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Abstract

This paper illustrates a psychometric approach of broad relevance to psychiatric
research instruments. Many instruments include indicators related to more than
one source of true-score variance due to the: (1) assessment of conceptually
adjacent constructs; (2) the presence of a global construct underlying answers
to items designed to assess multiple dimensions. Exploratory structural equation
modelling (ESEM) is naturally suited to the investigation of the first source,
whereas bifactor models are particularly suited to the investigation of the second
source. When both sources are present, bifactor-ESEM becomes the model
of choice. To illustrate this framework, we use the responses of 1159 adults
[655 female, 504 male, mean age (Mage) = 41.84] who completed the French
Version of the Composite Scale of Morningness (CSM). We investigate the
factor structure of the CSM, test the relations between CSM factors and body
mass index, and verify the measurement invariance of the model across gender
and age groups. Copyright © 2015 John Wiley & Sons, Ltd.
Introduction

In psychiatric, epidemiological or biomedical research, a key
question is whether unobservable constructs such as
personality traits (e.g. neuroticism, extraversion), Internaliz-
ing Disorders (e.g. anxiety disorders such as obsessive-

compulsive disorder, mood disorders such as depression)
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or Externalizing Disorders [e.g. attention deficit hyperactiv-

ity disorder (ADHD), conduct disorder) exist as a unitary

construct including specificities, or represent a collection

of correlated/comorbid facets without a common core

(Morin et al., in press-b). For example, the DSM-V defines

ADHD by a core set manifestations leading to the main

diagnosis, and individual specificities characterizing sub-

types. Thus, a generic core component of ADHD should

co-exist with more specific symptoms (Martel et al., 2011).

Similar observations have been previously made for a

multitude of constructs such as psychosis (Reininghaus

et al., 2013), Internalizing Disorders (Simms et al., 2008),

Quality of Life (Reise et al., 2007), or Intelligence (Gignac

and Watkins, 2013).
Correlated constructs, or a global construct with
specificities

Psychometrically, the question of whether indicators
(questionnaire items,measures, etc.) better depict correlated
constructs or a global construct with specificities can be
verified by contrasting alternative measurement models.
Exploratory Factor Analysis (EFA) or Confirmatory Factor
Analysis (CFA) implicitly assume the presence of separate
inter-related dimensions. Conversely, higher-order CFA
(H-CFA) directly assesses the presence of a global
construct. In H-CFA, indicators are used to define
“first-order” factors, themselves used to define a
“higher-order” factor (Rindskopf and Rose, 1988). However,
H-CFA are limited by their reliance on rigid implicit
assumptions (Chen et al., 2006; Jennrich and Bentler, 2011;
Reise, 2012). More precisely, H-CFA assume that the
relation between each indicator and the higher-order factor
is reflected by the combination of the loading of this
indicator on a first-order factor, and the loading of this
first-order factor on the higher-order factor (a constant as
far as the indicators associated with a single first-order factor
are concerned). Furthermore, first-order factors reflect a
combination of the variance explained by the higher-order
factor and the specific variance remaining unexplained by
the higher-order factor, creating redundancies between the
first-order and higher-order factors. In H-CFA, the
disturbances of the first-order factors reflect their specificity
remaining unexplained by the higher-order factor. The
relations between indicators and these disturbances are also
indirect and characterized by the combination of the
loadings of the indicators on their first-order factor with a
constant for all indicators associated with a single first-order
factor. H-CFAmodels thus rely on stringent proportionality
Int. J. Met
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constraints, assuming that the ratio of global/specific vari-
ance is exactly the same for all indicators associated with a
first-order factor (Jennrich and Bentler, 2011; Reise, 2012).
Although these constraints introduce parsimony, they are
unlikely to hold in most situations (Reise, 2012; Yung
et al., 1999).

Bifactor-CFA models (B-CFA) provide an alternative
to H-CFA (Chen et al., 2006). In a f-factor B-CFA, one
global (G) factor and f-1 specific (S) factors are used
to explain the covariance among a set of n indicators.
The indicators’ loadings on the G-factor and on one of
f-1 S-factors are estimated while the other loadings are
constrained to be zero, and all factors are set to be orthogo-
nal (uncorrelated). B-CFA partitions the total covariance
into a G component underlying all indicators, and f-1 S
components reflecting the residual covariance not explained
by the G-factor. Bifactor models directly test the presence of
a global construct underlying all indicators (G-factor) and
whether this global construct co-exists with meaningful
specificities (S-factors), and are able to do so without impos-
ing restrictive proportionality constraints (Chen et al., 2006;
Reise, 2012). Furthermore, Jennrich and Bentler (2011)
showed that H-CFA models were typically unable to
recover the structure of data generated according to
bifactor specifications, whereas B-CFA properly recov-
ered H-CFA structures.
Multiple sources of true score variance

B-CFA explicitly accommodates psychometric multidi-
mensionality in the indicators by relaxing the independent
cluster assumption (ICM) of CFA according to which each
indicator is assumed to correspond to a single factor.
Psychometric multidimensionality occurs when indicators
are associated with more than one construct, or sources of
true score variance (Morin et al., in press-a). Psychometric
indicators, be they self-reported, informant-reported, or
emerging from structured diagnostic interviews, are very
seldom perfectly pure construct indicators. This recogni-
tion of the inherently imperfect nature of indicators forms
the basis of classical test theory (CTT; Nunnally and
Bernstein, 1994), although all implications of this recogni-
tion have not been equally well integrated in research. In
CTT, ratings are assumed to reflect a combination of true
score variance and random measurement error (estimated
in reliability analyses). By definition, “random” measure-
ment error is unrelated to other constructs, leading to its
absorption within the indicators’ uniquenesses in CFA.

CTT further distinguishes among construct-relevant
and construct-irrelevant forms of true score variance, a
distinction covered in discussions of validity. This
hods Psychiatr. Res. 25(4): 277–288 (2016). DOI: 10.1002/mpr
Copyright © 2015 John Wiley & Sons, Ltd.
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distinction makes it obvious that indicators are expected
to include at least some degree of association with other
constructs. When looking at this issue from the perspec-
tive of a single construct, the portion of true score variance
that is unrelated to the target construct is simply
interpreted as reflecting the imperfect validity of the
ratings. However, because this portion still reflects true
score variance, it also reflects a form of validity in the
assessment of the other constructs to which it is associated
– something that only becomes obvious when multiple
constructs are simultaneously assessed. For example, using
complicated words like “bitterness” or “fallacious” in a
measure for children is likely to induce random measure-
ment error due to the need to guess the meaning of the
word, producing higher uniquenesses (lower reliability).
However, even when completely reliable, ratings of
insomnia are likely to present significant levels of true
score (i.e. valid) associations with multiple constructs such
as depression, anxiety, or drug abuse.

Earlier, we discussed one process through which
indicators might be validly associated with more than one
form of true score variance (Morin et al., in press-a) due
to the simultaneous assessment of a more global construct
(e.g. Intelligence; ADHD) coexisting with specificities
(e.g. vocabulary; hyperactivity). Bifactor models are required
to directly investigate this possibility (Chen et al., 2006; Reise,
2012). Indeed, if data simulated according to a B-CFA was
analysed using ICM-CFA, the unmodelled G-factor would
be absorbed through an inflation of the factor correlations,
calling into question the discriminant validity of the factors
(Morin et al., in press-a).

It is also typical for indicators to present construct-
relevant associations with more than one source of true
score variance located at the same conceptual level,
particularly in instruments designed to assess conceptually-
related and partially overlapping domains, such as
inattention and hyperactivity (ADHD), or depression
and anxiety (Internalizing Disorders). This second form of
construct-relevant multidimensionality is typically expressed
through cross-loadings in EFA but is constrained to be zero
in ICM-CFA, H-CFA, or B-CFA. The simple observation
that many indicators are inherently expected to present
meaningful associations to multiple sources of true score
variance shows that ICM requirement for pure indicators
relies on an inherently flawed logic.

In sum most psychometric indicators are likely to
present at least some level of systematic association with
other constructs. Although “pure” indicators may exist,
we surmise that such indicators remain at best a conve-
nient fiction (Marsh et al., 2014; Morin et al., in press-a).
Simulation studies have clearly demonstrated that, even
Int. J. Methods Psychiatr. Res. 25(4): 277–288 (2016). DOI: 10.100
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when small (i.e. as low as 0.100) and substantively mean-
ingless cross-loadings are present in the population model
but ignored in ICM-CFA models, the factor correlations
will tend to be substantially biased (Asparouhov and
Muthén, 2009; Marsh et al., 2013; Morin et al., in press-
a; Schmitt and Sass, 2011). Although B-CFA models relax
ICM assumptions to some extent, they still ignore cross-
loadings, which tends to result in inflated estimates of
the variance attributed to the global factor (Morin et al.,
in press-a; Murray and Johnson, 2013). These studies also
show that when the population model meets ICM
assumptions, relying on models allowing for the estima-
tion of cross-loadings (e.g. EFA) will nevertheless result
in unbiased estimates of factor correlations. Going back
to the flawed argument that cross-loadings “change” the
nature of the constructs, these results rather show that it
is the exclusion of cross-loadings that modifies the meaning
of the constructs.
Reviving Exploratory Factor Analysis (EFA)

The foregoing arguments seem to support the revival of
classical EFA. Unfortunately, EFA has been superseded by
the methodological advances associated with CFA/SEM
(structural equation modelling) (e.g. goodness-of-fit, in-
variance, predictions, etc.) and the erroneous assumption
that EFA was not confirmatory. However, the only “critical
difference between EFA and CFA is that all cross-loadings
are freely estimated in EFA. Due to this free estimation of
all cross-loadings, EFA is clearly more naturally suited to
exploration than CFA. However, statistically, nothing
precludes the use of EFA for confirmatory purposes”
(Morin et al., 2013, p. 396). However, because classical
EFA models rely on the free estimation of all loadings
and cross-loadings, they have also been criticized for the
fact that this free estimation of multiple parameters may
lead to overfitting the data and create an undue level of
sensitivity to random variations across different data
sets. However, EFA has recently been integrated with
CFA/SEM into the exploratory structural equation
modelling (ESEM; Asparouhov and Muthén, 2009)
framework, making most methodological advances typically
reserved to CFA/SEM available for EFA (Marsh et al., 2013,
2014; Morin and Maïano, 2011; Morin et al., 2013). In
particular, the use of goodness-of-fit indices adjusted for
parsimony makes it easier to compare more parsimonious
CFAwith EFAmodels while taking into account the fact that
EFA models rely on the estimation of many additional
parameters. The development of target rotation also makes
it possible to use a fully confirmatory approach to EFA
(Asparouhov and Muthén, 2009; Browne, 2001) through
2/mpr
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which cross-loadings are freely estimated but “targeted” a
priori to be as close to zero as possible. Finally, bifactor
rotations (Jennrich and Bentler, 2011), including bifactor
target rotation (Reise, 2012; Reise et al., 2011), have
recently been developed for the estimation of bifactor-
ESEM (B-ESEM) models. Finally, ESEMmakes it possible
to directly assess the extent to which an EFA solution can be
generalizable across samples, providing a more systematic
way to directly test the sensitivity of the solution to random
sample variations.

Taken together, these developments form an overarching
framework for the investigation of the two aforementioned
sources of construct-relevant psychometric multidimen-
sionality likely to be present in many psychiatric measures.
The assessment of hierarchically-organized construct
calls for bifactor models, whereas the assessment of
conceptually-adjacent constructs calls for ESEM. However,
bifactor models are likely to express unmodelled cross-
loadings through an inflated G-factor, whereas ESEM
models are likely to express an unmodelled G-factor
through inflated cross-loadings. B-ESEM models are thus
most suitable when a measure includes hierarchically-
organized and conceptually-adjacent constructs.

In this study, we illustrate this B-ESEM framework
using self-reports on the Composite Scale of Morningness
(CSM) (Caci et al., 2005, 2009), a short (13-item) measure
of Chronotype or diurnal preference (an inter-individual
difference related to the time of day where a person is
the most alert and awake, and to preferences for early or
late awakening). Picking a short (13 items) and simple
scale helps to keep the illustration (for which we provide
annotated Mplus input codes in the Online Supplements)
as simple as possible, while demonstrating the broad rele-
vance of this framework for psychiatric measurement. We
provide theoretical background on the CSM in the online
supplements.

Method

Participants and material

This illustration uses data obtained from the parents of
the youth involved in the ChiP-ARD study (the children
and parent ADHD and related disorders study) conducted
in 2010–2011 in 20 kindergarten schools, 30 primary
schools, 14 secondary schools from southern France (Caci
et al., 2014, in press). Schools were randomly drawn from
all public schools located in the greater Nice area, and
invited to participate until a number of schools sufficient
to reach a sample size of approximately 1000 participants,
equally distributed by age group, had been recruited.
Teachers were then individually invited to participate,
Int. J. Met
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and those who agreed sent consent forms to the parents
of a randomly selected subset of students from their
classes (two to four students for each class). Through this
procedure, 941 students were finally included in the study.
In the present study, we use data from the parental ques-
tionnaires, including the French CSM (Caci et al., 2005,
2009) and self-reported height and weight. Taking into
account the prevalence of single parent families,
reconstituted families, and families where parents do not
fluently speak French based on the 2009 Census for
France (http://www.insee.fr/en/default.asp), our expected
sample was 1411 (1.5 parent per family). In total, 1166
parents (82.63%) returned completed CSM question-
naires. Seven pregnant women were excluded due to the
impact of pregnancy on sleep cycles and body mass index
(BMI). The final sample used in this study thus includes
1159 parents [22–65 years old; mean age (Mage) = 41.84;
mean body mass index (MBMI)= 23.53), including 655
women (56.51%; Mage = 40.84; MBMI= 22.27) and 504
males (43.49%; Mage = 43.12; MBMI= 25.15). Compared
to the 2009 Census data for the city of Nice, this sample
tended to be slightly more educated, but remained quite
representative of the general adult population of Nice
(for additional details, see Caci et al., 2014). This study
is supported by the Commissioner of Education and the
Department of Education, complied with ethical prescrip-
tions for French medical research, and data management
procedures were approved by the Commission Nationale
Informatique et Liberté.
Statistical analyses

Measurement models were estimated using Mplus 7.2
(Muthén and Muthén, 2012) robust weight least squares
(WLSMV) estimator which outperforms Maximum Like-
lihood for ordered-categorical indicators with five or less
answer categories (Beauducel and Herzberg, 2006; Finney
and DiStefano, 2006). CSM items (see Online Supplements)
were recoded prior to the analyses so that a higher score
reflected morning preference. We successively estimated
ICM-CFA, B-CFA, ESEM, and B-ESEM models based
on the revised CSM three-factor structure (see Online
Supplements). Models based on the original factor struc-
ture were also estimated, but the results fully supported
the superiority of the revised factor structure. ESEM was
estimated using target rotation, while B-ESEM was
estimated using bifactor-target rotation (Reise, 2012;
Reise et al., 2011). ICM-CFA and B-CFA constrained all
cross-loadings to be exactly zero, while ESEM and
B-ESEM targeted all cross-loadings to be as close to zero
hods Psychiatr. Res. 25(4): 277–288 (2016). DOI: 10.1002/mpr
Copyright © 2015 John Wiley & Sons, Ltd.
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as possible. In both B-CFA and B-ESEM, all indicators
were allowed to load on a global G-factor and on a specific
a priori S-factor. BMI was then integrated to these models
as an outcome predicted by the estimated factors.

Composite reliability was calculated using McDonald’s
ω= (Σ|λi|)

2 / ([Σ|λi|]
2 +Σδii) where λi are the factor

loadings and δii the uniquenesses (McDonald, 1970).
Compared with alpha, ω has the advantages of being
model-based and of taking into account the strength of as-
sociation between indicators and constructs (λi) as well as
item-specific measurement errors (δii) (Sijtsma, 2009).

The final model was submitted to tests of measurement
invariance across gender (males versus females), age
groups (adults younger than 40 years versus older than
40 years), and combinations (younger males, older males,
younger females, older females). These tests followed the
typical sequential invariance strategy (Meredith, 1993)
adapted for ordered-categorical indicators (Guay et al.,
2015; Morin et al., 2011): (i) configural invariance; (ii)
metric/weak invariance (invariance of the factor loadings);
(iii) scalar/strong invariance (loadings and thresholds);
(iv) strict invariance (loadings, thresholds and unique-
nesses); (v) invariance of the latent variances-covariances
(loadings, thresholds, uniquenesses and variances-
covariances); (vi) latent means invariance (loadings,
thresholds, uniquenesses, variances-covariances and latent
means).

The fit of all models was evaluated using the WLSMV
χ2, the Comparative Fit Index (CFI), the Tucker-Lewis
Index (TLI), the Root Mean Square Error of Approxima-
tion (RMSEA) and its 90% confidence interval (Hu and
Bentler, 1999; Yu, 2002). Values greater than 0.900 and
0.950 for CFI and TLI, and lower than 0.080 and 0.060
for the RMSEA are respectively indicative of adequate
and excellent model fit. Fit improvement was evaluated
using the MPlus DIFFTEST function (MDΔχ2;
Asparouhov and Muthén, 2006; Muthén, 2004). Because
χ2 and MDΔχ2 tend to be oversensitive to sample size
and to minor misspecifications, additional indices were
used in tests of invariance (Chen, 2007; Cheung and
Rensvold, 2002): a CFI diminution of 0.010 or less and a
RMSEA augmentation of 0.015 or less between a model
and the preceding model indicate that the measurement
invariance hypothesis should not be rejected. With
WLSMV, χ2 values are not exact, but adjusted to obtain
a correct p value. This explains why χ2 and CFI can be
non-monotonic with model complexity. CFI improve-
ments should thus be interpreted as random. In contrast,
both the TLI and the RMSEA are adjusted for the
parsimony of the model and, as such, can increase with
invariance constraints.
Int. J. Methods Psychiatr. Res. 25(4): 277–288 (2016). DOI: 10.100
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Results

The goodness-of-fit indices of the alternative models are
reported in Table 1. Results show that ICM-CFA provides
an unacceptable level of fit to the data (CFI and
TLI< 0.900; RMSEA> 0.100). B-CFA and ESEM yield a
clearly improved level of fit although they both remain
marginal according to some indices (TLI< 0.950;
RMSEA> 0.080). These results suggest that both sources
of construct-relevant psychometric multidimensionality
may be present in CSM ratings. Indeed, B-ESEM clearly
provides the best fit to the data. Thus, based on purely
statistical criteria, B-ESEM should be retained. However,
no analysis should be conducted in disconnection from
theory, expectations, and a detailed examination of param-
eter estimates (Marsh et al., 2004; Morin et al., in press-a).

Table 2 presents the parameter estimates from all
models. In ICM-CFA, all factors appear well defined by
high and significant factors loadings (0.50–0.96;
M=0.73) and satisfactory composite reliability
(ω=0.77–0.88). However, the fact that this model results
in such a poor level of fit to the data suggests that it fails
to properly represent the underlying structure of the data.
Furthermore, ICM-CFA factor correlations (0.46–0.73;
M=0.63) appear high enough to call into question the dis-
criminant validity of some factors, suggesting that CSM
ratings may include unmodelled multidimensionality.
ESEM reveals a substantial reduction of the factor correla-
tions (0.30–0.57; M=0.45) while all factors remain clearly
defined (0.50–0.96;M=0.73) and reliable (ω=0.80–0.87).
However, although most cross-loadings remain small
(|0.02–0.36|; M= 0.14), some are high enough (>0.30
for Items 3 and 9) to suggest that another source of
unmodelled multidimensionality may be present,
explaining the marginal fit of this model (TLI< 0.950;
RMSEA> 0.080).

This hypothesis is readily confirmed when comparing
B-CFA with ICM-CFA. Apart from providing a better fit
to the data, B-CFA also results is a well-defined G-factor
(λ=0.16–0.77; M=0.59; ω=0.92). Indeed, apart from
two items associated with the Activity Planning S-factor
that present a lower loading on the G-factor (item 2:
λ=0.34, “… at what time would you go to bed if you were
entirely free to plan your evening?”; item 7: λ=0.16, “At
what time in the evening do you feel tired … ?”), the
remaining items all have fully satisfactory loadings on the
G-factor (0.50–0.77; M=0.65) reflecting global diurnal
preference. Interestingly, these two items present high
loadings on their corresponding S-factor “Activity
Planning” (0.61 and 0.85), whereas the two remaining
indicators of this S-factor present much lower loadings
(Item 9: λ=0.36, “One hears about morning and evening
2/mpr
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types of people … ?”; Item 13: λ=0.36, “… a morning or
evening active individual?”). This suggests that these two
items (Items 9 and 13) mainly reflect global diurnal
preference and only present a low level of specificity once
their association with the G-factor is taken into account.
In contrast, the third S-factor mainly appears to represent
the specificity associated with Items 2 and 7, reflecting
Bedtime Preference (rather than Activity Planning). This
S-factor shares similarity with the Evening Activities factor
from the original CSM model, while still presenting a
significant, albeit small, association with Items 9 and 13.
Interestingly, this S-factor still presents satisfactory
reliability (ω=0.75).

The results further reveal that the first S-factor
(Morning Affect) retains a meaningful level of specificity
(λ=0.37–0.72; M=0.59; ω=0.78), whereas the second
S-factor (Time of Rising) apparently retains no meaningful
specificity (|0.07–0.52|; M=0.23; ω=0.43), and mainly
serve control for the limited level of residual covariance
present in these items once the G-factor is taken into ac-
count. Although this B-CFA model is interesting, the fit
of this model is marginal (TLI< 0.950; RMSEA> 0.080)
and below the fit of ESEM (ΔCFI, ΔTLI, ΔRMSEA
all≥ 0.100), suggesting unmodelled cross-loadings.

The B-ESEM solution supports this assertion. First, the
fit of this model is fully satisfactory and clearly superior to
the fit of all alternative models. Second, the pattern of tar-
get loadings mimics the B-CFA results, showing: (a) a G-
factor that is well defined by most items (λ=0.50–0.84;
M=0.62; ω=0.92) apart from Items 2 (0.29) and 7
(0.24) which together define a Bedtime Preference S-factor
(λ=0.72 and 0.73; versus 0.26 and 0.25 for Items 9 and
13; ω=0.74); (b) a well-defined Morning Affect S-factor
Table 3. Relationships between Composite Scale of Morningne

Relationships with BMI [β (s.e

Factor ICM-CFA

G-Factor (Diurnal Preference) —
Factor 1 (Morning Affect) �0.21 (0.05)
Factor 2 (Time of Rising) 0.30 (0.08)
Factor 3 (Bedtime Preference) �0.14 (0.06)
BMI R2 0.03

Notes: Standardized regression coefficients (β) are reported, w
ences relations are in bold (p ≤ 0.05); ICM= Independent clus
model; ESEM=Exploratory structural equation modelling; G-Fa
(B-CFA and B-ESEM), “Factors” are in fact S-factors (Specific fa
variance.

Int. J. Met
284
(0.41–0.69; M=0.58; ω=0.80); (c) a weakly defined Time
of Rising S-factor (0.04–0.47; M=0.31; ω=0.52). How-
ever, although the reliability of the Time of Rising S-factor
remains suboptimal (which is not an issue in latent models
controlling for reliability), the level of specificity associated
with this S-factor is higher than in B-CFA. Finally, the
cross-loadings remain smaller (|0.01–0.23|;M=0.09) than
in ESEM (|0.02–0.36|;M=0.14), suggesting that construct-
relevant multidimensionality initially absorbed in the
cross-loadings now serves to map the G-factor.
Associations with BMI

To illustrate the impact of suboptimal measurement
models for predictive analyses, we present the results of
analyses in which CSM factors from the four alternative
models are used to predict BMI (Table 3). The ICM-
CFA results are highly similar to the ESEM results, and
the B-CFA results are highly similar to the B-ESEM
results. This similarity is likely due to the fact that the fac-
tors remain equally well-defined in the ICM-CFA/ESEM
solutions, and in the B-CFA/B-ESEM solutions, and the
fact that cross-loadings are small. Three of the four models
(ICM-CFA, ESEM, and B-ESEM) result in comparable
estimates of the percentage of explained variance in BMI
levels (approximately 3%). However, the results show that
retaining a suboptimal model results either in highly
different substantive conclusions (ICM-CFA, ESEM) or a
substantially reduced percentage of explained variance
(closer to 2% for B-CFA). Thus, when the global diurnal
preference factor is “absorbed” through first-order factor
correlations (ICM-CFA) or cross-loadings (ESEM), the
results suggest that all three CSM factors significantly
ss (CSM) factors and body mass index (BMI)

.)] in the various models:

ESEM B-CFA B-ESEM

— 0.02 (0.03) �0.01 (0.04)
�0.16 (0.04) �0.10 (0.04) �0.09 (0.03)
0.20 (0.05) 0.10 (0.05) 0.15 (0.04)

�0.07 (0.04) �0.03 (0.03) �0.05 (0.04)
0.03 0.02 0.03

ith standard errors (s.e.) in parentheses, significant differ-
ter model; CFA =Confirmatory factor analysis; B =Bifactor
ctor: Global factor from a bifactor model; In bifactor models
ctors); BMI =Body Mass Index; R2 =Proportion of explained

hods Psychiatr. Res. 25(4): 277–288 (2016). DOI: 10.1002/mpr
Copyright © 2015 John Wiley & Sons, Ltd.
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predict BMI. However, when global chronotype is explic-
itly taken into account (B-ESEM, B-CFA), neither global
diurnal preference, nor the Bedtime Preference S-factor
share any relations with BMI. Rather, more positiveMorn-
ing Affect predicts slightly lower BMI levels, whereas an
earlier Time of Rising predicts higher BMI levels.
Measurement invariance

The results from the tests of the measurement invariance
conducted on the best-fitting B-ESEM solution are presented
in Table 1. Although all χ 2 and some Δχ 2 are significant, the
goodness-of-fit indices indicate fully satisfactory model fit at
each stage. Furthermore, changes in goodness-of-fit indices
never decreasemore than the recommended guidelines when
equality constraints are imposed on the loadings, intercepts,
uniquenesses, and factor variances–covariances. The TLI
and RMSEA even revealed an improvement in fit at some
steps. Strict measurement invariance of the CSM is thus
supported across gender, age groups, and combinations, as
well as the invariance of the latent variance–covariance
matrix. The results also suggest the presence of latent mean
differences, particularly in the combined model (Table 4).
Although the four groups do not differ on the Diurnal
Preference G-factor, older females tend to present a more
Table 4. Latent means comparison between groups formed on

Latent variables Younger Females

G-Factor (Diurnal Preference) .00
S-Factor 1 (Morning Affect) .00
S-Factor 2 (Time of Rising) .00
S-Factor 3 (Bedtime Preference) .00

G-Factor (Diurnal Preference) -.12 (.13)
S-Factor 1 (Morning Affect) .04 (.14)
S-Factor 2 (Time of Rising) -.45 (.17)
S-Factor 3 (Bedtime Preference) .94 (.14)

G-Factor (Diurnal Preference) -.14 (.09)
S-Factor 1 (Morning Affect) -.22 (.10)
S-Factor 2 (Time of Rising) .01 (.12)
S-Factor 3 (Bedtime Preference) -.05 (.11)

G-Factor (Diurnal Preference) -.18 (.11)
S-Factor 1 (Morning Affect) -.15 (.11)
S-Factor 2 (Time of Rising) -.58 (.13)
S-Factor 3 (Bedtime Preference) .57 (.12)

Notes: Latent means are reported, with standard errors in paren
table, the latent means are fixed to zero in one referent group for
nificance) estimated in the other groups reflect deviations from t
Factor: Global factor from a bifactor model; S-Factor: Specific f

Int. J. Methods Psychiatr. Res. 25(4): 277–288 (2016). DOI: 10.100
Copyright © 2015 John Wiley & Sons, Ltd.
positive Morning Affect than younger females, and males
tend to prefer an earlier Time of Rising than females.
Although this S-factor presents a lower level of specificity,
the fact that these comparisons are based on latent means
indicates that they are perfectly reliable. Finally, the
results show that men have a later Bedtime Preference than
females, but that older males prefer getting into bed
earlier than younger males.
Discussion

In psychiatric, epidemiological and biomedical research, the
factor validity of psychiatric instruments is typically assessed
using first-order or higher-order CFA or EFA.We argued that
bifactor models provide a more flexible, realistic, and mean-
ingful representation of the data whenever these dimensions
are assumed to reflect a global underlying construct. We also
discussed how the assessment of conceptually-adjacent
dimensions may lead to psychometric complexity due to
the unrealism of the expectation that indicators should
provide a perfect reflection of a single construct. Rather,
many indicators correspond to more than one source of
true score variance, leading them to present significant
associations with more than one construct. We argued
that the first source of construct-relevant psychometric
the basis of gender and age

Younger Males Older Females Older Males

.12 (.13) .14 (.09) .18 (.11)
-.04 (.14) .22 (.10) .15 (.11)
.45 (.17) -.00 (.12) .57 (.13)
-.94 (.14) .05 (.11) -.57 (.12)

.00 .02 (.13) .06 (.11)

.00 .27 (.14) .19 (.13)

.00 -.45 (.17) .12 (.14)

.00 .98 (.14) .37 (.13)

-.02 (.13) .00 .04 (.10)
-.27 (.14) .00 -.07 (.11)
.46 (.17) .00 .58 (.13)
-.98 (.14) .00 -.61 (.12)

-.06 (.11) -.04 (.10) .00
-.19 (.13) .07 (.11) .00
-.12 (.14) -.58 (.13) .00
-.37 (.13) .61 (.12) .00

theses, significant differences are in bold (p ≤ 0.05); In this
identification purposes, and the latent means (and their sig-
his referent groups expressed in standard deviation units; G-
actor from a bifactor model.
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multidimensionality naturally calls for bifactor models
(Reise, 2012), whereas the second source rather calls for
ESEM (Marsh et al., 2014). Finally, B-ESEM appears to
be preferable when both sources of construct-relevant
psychometric multidimensionality are present (Morin
et al., in press-a). More importantly, the failure to prop-
erly consider these sources of construct-relevant multidi-
mensionality might induce potentially severe biases in
terms of both assessment and prediction (Marsh et al.,
2013, 2014; Murray and Johnson, 2013; Schmitt and Sass,
2011).

This manuscript presented this overarching B-ESEM
framework of broad relevance to psychiatric, epidemiolog-
ical and biomedical research. The implementation of this
framework was illustrated while using a WLSMV estima-
tor allowing for a proper representation of the ordered-
categorical nature of response scales frequently used in
psychiatric diagnostic ratings.

The application of this framework starts with a compar-
ison of ICM-CFA and ESEM to test for the presence of
multidimensionality due to conceptually-adjacent constructs.
Because bifactor models tend to absorb unmodelled cross-
loadings through inflated global factors, it is critical to start
with a comparison of ICM-CFA and ESEM. In this compar-
ison, observing substantially reduced factor correlations,
better fit indices, substantive meaningfulness, and small or
easy to explain cross-loadings argues in favour of ESEM
(Marsh et al., 2013, 2014; Morin et al., 2013, in press-a).
In particular, the observation of multiple cross-loadings of
a reasonable magnitude (≥0.10 or even≥ 0.20) in the ESEM
solution is particularly important and suggests that a global
construct might be present in the data.

As long as there are reasons to suspect that a global
construct might be present, the second step is to test this
possibility by comparing ICM-CFA and B-CFA. Over
and above the observation of better-fit indices associated
with B-CFA, a critical element is the presence of a well-
defined G-factor. Whenever this is the case, a bifactor
representation of the data appears justified. Although it
is not critical for all S-factors to be equally well-defined
– S-factors may sometimes be included to control for
residual specificities shared among subsets of indicators over
and above their association with the G-factor – a true
bifactor representation should typically result in at least
some well-defined S-factors. Otherwise, a single-factor
model should be seriously considered. Undefined S-
factors should simply not be interpreted as having a sub-
stantive meaning.

When both sources of construct-relevant psychometric
multidimensionality appear to be present based on sub-
stantive expectations and the results from the previous
Int. J. Met
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steps, a B-ESEM representation should be pursued. The
adequacy of this representation would be supported by
the observation of: (a) improved goodness-of-fit indices;
(b) a well-defined global factor; (c) relatively small cross-
loadings, ideally smaller than those associated with the
ESEM model. Although our results supported a B-ESEM
representation, we do not claim that this framework should
be blindly applied to all measures, or that B-ESEM will
always prove superior. As in any statistical analyses, there
is a need to combine substantive theory, expectations,
common-sense, and proper statistics in order to achieve
an adequate representation of the data (Morin et al., in
press-a). However, we expect that the B-ESEM combina-
tion may prove to be relevant for a substantial number of
applications using complex multidimensional measures.
It is thus our recommendation that the sequential process
described here (i.e. contrasting ICM-CFA versus ESEM,
ICM-CFA versus B-CFA, and then all of these models
versus B-ESEM) should be routinely applied to all studies
of any complex instruments.

The framework described here relies on variable-
centred analyses, providing results reflecting a synthesis of
the relations observed in the total sample. In contrast,
person-centred methods aim to identify subgroups of
participants (i.e. profiles), which qualitatively and quantita-
tively differ from one another on a configuration of
indicators (Morin and Marsh, 2015). Hybrid approaches
provide a way to represent similar forms of construct-
relevant multidimensionality through the estimation of a
variable-centred factor (reflecting a global tendency shared
among indicators) and person-centred profiles (reflecting
specific areas of strength and weaknesses over and above this
global tendency) from the same set of indicators (Morin
and Marsh, 2015). Importantly, this hybrid framework
can be used to conduct even more refined explorations
of the underlying structure (categorical, continuous,
ordinal, etc.) and dimensionality of psychiatric constructs
(for details, see Clark et al., 2013; Masyn et al., 2010).
However, this approach requires the estimation of complex
and computer-intensive models with a known tendency to
converge on improper solutions or not to converge at all.
For this reason, most applications of this hybrid framework
uses scale scores (i.e. the sum/average of items used to assess
a specific dimension), or factor scores from preliminary
measurement models (e.g. Morin and Marsh, 2015) as indi-
cators. Estimated in this manner, hybrid models thus
assume that these scale or factor scores provide a proper
synthesis of the underlying structure of participants’
responses. In this context, the B-ESEM framework pre-
sented here appears to represent a critical first step in the ap-
plication of these potentially richer hybrid methodologies.
hods Psychiatr. Res. 25(4): 277–288 (2016). DOI: 10.1002/mpr
Copyright © 2015 John Wiley & Sons, Ltd.
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Future statistical research would do well to examine more
attentively the possible impact of misspecifying the factor
Int. J. Methods Psychiatr. Res. 25(4): 277–288 (2016). DOI: 10.100
Copyright © 2015 John Wiley & Sons, Ltd.
structure of an instrument when scale/factor scores from
this instrument are used in person-centred applications.
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