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Abstract

Immunotherapy is an innovative treatment approach that stimulates a patient’s immune system to 

fight cancer. It demonstrates characteristics distinct from conventional chemotherapy and stands to 

revolutionize cancer treatment. We propose a Bayesian phase I/II dosefinding design that 

incorporates the unique features of immunotherapy by simultaneously considering three outcomes: 

immune response, toxicity and efficacy. The objective is to identify the biologically optimal dose, 

defined as the dose with the highest desirability in the risk-benefit tradeoff. An Emax model is 

utilized to describe the marginal distribution of the immune response. Conditional on the immune 

response, we jointly model toxicity and efficacy using a latent variable approach. Using the 

accumulating data, we adaptively randomize patients to experimental doses based on the 

continuously updated model estimates. A simulation study shows that our proposed design has 

good operating characteristics in terms of selecting the target dose and allocating patients to the 

target dose.
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1 Introduction

Cancer immunotherapy — treatments that harness and enhance the innate power of the 

immune system to fight cancer — represents the most promising new cancer treatment 

approach since the first chemotherapies were developed in the late 1940s (Couzin-Frankel, 

2013; Topalian, Weiner, and Pardoll, 2011; Makkouk and Weiner, 2015). Immunotherapeutic 

approaches include the use of antitumor monoclonal antibodies, cancer vaccines, and 

nonspecific immunotherapies. These approaches stand to revolutionize the treatment of 

almost every kind of cancer (Couzin-Frankel, 2013; Kaufman, 2015).
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Because of a vastly different functional mechanism, immunotherapy behaves differently 

from conventional chemotherapies. For conventional chemotherapies, it is reasonable to 

assume that efficacy and toxicity monotonically increase with the dose; however, this 

assumption may not hold for immunotherapy agents (IAs). As a result, traditional dose-

finding designs that aim to identify the maximum tolerated dose (MTD) are not suitable for 

immunotherapy. To achieve optimal treatment effects, IAs are not necessarily administered 

at the MTD. In addition, immunotherapy often involves multiple endpoints (Topalian, 

Weiner, and Pardoll, 2011; Brody et al., 2011; Cha and Fong, 2011). Besides toxicity and 

efficacy (i.e., tumor response) outcomes, immune response is a unique and important 

outcome that is essential for the assessment of immunotherapy. Immune response measures 

the biological efficacy of IAs in activating the immune system, manifested by the 

proliferation of CD8+ T-cells, CD4+ T-cells and various cytokines (e.g., IFN-α, IL-1β, IL-6, 

IL-8). As immunotherapy achieves its therapeutic effect by activating the immune system, it 

is critical to incorporate the immune response in the trial design and leverage its close 

relationship with clinical endpoints (i.e., efficacy and toxicity) for efficient and practical 

decision making. Pardoll (2012) described several studies that showed that post-treatment 

immune responses correlate with clinical outcomes.

Our research is motivated by an immunotherapy trial that aims to find the optimal dose of a 

novel anti-programmed death 1 (PD-1) immune checkpoint inhibitor for treating patients 

with recurrent, chemoresistant ovarian cancer. The PD-1 pathway is a negative feedback 

system that represses Th1 cytotoxic immune responses. This pathway is up-regulated in 

many tumors and in their surrounding microenvironment. Blocking this pathway with 

antibodies to PD-1 or its ligands has led to remarkable clinical responses in patients with 

many different types of cancer, including melanomas and non-small-cell lung cancer. Five 

dose levels (0.1, 0.3, 0.5, 0.7, 0.9 mg/kg) of the inhibitor will be investigated and the 

prepared doses will be administered by slow injection over 10 minutes. A maximum of 60 

patients will be accrued to the trial. Patient efficacy response is characterized as complete 

response (CR), partial response (PR), stable disease (SD), or progressive disease (PD) based 

on the Response Evaluation Criteria in Solid Tumors. CR is defined as the disappearance of 

all target lesions. PR is defined as a decrease of at least 30% in the sum of the diameters of 

target lesions, taking as a reference the baseline sum of the diameters. PD is defined as an 

increase of at least 20% in the sum of the diameters of target lesions, taking as a reference 

the smallest sum measured during the study. SD is defined as having neither a sufficient 

decrease in lesion sizes to qualify as PR, nor sufficient increase to qualify as PD. The 

immune response of primary interest is the number of CD8+ T-cells measured in the tumor 

biopsy at the end of the first cycle (28 days) of treatment. Previous studies suggest that the 

immune response is expected to be associated with the efficacy of the treatment (Sato, et al., 

2005; Ercolini, et al., 2005; Hamanishi, et al., 2007; Bachmayr-Heyda, et al., 2013). Dose-

limiting toxicity is defined as grade 3 or higher toxicity as scored using the NCI Common 

Toxicity Criteria for Adverse Events.

We developed a novel phase I/II trial design to find the biologically optimal dose (BOD) for 

immunotherapy, where BOD is defined as the dose yielding the highest risk-benefit tradeoff, 

which is formally defined in Section 2.4. In the design, we simultaneously consider three 

endpoints, including immune response, tumor response and toxicity. To capture the distinct 
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features and relationships among the three endpoints, we model the marginal distribution of 

the immune response using the Emax model; and conditional on the immune response, we 

model the joint distribution of the binary toxicity outcome and the ordinal efficacy outcome 

through a latent variable approach. We elicit the numerical utility to quantify the desirability 

of the dose based on the risk-benefit tradeoff. During the trial, based on the accumulating 

data, we update the model estimates and assign a new patient to the dose with the highest 

desirability through adaptive randomization.

There is a rich body of literature on phase I/II trial designs that integrate the conventional 

phase I and II segments of clinical drug development trials by simultaneously considering 

toxicity and efficacy. Thall and Russell (1998) developed a phase I/II trial design that 

characterizes patient outcomes using a trinary ordinal variable to account for both toxicity 

and efficacy. Gooley et al. (1994) discussed a phase I/II design in bone marrow 

transplantation trials to determine a dose that balances the risks of two complications. Braun 

(2002) proposed the bivariate continual reassessment method, in which the MTD is based 

jointly on toxicity and disease progression. Thall and Cook (2004) described a Bayesian 

design based on tradeoffs between toxicity and efficacy probabilities. Yin et al. (2006) 

proposed a Bayesian phase I/II design based on the odds ratio of efficacy and toxicity. Yuan 

and Yin (2009, 2011) developed a time-to-event phase I/II design to accommodate late-onset 

toxicity and efficacy, and a Bayesian phase I/II design for drug-combination trials. Jin et al. 

(2014) proposed a general strategy to handle delayed toxicity and efficacy outcomes for 

phase I/II trials using Bayesian data augmentation. Guo and Yuan (2015) proposed a phase 

I/II design that accommodates informative dropouts. Liu and Johnson (2016) developed a 

phase I/II design without assuming parametric dose-toxicity and dose-efficacy curves. 

Comprehensive coverage of phase I/II designs is provided in the book of Yuan, Nguyen and 

Thall (2016). To the best of our knowledge, this article provides the first phase I/II design for 

immunotherapy trials that jointly accounts for immune response, toxicity, and efficacy.

The remainder of this article is organized as follows. In Section 2, we present the joint 

probability model for the continuous immune response, binary toxicity and ordinal efficacy 

outcomes, and the dose-finding algorithm. In Section 3, we examine the operating 

characteristics of the proposed design through simulation studies. We provide concluding 

remarks in Section 4.

2 Method

Probability Models

Consider a phase I-II trial with J prespecified doses, d < · · · < dj, under investigation. Let YT 

denote the binary toxicity outcome, with YT = 1 indicating toxicity (or severe adverse 

events), and = 0 otherwise. Let YE denote the tumor response, which is often classified as 

CR, PR, SD, or PD. Although CR and PR are generally more desirable, in immunotherapy, 

SD is often regarded as a positive response because some immunotherapies prolong survival 

by achieving durable SD without notable tumor shrinkage. Thus, we define YE as a trinary 

ordinal outcome, with YE = 0,1, and 2 indicating PD, SD and PR/CR, respectively. As 

described previously, besides YT and YE, an essential endpoint for immunotherapy is 

immune response. Let 17 denote a measure of the immune response (e.g., the count of CD8+ 

Liu et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2019 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



T-cells or the concentration of cytokine), which takes a real value after appropriate 

transformation. The outcome used for dose finding in our approach is a trinary vector Y = 

(YI,YT,YE). In contrast, most existing phase I/II designs are based on only (YT,YE). Thall et 

al. (2014) proposed a phase I/II design to optimize the sedative dose given to preterm infants 

using three clinical outcomes.

Adaptive decisions in the trial (e.g., dose assignment and selection) are based on the 

behavior of Y as a function of dose d. To reflect the fact that in immunotherapy, clinical 

responses rely on the activation of the immune system, we factorize the joint distribution 

[Yi,YT,YE | d] into the product of the marginal distribution of Yi and the conditional 

distributions of YT and YE as follows,

YI, YT , YE d, θ = YI d, θ1 YT , YE d, YI, θ2 ,

where θ is the vector of the parameters, and θ1 and θ2 are subvectors of θ. For notational 

brevity, we suppress arguments θ1 and θ2 when it will not cause confusion.

We model the marginal distribution [YI | d] using an Emax model,

YI|d = α0 +
α1d

α3

α2
α3 + d

α3
+ ε,

where a0 is the baseline immune activity in the absence of the IA; α1 is the maximum 

immune activity that is possibly achieved by the IA above the baseline activity, often known 

as Emax; α2 is the dose that produces half of the maximum immune activity (i.e., ED50); α3 

is the Hill factor that controls the steepness of the dose-response curve; and ε is the random 

error, which is normally distributed with a mean of 0 and variance σ2, i.e., ε ~ N(0, σ2).

Modeling the joint distribution of [YT,YE | d,YI] is more complicated because YT and YE 

are different types of variables, i.e., YT is a binary variable whereas YE is an ordinal 

variable, and they are correlated. To this end, we take the latent variable approach. 

Specifically, let ZT and ZE denote two continuous latent variables that are related to YT and 

YE, respectively, as follows,

YT =
0 if ZT < ζ1
1 if ZT ≥ ζ1

and YE =

0 if ZE < ξ1
1 if ξ1 ≤ ZE < ξ2
2 if ZE ≥ ξ2

,

where ζ1, ξ1 and ξ2 are unknown cutpoints. ZT and ZE can be interpreted as the patient’s 

latent traits, and YT and YE are the clinical manifestations of unobserved ZT and ZE. When 

ZT and ZE pass certain thresholds, certain clinical outcomes (e. g., toxicity, CR/PR) are 

observed. We assume that [ZT, ZE| d,YI] follows a bivariate normal distribution
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ZT
ZE

YI, d ∼ N2
μT YI, d

μE YI, d
,

σ11 σ12
σ12 σ22

,

Where μK(YI, d) = E(Zk|YI, d), k = E or T, is the conditional mean of Zk.

Specification of μT(YI, d) and μΕ(YI, d) requires some consideration. Immune activity is a 

normal biological phenomenon consistently occurring in the human body; thus, it is 

typically expected that a low or normal level of immune activity will not cause any immune-

related toxicity and that severe immune-related toxicity will occur only when the therapy-

induced immune response exceeds a certain threshold. To account for such a threshold 

effect, we model the relationship between mT (YI, d) and YI and d as

μT YI, d = β0 + β1d + I YI > β3 β2YI,

where β0,β1,β2 and β3 are unknown parameters, and the indicator function I(YI > β3) = 1 

when YI > β3, and 0 otherwise. Under this model, YI induces toxicity only when it passes 

threshold β3. Because we do not expect the immune response to be the sole cause of toxicity, 

in (5), we include dose d as a covariate to capture other possible treatment-related toxicity.

To model the mean structure μΕ(YI, d) for efficacy, we assume a quadratic model,

μE YI, d = γ0 + γ1YI + γ2YI
2,

where the quadratic term is used to accommodate the possibility that efficacy may not 

monotonically increase with the immune response. In practice, μΕ(YI,d) may first increase 

with YI and then plateau after YI reaches a certain value. Although the quadratic model 

cannot directly take an increasing-then-plateau shape, it works reasonably well in that case 

in our numerical study (i.e., scenarios 6 and 7 in Table 1). This may be because our goal is 

not to accurately estimate the whole immune-response curve, but to use (6) as a “working” 

model to obtain a reasonable local fit to guide the dose escalation and deescalation. As the 

quadratic model can provide good approximation to the plateau (e.g., by taking a slowly 

increasing shape) locally around the current dose, it leads to appropriate dose transition and 

selection. In addition, as the Emax model (2) allows YI to plateau with the dose d, the 

efficacy model (6) indeed accommodates the case that efficacy YE plateaus with d.

In equation (6), we assume that conditional on YI, YE is independent of dose d to reflect the 

consideration that the treatment effect of immunotherapy is mostly mediated by the immune 

response. For cases in which such an assumption may not be true, we can add d as a 

covariate in the model. Because latent variables ZT and ZE are never observed, to identify 

the model, we set ζ1 = ξι = 0, σ11 = 𝜎22 = 1 and accordingly constrain 0 < σ12 < 1 in (4).
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Prior Specification

The prior specification of the parameters in [YI | d] is facilitated by their intuitive 

interpretations described previously. We elicit prior estimates of (α0,1,α2,α3) from 

clinicians, denoted as α j, j = 0, · · ·, 3, and assign αj an independent Gamma distribution 

with mean α j and variance T j
2. We set Tj at a relatively large value (e.g., 4α j) to obtain a 

vague prior. Because of taking a vague prior approach, we do not require the prior estimate 

α j to be accurately specified. The primary objective of eliciting α j is to obtain a ballpark 

estimate of these parameters so that the prior is appropriately centered to avoid extreme 

(e.g., very small or large) estimates that may lead to inappropriate actions (e.g., terminate the 

trial too early or escalate the dose too quickly) at the beginning of the trial when data are 

sparse. As the trial proceeds, the accumulating data will dominate the vague prior and guide 

dose transition. The simulation described later shows that our design is not sensitive to the 

specification of α j. We assign σ2 a vague inverse Gamma prior distribution, e.g., σ2 ~ 

IG(0.1, 0.1).

To specify the prior distribution for the parameters that appear in [YT,YE| d,YI], we take the 

regularized vague prior approach (Gelman et al., 2008; Guo and Yuan, 2017). Conventional 

noninformative priors with huge variances work well for moderate and large samples, but 

are often problematic for small samples, such as in early phase trials, causing numerical 

instability and pathological posterior inference (Yuan, Nguyen and Thall, 2016). To obtain 

reliable inference, the prior should be vague enough to cover the plausible values of the 

parameter, but not too vague to cause stability issues. Gelman et al. (2008) proposed 

regularizing the prior using the fact that in practice, a typical change in an input variable is 

unlikely to lead to a dramatic change in the probability of the response variable. In our case, 

YT and YE marginally follow probit models after integrating out latent variables ZT and ZE. 

A change of 2.5 on the probit scale moves the probability of the outcome variable from 0.01 

to 0.5 or from 0.5 to 0.99, which is considered unlikely for a typical change in a covariate. 

Therefore, we scale the input variables (i.e., d and 17) to have mean 0 and standard deviation 

0.5, and assign each of the regression coefficients (i.e., β1,2,γ1,γ2) an independent normal 

prior N(0,1.252), such that a change in any of these covariates from one standard deviation 

below the mean to one standard deviation above the mean most likely results in a difference 

of less than 2.5 on the probit scale. The same normal prior is used for the intercepts β0 and 

γ0, under which a two-standard-deviation change in these parameters moves the outcome 

probability from 1% and 99% when covariates are set at their mean values. As toxicity is 

typically non-decreasing with the dose and immune response, it might seem more sensible to 

use a positive-valued prior, e.g., a gamma or truncated normal prior, to restrict the values of 

β1 and β2 to be positive. However, when done, this actually hurts the performance of the 

design, especially for the immunotherapy agents for which toxicity increases slowly with the 

dose. For these agents, the true values of β1 and β2 are close to 0. Because the gamma or 

truncated normal prior has most of its mass spanning the positive real line, using them tends 

to inflate the estimates of β1 and β2, especially at the beginning of the trial when data are 

sparse, which hinders dose escalation. In the case that toxicity increases rapidly with the 

dose, using the gamma or truncated normal prior does not have this issue because the true 
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values of β1 and β2 are away from 0. The simulation results comparing the performance of 

the design under different priors are provided in the Supplementary Materials.

We assign β3 (i.e., the threshold of immune response for inducing toxicity) a uniform prior 

distribution β3 ~ Unif (a1, a2), with a1 < α0 and a2 > α0 + α1, to cover the plausible range of 

immune response. We assign the correlation parameter σ12 a uniform prior Unif (0,1), and 

latent variable cutoff parameter ξ2 ~ Unif (0, b), where b is chosen to cover the practical 

range of Pr(YE < 2) (i.e., the probability of PD and SD).

Likelihood and Posterior

Let N denote the maximum trial sample size. For the ith patient, denote the observed 

outcome by yi = (yi,i, yT,i, yE,i) and the assigned dose by d[i], where i = 1,..., N. Integrating 

over (ZT,i, ZE,i) and defining (ζ0 = ξ0 = —œ, ζ2 = ξ3 = ∞, the likelihood for the 

observables of the ith patient is given by

L yi|d i , θ = f yI, i|d i , θ1 Pr(YT , i = yT , i, YE, i = yE, i|yI, i, d i , θ2)

= f yI, i|d i , θ1 Pr(ζyT , i
≤ ZT , i < ζyT , i + 1, ξy

E, i
≤ ZE, i < ξy

E, i
+ 1|yI, i, d i ,θ2)

= f yI, i|d i , θ1 ∫ζyT , i

ζyT , i + 1
∫ξy

E, i

ξy
E, i

+ 1
f ZT , i, ZE, i|YI, i, d i , θ2 dZT , idZE, i

Let n = 1, …, N denote an interim sample size when an adaptive decision is to be made 

during the trial, and 𝒟n = (y1…, yn  denote the observed data from the first n patients. The 

likelihood for the first n patients in the trial is L 𝒟n θ = ∏i = 1
n L yi d i , θ .

Let (θ) denote the joint prior distribution of θ. The joint posterior distribution based on the 

data from the first n patients is p(θ 𝒟n) ∝ L(𝒟n θ(p(θ). We sample from this posterior 

distribution using the Markov chain Monte Carlo algorithm with Gibbs sampler (Robert and 

Casella, 2004).

Desirability of Dose

For each individual endpoint YI, YT or YE, the evaluation of the desirability of a dose is 

straightfoward. We prefer a dose that has low toxicity, strong immune response and high 

objective response. However, when we consider (YI,YT,YE) simultaneously, the evaluation 

of the desirability of a dose becomes more complicated. We need to consider the risk-benefit 

tradeoffs between the undesirable and desirable clinical outcomes, as physicians routinely do 

in almost all medical decisions when selecting a treatment for a patient. A convenient tool to 

formalize such a process is to use a utility function U(YI,YT,YE) to map the 

multidimensional outcomes into a single index to measure the desirability of a dose in terms 
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of the risk-benefit tradeoffs. The utility should be elicited from physicians and/or patients to 

reflect medical practice. This approach has been used in previous trial designs (Houede, et 

al., 2010; Thall, et al., 2013; Thall, et al., 2014; Yuan, Nguyen and Thall, 2016; Guo and 

Yuan, 2017; Murray, et al., 2017).

Based on our experience, a convenient way of eliciting U(YI,YT,YE) that works well in 

practice is as follows: we first dichotomize the immune response YI as desirable (YI = 1) or 

undesirable (YI = 0) based on a cutoff Cr specified by clinicians (i.e., YI = 1 if YI ≥ CI, and 0 

otherwise), and fix the score of the most desirable outcome (i.e., desirable immune response, 

no toxicity and CR/PR) asU(YI = 1, YT = 0, YE = 2) = 100 and the least desirable outcome 

(i.e., undesirable immune response, toxicity and PD) as U(YI = 0, YT = 1,YE = 0) = 0. Using 

these two boundary cases as the reference, we then elicit the scores for other possible 

outcomes from clinicians, which must be located between 0 and 100. An example of elicited 

utility is given in Table 1. Note that the purpose of dichotomizing Yr here is to simplify the 

elicitation of utilities from clinicians. Our model and inference are based on the original 

scale of YI. If desirable, YI can be categorized into more than two levels, which allows us to 

account for the desirability of YI at a finer scale, but at the cost of slightly increasing the 

logistic burden for utility elicitation. For example, if we categorize Y1 into three levels (e.g., 

low, median, or high), a total of 18 utility values are required to be elicited from clinicians.

Although YE and YI are generally positively correlated, there are several benefits to 

considering both of them when constructing the utility. First, immunotherapy achieves its 

therapeutic effect of killing cancer cells by activating the immune response, and the tumor 

response YE (i.e., a short-term endpoint) may not be a perfect surrogate of the longterm 

treatment effect of the immunotherapy, e.g., progression-free survival (PFS) or overall 

survival time. Thus, when two doses have similar YE and YI, we often prefer the dose that 

has higher potency to activate the immune response, which is potentially translated into 

better long-term treatment efficacy. Second, using YE and YI simultaneously improves the 

power to identify the optimal dose. For example, given two doses with (Pr(YE > 0) = 0.3, 

E(YI) = 20) and (Pr(YE > 0) = 0.4, E(YI) = 60), respectively, the second dose is more likely 

to be identified as more desirable when we use (YI, YE) rather than YE only, because the 

difference in the value of YI is much larger than that of YE between the two doses.

Constructing the utility requires close collaboration between statisticians and clinicians, and 

should be customized for each trial to best reflect the clinical needs and practice. For 

example, if YE is the long-term efficacy endpoint of interest (e.g., PFS) or Yj is believed to 

have little impact on the clinical desirability of the dose (after considering YE), we may 

prefer to define the utility using only (YE,YT), while ignoring YI. Although the elicitation of 

utility seems rather involved, in our experience, the process actually is quite natural and 

straightforward. For many trials, this may be done by simply explaining what the utilities 

represent to the principal investigator (PI) during the design process, and asking the PI to 

specify all necessary values of U(YI,YT,YE) after fixing the scores for the best and worst 

elementary outcomes as described previously. After the initial values of utility are specified, 

comparing outcomes that have the same or similar numerical utilities often motivates the PI 

to modify the initial specification. In our experience, clinicians quickly understand what the 
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utilities mean, since they reflect actual clinical practice. After completing this process and 

simulating the trial design, it then may be examined by the PI. In some cases, the simulation 

results may motivate slight modification of some of the numerical utility values, although 

such modification typically has little or no effect on the design’s operating characteristics. 

One possible criticism for using the utility values is that they require subjective input. 

However, we are inclined to view this as a strength rather than a weakness. This is because 

the utilities must be elicited from the physicians planning the trial, and thus their numerical 

values are based on the physician’s experience in treating the disease and observing the good 

and bad effects that the treatment has on the patients. The process of specifying the utility 

requires physicians to carefully consider the potential risks and benefits of the treatment that 

underlie their clinical decision making in a more formal way and incorporate that into the 

trial. In addition, our simulation study and previous studies show that the design is generally 

not sensitive to the numerical values of the utility as long as it reflects a similar trend.

For a given dose d, its true utility is given by

E U d θ = ∫ U YI, YT , YE f YI, YT , YE d, θ dYIdYTdYE .

Since θ is not known, the utility of dose d must be estimated. Given interim data Dn 

collected from the first n patients at a decision-making point in the trial, the utility of dose d 
is estimated by its posterior mean

E U d 𝒟n = ∫ E U d θ p θ 𝒟n dθ .

This posterior mean utility will be used to measure the desirability of a dose and guide dose 

escalation and selection.

Let πT = Pr(YT = 1|d) denote the toxicity rate and nE = Pr(YE > 0|d) denote the response rate 

of SD/PR/CR. Let ϕT denote the upper limit of the toxicity rate, and ϕΕ denote the lower 

limit of the response rate, specified by physicians. We define the BOD as the dose with the 

highest utility while satisfying πT < ϕT and πΕ > ϕΕ.

Dose Admissibility Criteria

A practical issue is that a dose that is “optimal” in terms of the utility alone may be 

unacceptable in terms of either safety or the response rate. To ensure that any administered 

dose has both an acceptably high success rate and an acceptably low adverse event rate, 

based on interim data Dn, we define a dose d as admissible if it satisfies both the safety 

requirement

Pr πT < ϕT 𝒟n > CT

and the efficacy requirement
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Pr πE > ϕE 𝒟n > CE, ,

where CT and CE are prespecified toxicity and efficacy cutoffs. We denote the set of 

admissible doses by An. Because the objective of the admissible rules (9) and (10) is to rule 

out doses that are excessively toxic or inefficacious, in practice we should set CT and CE at 

small values, such as CT = CE = 0.05, which could be further calibrated through simulation. 

To see this point, it is useful to state the two rules in the following equivalent forms: a dose 

is unacceptable or inadmissible if Pr(πT > ϕT|Dn) > 1 — CT = 0.95 or Ρr(πΕ < ϕΕ|Dn) > 1 — 

CE = 0.95. This says that the dose is unacceptable if it is either very likely to be inefficacious 

or very likely to be too toxic. If we set CT and CE at large values, then the design is very 

likely to stop the trial early with all doses declared inadmissible due to the large estimation 

uncertainty at the beginning of the trial; see page 62 of the book by Yuan, Nguyen and Thall 

(2016) for more discussion on this issue. In the Supplementary Materials, we report the 

results from a simulation study we conducted that confirmed this issue.

Dose-finding Algorithm

Based on the above considerations, our dose-finding algorithm is described formally as 

follows. Assume that patients are treated in cohorts of size m with the maximum sample size 

of N = m x R. We allow m =1 such that patients are treated one by one. The first cohort of 

patients is treated at the lowest dose d1. Assume that r cohort(s) of patients have been 

enrolled in the trial, where r =1, · · ·, R — 1. Let dh denote the current highest tried dose, Ces 

denote the probability for escalation based on toxicity, and n = m x r. To assign a dose to the 

(r + 1)th cohort of patients:

1. If the posterior probability of toxicity at dh satisfies Pr(πT(dh) < ϕT|Dn) > Ces and 

dh ≠ dJ, then we treat the (r + 1)th cohort of patients at dh+1. In other words, if 

the current data show that the highest tried dose is safe, we want to continue to 

explore the dose space by treating the next cohort of patients at the next higher 

new dose.

2. Otherwise, we identify the admissible set An and adaptively randomize the (r 
+ 1)th patient or cohort of patients to dose dj ∈ An with probability

ψ j, n = Pr[U d j = max{U(d j′), j′ ∈ 𝒜n} 𝒟n],

which is the posterior probability that dose j is the optimal dose having the highest posterior 

mean utility. We restrict the randomization in admissible dose set An to avoid treating 

patients at doses that are futile or overly toxic. If An is empty, the trial is terminated.

1. Once the maximum sample size of N is exhausted, the dose in AN with the 

largest posterior mean utility E(U(d)|DN) is recommended.

In step 2, to assign a patient to a dose, we use adaptive randomization rather than the greedy 

algorithm that always assigns the patient to the dose with the currently highest estimate of 

utility. This is because the latter method tends to become stuck at the local optima and leads 
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to poor precision for identifying the BOD. Adaptive randomization provides a coherent 

mechanism to avoid that issue and improve the operating characteristics of the design (Yuan, 

Nguyen, and Thall, 2016).

3 Simulation

We assessed the performance of our proposed design using simulation studies. Taking the 

setting of the motivating trial, we considered five doses (0.1, 0.3, 0.5, 0.7, 0.9), with a 

maximum sample size of 60 in a cohort size of 3. The toxicity upper bound ϕT= 0.3 and 

efficacy lower bound ϕE= 0.3. Rescaled by the prior estimate of the baseline immune 

response, we set α0 = 1, α1 = 5, α2 = 0.5 and α3 = 2 based on the prior estimates of Emax, 

ED50, and the steepness of the dose-response relationship elicited from clinicians. We set 

T j = 4α j to obtain vague priors forαj, j = 0, 3, so that the prior standard deviation was 4 

times the prior mean. Since the estimates of the baseline and the maximum immune 

response were α0 = 1 α0 + α1 = 6, respectively, we assigned β3 (i.e., the threshold of immune 

response for inducing toxicity) a uniform prior β3 ~ Unif (0, 9) to cover the whole plausible 

range, and ξ2 a uniform prior Unif (0, 6) to cover a reasonable range of Pr(YE < 2) that may 

be encountered in practice. For example, when Pr(YE = 0) = 0.1, the range for Pr(YE < 2) is 

(0.1, 0.999) under this prior. Calibrated by simulation, we took the probability cutoffs CT = 

CE = 0.05 for defining admissible doses and Ces = 0.5 for dose escalation. The utility elicited 

from physicians is displayed in Table 1. The same prior distribution, probability cutoffs, and 

utility were used throughout the simulation. We designed 8 scenarios that varied in the 

number of target doses, location of the target doses, as well as the patterns of toxicity, 

efficacy, and immune response (see Table 2). Figure 1 shows the true dose-response curves 

for immune response, toxicity and efficacy for these scenarios. Under each scenario, we 

simulated 1,000 trials.

We compared our design with a design that considers only efficacy and toxicity (denoted as 

the EffTox design), as in most existing phase I/II designs such as that of Thall and Cook 

(2004). To make the comparison more meaningful, we used the same toxicity and efficacy 

models as the proposed design, but with the immune response term dropped such that

μT d = β0 + β1d

μE d = γ0 + γ1d + γ2d2 .

The risk-benefit utility used in the EffTox design was obtained by averaging U(Yj,YT,YE) in 

Table 1 over Yj.

Table 2 summarizes the operating characteristics of our proposed design and the EffTox 

design. Scenarios 1 to 4 consider the case with one target dose and different shapes of dose- 

toxicity and dose-efficacy curves. In scenarios 1 and 2, the efficacy probabilities first 

increase and then decrease with the dose; in scenario 3, both toxicity and efficacy increase 
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with the dose; and in scenario 4, toxicity remains constant across the doses, and efficacy 

increases with the dose.

In scenario 1, the target dose is dose level 2. Dose level 1 has similar toxicity probability as 

dose level 2, but lower efficacy probabilities. By taking advantage of the immune response 

data, the proposed design has higher power to distinguish these two doses. The percentage of 

correct selection of the target dose under the proposed design is 12.8% higher than that 

under the EffTox design. The number of patients allocated to the target dose is similar 

between the two designs. In scenario 2, dose level 3 is the target dose that is safe and has the 

highest utility. Our proposed design correctly identified the target dose 73.6% of the time, 

and allocated the largest number of patients to the target dose (i.e., 14.6) among the 5 doses. 

In contrast, the EffTox design selected the target dose only 18.3% of the time because it 

ignored the immune response. Dose levels 2 and 3 have similar efficacy, but level 3 has a 

much higher immune response and thus is more desirable. Because of ignoring the immune 

response, the EffTox design failed to recognize that dose level 3 is better. For a similar 

reason, the proposed design also outperformed the EffTox design in scenario 3, under which 

the target dose is level 4. The percentage of correct selection of the target was 57.2% under 

the proposed design, and only 25.5% under the EffTox design. The proposed design also 

assigned more patients to the target dose. In scenario 4, the dose-toxicity curve is flat and the 

two designs performed comparably.

Scenarios 5 and 6 were designed to have two target doses. In scenario 5, efficacy first 

increases and then decreases, whereas in scenario 6, efficacy first increases then plateaus. In 

these two scenarios, the proposed design performed well, with the combined percentage of 

correct selection of the two target doses exceeding 85%. In contrast, the percentage of 

correct selection of the target doses under the EffTox design was 72.8% and 45%, 

respectively. Scenario 7 considers a special case in which five doses have the same toxicity 

and efficacy probabilities, but higher doses induce a stronger immune response and thus 

have higher utility or desirability. The target dose is level 5. The proposed design selected 

the target dose 67.5% of the time, whereas the EffTox design selected the target dose 34.7% 

of the time. In scenario 8, the toxicity is higher than the toxicity upper bound ϕE = 0.3 and 

the efficacy is lower than the efficacy lower bound ϕΕ = 0.3 at all dose levels. Across 1000 

simulations, the trial was terminated early 100% of the time under both designs.

3.1 Sensitivity Analyses

We carried out sensitivity analyses to assess the robustness of the performance of our 

proposed design by using 1) another set of utility values, and 2) a smaller sample size. 

Compared to the utility in Table 1, the new utility (see Table 3) assigns higher scores (i.e., 

less penalty) to YT = 1 (toxicity), that is, patients are willing to tolerate higher toxicity to 

attain higher efficacy. The simulation results (see Table 4) show that the proposed design 

performed well, with high percentages of correct selection of the target doses. When the 

maximum sample size dropped from 60 to 42, the performance of our design was slightly 

worse, as summarized in Table 5, but the selection percentage of the target dose was still the 

highest among all doses.

Liu et al. Page 12

J Am Stat Assoc. Author manuscript; available in PMC 2019 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our prior specification requires elicitation of prior estimates of άs from clinicians. Given the 

incipient stage of research in immunotherapy, these estimates may not be very reliable. To 

evaluate the robustness of our proposed design to different values of these prior estimates, 

we performed sensitivity analysis with two alternative prior estimates of α’s: 

α0, α1, α2, α3 = 2, 4, 0.4, 3  or α0, α1, α2, α3 = 1.5, 6, 0.6, 2.5 . As shown in Figure 2, 

the results are similar across different prior estimates of α′s, suggesting that our design is 

not sensitive to the prior estimates of α′s. Detailed results are provided in the 

Supplementary Materials.

Finally, we evaluated the sensitivity of the proposed design to different prior distributions. 

We made all the priors more non-informative. Specifically, for α′s, we set the prior standard 

deviation to five times the prior mean, i.e., T j = 5α j . To σ2, we assigned an inverse Gamma 

prior with parameters 0.01, i.e., σ2 ~ 1G(0.01,0.01). The regression coefficients β1,2, γ1, γ 2 

were assigned normal prior N(0, 2.52) so that the prior standard deviation was twice the 

previous value. The simulation results are very similar to the original results (see Figure 3), 

suggesting that our design is not sensitive to the prior distributions.

4 Discussion

We have proposed a Bayesian phase I/II clinical trial design for immunotherapy by 

simultaneously considering immune response, toxicity and efficacy. We use an Emax model 

for the marginal distribution of the immune response and a latent variable approach to model 

the joint distribution of the binary toxicity and ordinal efficacy outcomes conditional on the 

immune response. Based on these three outcomes, utility is used to quantify the desirability 

of the dose and make the decision of dose assignment and selection. Our simulation study 

shows that the proposed design has desirable operating characteristics.

In order to capture the important features of immune response, toxicity, and efficacy, and the 

interplay among the three endpoints, our model has a relatively large number of parameters. 

One concern may be that at the inception of the trial, data are sparse and the parameter 

estimates are highly variable and mainly driven by the prior. However, this does not cause 

issues because the number of investigational doses is typically small (e.g., < 8 doses) and 

our dose-finding algorithm does not allow for skipping untried doses for dose escalation. At 

the beginning of the trial when the parameter estimates are highly variable, the dose-finding 

algorithm acts somewhat “semi-randomly” by trying the doses sequentially from low to 

high, guided largely by the priors. Actually, in some anti-intuitive sense, such uncertainty 

and “randomness” are helpful because it provides the design freedom to move around and 

explore the dose space, and to avoid being stuck at a local dose. When the trial proceeds and 

data accumulate, we obtain more reliable estimates and the dose assignment becomes more 

stable and converges to the target dose. Therefore, as long as at the middle or late stage of 

the trial, we have adequate data to make reasonable estimates, we are likely to make the 

correct dose assignment and select the target dose at the end of the trial. In addition, the 

primary objective of the phase I/II trial is to identify the optimal dose among a set of 

prespecified doses, not to obtain accurate estimates. This also renders the design higher 
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tolerance to the variability of parameter estimates. As long as the method obtains the rank of 

estimated desirability correctly, it will correctly select the target dose.

In this article, ordinal tumor response is used as the efficacy endpoint. In some 

immunotherapy trials, the PFS time may be a more appropriate endpoint to quantify the 

therapeutic efficacy of the treatment. To accommodate these cases, we can model the joint 

distribution of the immune response, toxicity and PFS as follows: first model the marginal 

distribution of immune response using the Emax model; conditional on the immune 

response, model the conditional distribution of a binary (or ordinal) toxicity outcome using a 

logistic (or multinomial) model; and then conditional on both the immune response and 

toxicity, model the conditional distribution of PFS using a survival regression model, e.g., 

proportional hazards model (Cox, 1972).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Dose-response curves for the 8 scenarios in the simulation study.
The dotted, dashed, and solid lines are the toxicity (πt), efficacy (πE), and immune response 

(E(YI)) curves, respectively. Toxicity and efficacy are plotted against the left y-axis, and the 

immune response is plotted against the right y-axis. Target doses are indicated by circles.
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Figure 2: Sensitivity analysis with three different prior estimates of α′s in scenarios 1–4.
In each plot, at each dose level, the three bars from left to right correspond to the results with 

prior estimates α0, α1, α2, α3  = ( 1, 5, 0.5, 2), (2, 4, 0.4, 3), and (1.5, 6, 0.6, 2.5), 

respectively.
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Figure 3: Sensitivity analysis with two different prior distributions of model parameters under 
scenarios 1–4.
In each plot, at each dose level, the two bars represent the results under two different prior 

distributions.
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Table 1:

Utility based on toxicity, efficacy and immune response.

Toxicity Immune response

Efficacy

PD
(YE = 0)

SD
(YE = 1)

CR/PR
(YE = 2)

No (YT = 0) Desirable (ỸI = 1) 5 70 100

Undesirable (ỸI = 0) 0 50 80

Yes (Yt =1) Desirable (ỸI = 1) 0 20 45

Undesirable (ỸI = 0) 0 10 35
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Table 2:

True immune response, toxicity, efficacy probabilities, and utility at each dose, and selection percentage and 

the average number of patients treated at each dose level under the proposed design and the EffTox design. 

The boldface numbers are the target doses.

dose level

1 2 3 4 5

Scenario 1

E(YI ) 2.0 2.9 4.5 5.7 6.3

πT 0.03 0.04 0.1 0.17 0.23

(πE,1, πE,2)
† (0.46, 0.11) (0.50, 0.13) (0.35, 0.07) (0.16, 0.02) (0.08, 0.01)

Utility 30.9 34.6 26.2 13.1 8

Selection % (proposed) 0.282 0.649 0.069 0 0

# of patients 16.0 16.9 13.9 9.0 4.8

Selection % (EffTox) 0.476 0.521 0.001 0 0.002

# of patients 17.4 16.3 13.1 8.2 4.4

Scenario 2

E(YI) 2.0 2.9 4.5 5.7 6.3

πT 0.03 0.07 0.19 0.35 0.49

(πE,1, πE,2) (0.28, 0.14) (0.31, 0.17) (0.31, 0.18) (0.28, 0.14) (0.25, 0.11)

Utility 24.2 27.8 30.6 23.8 17.7

Selection % (proposed) 0.117 0.094 0.736 0.047 0.006

# of patients 13.0 14.0 14.6 10.9 7.4

Selection % (EffTox) 0.212 0.602 0.183 0.001 0.002

# of patients 14.2 15.2 14.4 10.1 6.2

Scenario 3

E(YI ) 2.0 2.9 4.5 5.7 6.3

πT 0.07 0.09 0.12 0.3 0.49

(πE,1, πE,2) (0.16, 0.04) (0.17, 0.05) (0.22, 0.07) (0.25, 0.10) (0.27, 0.12)

Utility 9.8 11.9 19.7 22.1 20.1

Selection % (proposed) 0.028 0.005 0.29 0.572 0.057

# of patients 9.5 9.8 15.0 15.1 9.2

Selection % (EffTox) 0.143 0.103 0.254 0.255 0.203

# of patients 11.1 12.0 13.0 12.9 9.8

Scenario 4

E(YI ) 2.0 2.9 4.5 5.7 6.3

πT 0.16 0.16 0.16 0.16 0.16

(πE,1, πE,2) (0.21, 0.06) (0.26, 0.09) (0.34, 0.17) (0.36, 0.20) (0.37, 0.22)

Utility 12.0 17.7 32.8 40.2 42.3

Selection % (proposed) 0.000 0.000 0.006 0.257 0.735

# of patients 7.9 8.7 12.4 15.3 15.6
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dose level

1 2 3 4 5

Selection % (EffTox) 0.008 0.004 0.046 0.207 0.733

# of patients 9.3 10.6 12.4 13.4 14.3

Scenario 5

E(YI ) 2.6 3.4 3.9 4.3 4.6

πT 0.05 0.12 0.2 0.28 0.36

(πE,1, πE,2) (0.15, 0.09) (0.22, 0.15) (0.24, 0.17) (0.23, 0.16) (0.21, 0.15)

Utility 13.8 21.9 24.5 23.7 20.6

Selection % (proposed) 0.024 0.036 0.431 0.42 0.077

# of patients 11.6 12.8 13.0 12.3 10.0

Selection % (EffTox) 0.002 0.258 0.711 0.017 0.002

# of patients 11.4 14.7 14.4 11.2 7.8

Scenario 6

E(YI ) 2.6 3.4 3.9 4.3 4.6

πT 0.01 0.04 0.09 0.14 0.2

(πE,1, πE,2) (0.24, 0.06) (0.31, 0.10) (0.34, 0.12) (0.35, 0.13) (0.36, 0.13)

Utility 17.3 24.9 28.3 29.6 29.4

Selection % (proposed) 0.016 0.001 0.098 0.401 0.483

# of patients 10.4 11.1 12.1 13.1 13.2

Selection % (EffTox) 0.024 0.094 0.43 0.321 0.129

# of patients 10.3 12.1 12.9 12.7 11.8

Scenario 7

E(YI ) 2.6 3.4 3.9 4.3 4.6

πT 0.16 0.16 0.16 0.16 0.16

(πE,1, πE,2) (0.16, 0.37) (0.16, 0.37) (0.16, 0.37) (0.16, 0.37) (0.16, 0.37)

Utility 32.5 34.3 36.9 38.5 39.7

Selection % (proposed) 0.175 0.021 0.038 0.091 0.675

# of patients 11.9 11.8 12.2 11.9 12.2

Selection % (EffTox) 0.351 0.086 0.146 0.07 0.347

# of patients 13.2 12.0 11.4 11.5 11.9

Scenario 8

E(YI ) 2.5 3.1 3.5 3.8 3.9

πT 0.72 0.78 0.84 0.88 0.91

(πE,1, πE,2) (0.06, 0.04) (0.08, 0.06) (0.09, 0.06) (0.09, 0.07) (0.10, 0.08)

Utility 2.4 3.5 4.1 4.7 5.2

Selection % (proposed) 0 0 0 0 0

# of patients 4.3 3.2 3.1 1.7 0.7

Selection % (EffTox) 0 0 0 0 0

# of patients 4.1 3.0 2.7 2.0 0.8

†
πE,1 = Pr(YE = 1), and πE,2 = Pr(YE = 2). 24
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Table 3:

Utility for sensitivity analysis.

Toxicity Immune response

Tumor response

PD
(YE = 0)

SD
(YE = 1)

CR/PR
(YE = 2)

No (YT = 0) Desirable (ỸI = 1) 10 70 100

Undesirable (ỸI = 0) 5 50 80

Yes (Yt =1) Desirable (ỸI = 1) 5 40 60

Undesirable (ỸI = 0) 0 30 55
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