opin Neurobiol. Author manuscript; available in PMC 2020 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, we note that neural co-processors can be useful tools for testing new computational 

models of brain and nervous system function [31]. Rather than using traditional artificial 

neural networks in the CPN in Figure 1, one could use more realistic cortical models such as 

networks of integrate-and-fire or Hodgkin-Huxley neurons, along with biological learning 

rules such as spike-timing dependent plasticity rather than backpropagation. A critical test 

for putative computational models of the nervous system would then be: can the model 

successfully interact with its neurobiological counterpart and be eventually integrated within 

the nervous system’s information processing loops?

Challenges

A first challenge in realizing the above vision for neural co-processors is obtaining an error 

signal for training the two networks. In the simplest case, the error may simply be a neural 

error signal: the goal is drive neural activity in areas B1, B2, etc. towards known target 

neural activity patterns, and we therefore train the CPN directly to approximate these 

activity patterns without using an EN. However, we expect such scenarios to be rare. In the 

more realistic case of restoring motor behavior, such as in stroke rehabilitation where the 

goal is, for example, to reach towards a target, a computer vision system could be used to 

quantify the error between the hand and the target or a sensor worn on the hand may indicate 

error in the force applied. Similarly, in speech rehabilitation after stroke, a speech analysis 

system could quantify the error between the generated speech and the target speech pattern.

A bigger challenge is training an EN to be a sufficiently accurate model of the 

transformation from stimulation patterns to behavioral output. It may be difficult to obtain a 

sufficient amount of data containing enough examples of how stimulation affects behavior. 

One possible solution is to record neural activities in regions that are causally related or 

correlated with observed behavior and use this data to train the EN, under the assumption 

that stimulation patterns will approximate the neural activity patterns. Another possible 

approach is to build the EN in a modular fashion, starting from biological structures closest 

to the target behavior and going up the hierarchy, e.g., learning to emulate the transformation 

from limb muscles to limb movements, spinal activity to muscle activity, etc. Finally, one 

could combine the above ideas with the concept of transfer learning using networks trained 

across similar neural regions or even across subjects, and incorporate prior knowledge from 

computational neuroscience models of the biological system being emulated. Regardless of 

the training method used, we expect that the EN (and CPN) will need to be regularly 

updated with new neural data as the brain adapts to having the CPN as part of its information 

processing loops.

Conclusions

Traditionally, much of BCI research has focused on the problem of decoding, specifically, 

how can movement intention be extracted from noisy brain signals to control prosthetic 

devices? More recently, there has been growing interest in “closing the loop” using 

bidirectional BCIs (BBCIs) which incorporate sensory feedback, e.g., from artificial tactile 

sensors, via stimulation. The ability to simultaneously decode neural activity from one 

region and encode information to deliver via stimulation to another region confers on BBCIs 
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tremendous versatility. In this article, we have reviewed how BBCIs can be used to not only 

control prosthetic arms with sensory feedback but also (1) control paralyzed limbs using 

motor intention signals from the brain, (2) restore and augment cognitive function and 

memory, and (3) induce neuroplasticity for rehabilitation. Promising proof-of-concept 

results have been obtained in animal models and in some cases, humans, but mostly under 

laboratory conditions.

To transition to real-world conditions, BBCIs must co-adapt with the nervous system and 

jointly optimize behavioral cost functions. We introduced the concept of a neural 

coprocessor which uses artificial neural networks to jointly optimize behavioral error 

functions with biological neural networks. A trained emulator network is used as a surrogate 

for the biological network producing the behavioral output. Behavioral errors are 

backpropagated through the emulator network to the co-processor network which adapts its 

weights to minimize errors and delivers optimal stimulation patterns for specific neural input 

patterns. We illustrated how a neural co-processor could be used to improve motor function 

in a stroke or spinal cord injury patient. Such co-processors have not yet been validated in 

animal models or humans, but if successful, they could potentially be applied to modalities 

other than movement such as:

• Mapping inputs from one memory-related area to another to facilitate or restore 

access to particular memories (e.g., in memory loss) or to unlearn traumatic 

memories (e.g., in PTSD),

• Mapping inputs from novel external sensors or one sensory area to another to 

restore or augment sensation and perception,

• Connecting areas involved in emotion processing to augment or rehabilitate 

emotional function, and

• Augmenting the brain’s knowledge, skills, information processing, and learning 

capabilities with deep artificial neural networks.
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Highlights

• Bidirectional brain-computer interfaces (BBCIs) combine neural decoding 

and encoding within a single neuroprosthetic device.

• BBCIs have been used to control prosthetic limbs, induce plasticity for 

rehabilitation, reanimate paralyzed limbs and enhance memory.

• Neural co-processors for the brain rely on artificial neural networks and deep 

learning to jointly optimize cost functions with the nervous system.

• Neural coprocessors can be used to achieve functions ranging from targeted 

neurorehabilitation to augmentation of brain function.
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Figure 1: Neural Co-Processor for the Brain for Restoring and Augmenting Function.
A deep recurrent artificial network is used to map input neural activity patterns in one set of 

regions to output stimulation patterns in other regions (“Co-Processor Network” or CPN). 

The CPN’s weights are optimized to minimize brain-activity-based error (between 

stimulation patterns and target neural activity patterns when known), or more generally, to 

minimize behavioral error or task error using another network, an emulator network. The 

emulator network is also a deep recurrent network that is pre-trained through 

backpropagation to learn the biological transformation from stimulation or neural activity 

patterns at the stimulation site to the resulting output behaviors. During CPN training, errors 

are backpropagated through the emulator network to the CPN to adapt the CPN’s weights 

but not the emulator network’s weights. The trained CPN thus produces optimal stimulation 

patterns that minimize behavioral error, thereby creating a goal-directed artificial 

information processing pathway between the input and output regions. The CPN also 

promotes neuroplasticity between weakly connected regions, leading to neural augmentation 

or targeted rehabilitation. External information from artificial sensors or other information 

sources can be integrated into the CPN’s information processing as additional inputs to the 

neural network and outputs can be computed for external actuators as well. The example 

here shows the CPN creating a new information processing pathway between prefrontal 

cortex and motor cortex, bypassing an intermediate area affected by brain injury or stroke. 

The CPN is trained to transform movement intentions in the prefrontal cortex to appropriate 

movement-related stimulation patterns in the motor cortex for restoration of movement and 

rehabilitation.
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Table 1.

Summary and comparison of some notable BBCIs built so far.

BBCI Input & Output Decoding & Encoding Achievements Limitations

O’Doherty et 
al., 2011

Spikes from monkey M1 
cortex & intracortical 

microstimulation in S1 cortex

Unscented Kalman filter 
& Biphasic pulse trains of 

different frequencies

Simultaneous brain-
controlled cursor and 

artificial tactile feedback in 
monkeys

Artificial tactile feedback 
limited to reward/no 
reward information

Flesher et al., 
2016

Spikes from human M1 cortex 
& intracortical 

microstimulation in S1 cortex

Velocity-based linear 
decoder & linear encoding 

of torque to pulse train 
amplitude

Simultaneous brain-
controlled prosthetic hand 

& force feedback in 
humans

Simple force matching 
task with only two levels 

(gentle or firm)

Moritz et al., 
2008

Spikes from monkey M1 
cortex & functional electrical 

stimulation of muscles

Volitional control of firing 
rate of single neuron & 

linear encoder

Direct brain control of 
paralyzed muscles to 

restore wrist movement in 
monkeys

Simple flexion and 
extension movements of 
the wrist only, muscle 

fatigue with prolonged use

Bouton et al., 
2016

Multiunit activity from hand 
area of human M1 cortex & 

functional electrical 
stimulation of paralyzed 

forearm muscles

Support vector machines 
for classifying 1 of 6 
wrist/hand motions & 
previously calibrated 
stimulation for each 

motion

Direct brain control of 
forearm muscles for hand/
wrist control in paralyzed 

human

Decoder based on 
classification of 6 fixed 
motions, muscle fatigue 

with prolonged use

Ajiboye et al., 
2017

Spikes and high frequency 
power in hand area of human 

M1 cortex & functional 
electrical stimulation of 
paralyzed arm muscles

Linear decoder & percent 
activation of stimulation 
patterns associated with 

hand, wrist or elbow 
movements

Direct brain control of arm 
muscles for multi-joint 

movements and point-to-
point target acquisitions in 

paralyzed human

Percent activation of fixed 
stimulation patterns, 
muscle fatigue with 

prolonged use

Capogrosso et 
al., 2016

Multiunit activity from leg area 
of monkey M1 cortex & 

epidural electrical stimulation 
of the lumbar spinal cord

Linear discriminant 
analysis to predict foot 

strike/foot off & activation 
of spinal hotspots for 

extension/flexion

Direct brain control of the 
spinal cord for restoring 
locomotion in paralyzed 

monkeys

Simple two state decoder 
and encoder models, 

viability for restoration of 
bipedal walking in humans 

yet to be demonstrated

Delgado, 1969

Local field potentials in 
monkey amygdala & electrical 

stimulation in the reticular 
formation

Decoder algorithm for 
detecting fast “spindle” 
waves & an electrical 
stimulation for each 

detection

First BBCI to control 
behavior and induce 

neuroplasticity in animals

Results not consistent 
from subject to subject, 

did not generalize to 
treating depression in 

humans

Deadwyler et 
al., 2017

Spikes from area CA3 in 
monkey hippocampus & 

electrical microstimulation in 
area CA1 in hippocampus

Multi-input/multioutput 
(MIMO) nonlinear 

filtering model to decode 
CA3 activity & encode 

predicted CA1 activity as 
biphasic electrical pulses

First demonstration of 
memory enhancement in a 
short-term memory task in 

a monkey

Applicability to memory 
restoration in Alzheimer’s 
or other patients unclear 

due to MIMO model 
training requirement

Jackson et al., 
2006

Spikes from a region of 
monkey M1 cortex & 

intracortical microstimulation 
of a different region of M1

Single spike detection & 
biphasic electrical pulse 
for each spike detection

First demonstration of 
Hebbian plasticity 

induction using a BBCI in a 
freely behaving monkey

Single input/single output 
protocol, not designed for 
multi-input/multioutput 
goal-directed plasticity 

induction

Guggenmos et 
al., 2013

Spikes from rat premotor 
cortex & intracortical 

microstimulation of S1 
somatosensory cortex

Single spike detection in 
premotor cortex & 

electrical pulse 
stimulation in S1 after 7.5 

ms.

First demonstration of 
improved motor function 

after traumatic brain injury 
in a rat using a BBCI for 

plasticity induction

Single input/single output 
protocol, plasticity 

induction not geared 
toward optimizing 

behavioral or 
rehabilitation metrics
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