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Abstract

Brain imaging genetics aims to reveal genetic effects on brain phenotypes, where most studies 

examine phenotypes defined on anatomical or functional regions of interest (ROIs) given their 

biologically meaningful annotation and modest dimensionality compared with voxel-wise 

approaches. Typical ROI-level measures used in these studies are summary statistics from voxel-

wise measures in the region, without making full use of individual voxel signals. In this paper, we 

propose a flexible and powerful framework for mining regional imaging genetic associations via 

voxel-wise enrichment analysis, which embraces the collective effect of weak voxel-level signals 

within an ROI. We demonstrate our method on an imaging genetic analysis using data from the 

Alzheimers Disease Neuroimaging Initiative, where we assess the collective regional genetic 

effects of voxel-wise FDGPET measures between 116 ROIs and 19 AD candidate SNPs. 

Compared with traditional ROI-wise and voxel-wise approaches, our method identified 102 

additional significant associations, some of which were further supported by evidences in brain 

tissue-specific expression analysis. This demonstrates the promise of the proposed method as a 

flexible and powerful framework for exploring imaging genetic effects on the brain.
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I. INTRODUCTION

Imaging genetics is an emerging research field investigating the influence of genetic variants 

such as single-nucleotide polymorphisms (SNPs) on imaging phenotypes. Brain imaging 

genetics aims to reveal associations between genetic variations and quantitative traits (QTs) 

extracted from brain imaging data. These imaging QTs (iQTs) are measures extracted from 

either a single voxel [1] or a region of interest (ROI) [2]–[4] in the brain. An ROI is a pre-

defined brain area containing a cluster of voxels with the same anatomical or functional 

annotation. Of note, the number of ROIs is much smaller than the number of voxels in the 

brain. Thus, most studies examine ROI-level phenotypes due to (1) modest dimensionality 

compared with voxel-wise approaches for increased statistical power, and (2) biologically 

meaningful annotation for easy interpretation.

Most existing ROI-level imaging genetic studies evaluate the associations between 

individual SNPs and ROI-level iQTs which are often defined as summary statistics (e.g., 

mean) of all the voxel-wise measures in the ROI. For example, genome-wide association 

studies (GWAS) have been performed for these iQTs and have discovered genes susceptible 

to various brain ROIs [5]–[7]. Targeted genetic studies have also been performed on brain 

ROIs to relate candidate SNPs to brain regions. However, most ROI-based approaches 

simply collapse voxel-level measures into a single value, and might lead to false-negative 

results when only weak signals exist in part of an ROI. Although voxel-wise strategies have 

been proposed to explore fine-grained variances of brain (e.g., [1], [8]), their effectiveness 

suffers from major multiple comparison issue due to ultra-high dimension of imaging and 

genetics data [8]. Cluster-wise approaches have been proposed to overcome the above 

limitation by identifying local voxel clusters to reach a pre-defined significant threshold [9]. 

The approach, however, ignores ROI-based anatomical or functional annotation.

Pathway enrichment analysis is a widely used method in genetics, where gene sets 

corresponding to biological pathways are examined for association with a phenotype to help 

increase statistical power and improve biological interpretation. Numerous studies on 

complex diseases have demonstrated that genes functioning in the same pathway can 

influence iQTs collectively even when constituent SNPs do not show significant association 

individually [3]. With these observations, in this work, we introduce enrichment analysis 

into imaging domain and propose an enrichment-based ROI-level imaging genetic 

association study (eIGAS) framework that estimates the collective genetic association with 

all the voxels in an ROI. To show the effectiveness of the eIGAS framework, we compare it 

with traditional ROI-based and voxel-based approaches via an imaging genetic study in 

Alzheimer’s disease (AD). Because the computational cost of voxel-wise GWAS is 

extremely expensive, we test our method in a targeted analysis between 19 AD candidate 

SNPs and brain-wide imaging phenotypes in 116 ROIs. We demonstrate that the proposed 

method outperforms the other two strategies with improved statistical power and biological 

interpretability.
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II. MATERIALS AND METHODS

To demonstrate the power of the proposed eIGAS framework, we apply it to an FDG-PET 

imaging genetic analysis in AD. FDG-PET has been used to measure cerebral metabolic 

rates of glucose (CMRglc), and its change occurs early in AD.

A. Imaging and genotyping data

The imaging and genotyping data used in this article were obtained from the ADNI database 

(adni.loni.usc.edu). Preprocessed FDG-PET scans were downloaded from the ADNI 

website, then aligned to each participant’s same visit scan and normalized to the Montreal 

Neurological Institute (MNI) space as 2×2×2 mm voxels. FDG measurements of 185,405 

voxels were extracted, and 116 ROIs were further computed using the mean of voxels within 

each ROI based on the MarsBaR AAL atlas as described in [7]. The number of voxels within 

116 ROIs ranges from 54 to 5,104. 998 non-Hispanic Caucasian participants (Table I) with 

complete baseline voxel-level and ROI-level FDG measurements were studied.

Genotype data of both ADNI-1 and ADNI-GO/2 phases were downloaded, quality 

controlled, imputed and combined as described in [10]. 5,574,300 SNPs were obtained for 

all 998 subjects studied here. A list of 23 AD risk SNPs were analyzed, containing 21 SNPs 

from the large scale meta-analysis of AD [11] plus two well-known APOE SNPs (rs429358 

and rs7412). Four SNPs were excluded as no imputed genotyping data available. In total, 19 

AD risk SNPs were included in our imaging genetic analysis. Detailed information of the 19 

studied SNPs are shown in Table II.

B. Targeted genetic association study of FDG-PET imaging

We performed targeted genetic analysis of FDG-PET imaging measures on each voxel and 

each ROI, using linear regression under an additive genetic model in PLINK [12], with age, 

gender and education as covariates. Post-hoc analysis used Bonferroni correction for 

adjusting both the number of SNPs and the number of iQTs (i.e., voxel number for voxel-

level analysis and ROI number for ROI-level analysis).

For comparison purpose, we constructed a novel ROI-level P-value using a summarized 

statistic from the voxel-level P-values, borrowing the idea from gene set analysis which 

maps SNP-level P to gene-level P [13]. Here we chose the second-best voxel-level P-value in 

each ROI to represent the ROI-level P, to avoid spurious associations from the best P.

C. Enrichment-based IGAS (eIGAS) framework

Pathway enrichment analysis has been widely used in genomic domain to examine gene sets 

corresponding to biological pathways for association with phenotypes. In this paper, we 

consider brain ROIs as pathways, each of which contains a set of voxels; and aim to identify 

ROIs significantly enriched by voxel-level genetic findings to form ROI-level genetic 

associations. Below, we describe the proposed method.

We propose the enrichment-based imaging genetic association study (eIGAS) framework 

using the over-representation analysis (ORA). We obtain the voxel-wise genetic association 

results from Subsection II-B, including P-values between S = 19 AD SNPs and N = 185, 405 
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voxels. Given a SNP Si, the imaging genetic findings are a list Li of significant SNP-voxel 

associations with P values passing a pre-defined threshold. Given an ROI Rk that contains 

total rk voxels Vk = vk, 1, …, vk, rk
, eIGAS aims to determine whether the set of voxels 

within targeted ROI Vk is enriched in Li. Now we present our ORA-based eIGAS method. 

Given a SNP Si, we have N Si-voxel associations from voxel-wise imaging genetic 

association analysis, out of which ni = | Li |(the set Li) are significant ones with P-value 

passing a pre-defined threshold. Out of these, we have rk = |Vk | associations from ROI Rk, 

of which li significant ones are from Li. Applying Fisher’s exact test for independence, the 

enrichment P-value for the ROI Rk associated with SNP Si is as follows:

Pi, k = Pr Vk ∩ Li ≥ li = ∑ j ≥ li

rk

j
×

N − rk

ni − j
N
ni

. (1)

Here, P r(·) is the probability function.

D. Evaluation of eIGAS

We evaluated the statistical power of eIGAS on discovering imaging genetic associations by 

comparing it with both ROI-based and second-best voxel-based approaches. We also 

validated the novel SNP-ROI findings in brain tissue-specific expression quantitative trait 

loci (eQTL) analysis. Specifically, we used eQTL dataset available in BRAINEAC (http://

www.braineac.org/), a web server for data from the UK Brain Expression Consortium 

(UKBEC) [14]. This dataset contains ten brain tissues from 134 neuropathologically normal 

subjects. We assessed the altered gene expression of identified SNPs from eIGAS in the 

corresponding brain tissues.

III. RESULTS

A. Targeted genetic associations of FDG-PET iQTs

Targeted genetic analyses were performed on both ROI-level (i.e., mean of all voxels in the 

ROI) and voxel-level FDG measures, to examine imaging genetic associations between 19 

AD SNPs and FDG measures from 116 ROIs and 185,405 voxels, respectively. To facilitate 

comparison among these methods, for the 185,405 voxel-level P results, we employed the 

second-best P-value strategy to map those to 116 ROI-level P summary statistics. Using 

Bonferroni corrected P < 0.05/(116×19) = 2.27e-5 as threshold, we identified 41 SNP-ROI 

hits from ROI-based approach covering 1 SNP (APOE rs429358) and 41 brain ROIs, and 91 

SNP-ROI associations from the second-best strategy covering 6 SNPs and 78 brain ROIs. 

Detailed findings of these two strategies were shown in the top two panels of Fig. 1.

B. Imaging genetic associations from enrichment-based IGEA

For each AD SNP, we obtained a list of 185, 405 SNP-voxel associations across all voxels in 

brain. Given a SNP Si, for each ROI, we assessed the collective effect of Si on all voxels 

within the ROI by calculating the enrichment score, to relate Si to ROI. We employed a 
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relatively generous threshold 0.05/19 = 2.63e-3 to determine the list of significant SNP-

voxel associations for eIGEA, to avoid missing individually moderate while collectively 

significant signals. We obtained enrichment P-values between 19 AD SNPs and 116 ROIs, 

among which 158 SNP-ROI pairs were significant after correcting for both the number of 

SNPs and the number of ROIs (i.e., P < 0.05/(116×19) = 2.27e-5). These eIGAS findings 

covered all 19 AD SNPs and 86 unique ROIs. Out of 158 findings, 102 SNP-ROI pairs were 

novel and 56 SNP-ROI pairs overlapped with findings from the prior two strategies.

Fig. 1 shows the results from eIGEA (bottom panel) and other two methods. As we 

expected, eIGAS not only conserved high concordance with findings from ROI-based and 

voxel-based second-best strategies, but also reported novel SNP-ROI associations. This 

indicates that the integration of fine-grained association statistics with brain ROI information 

would promote the identification of high-level imaging genetic associations and facilitate 

biological interpretation.

To better illustrate the findings from eIGAS as well as compare it with the other two 

strategies, we summarized eIGAS findings by ranking AD SNPs according to the number of 

their significantly related ROIs. Top five SNPs were extracted from eIGAS results, including 

rs429358, rs6733839, rs9331896, rs983392, rs3865444; and they were significantly 

associated with 39, 18, 17, 13, and 11 ROIs, respectively. Given these five SNPs, 

significantly associated ROIs from both ROI-based and voxel-based second-best approaches 

were also extracted.

Fig. 2 maps all these ROIs onto the brain, where ROIs were assigned different colors 

according to which approaches they were identified from. As the best-known AD risk 

variant, APOE rs429358 associated with the largest number of ROIs from three approaches, 

including various frontal, temporal, occipital, amygdala, precuneus and other regions 

responsible for different functions. Regarding the ROIs associated with other top SNPs, most 

of them were discovered by eIGAS only (green ones) or by both eIGAS and ROI-based 

and/or voxel-based second-best approaches (blue ones); while only few ROIs were reported 

by ROI-based and/or voxel-based second-best approaches (red ones). Given that disease risk 

variants can influence pathological behaviors through intermediate phenotypes, our studied 

SNPs might implicitly mediate FDG iQTs to contribute to AD. Thus our eIGAS framework 

promoted the identification of these intermediate traits for better understanding of the 

underlying disease mechanism.

C. Biological significance of eIGAS findings

We further examine the biological significance of 102 new SNP-ROI findings identified 

from eIGAS, through brain tissue-specific eQTL analysis using genotyping and expression 

data of ten brain tissues from UK Brain Expression Consortium (UKBEC). There were 

totally 18 unique SNPs and 67 unique ROIs covered by 102 new hits. After mapping ROIs to 

UKBEC brain tissues, there remain 53 SNP-ROI pairs covering 16 SNPs and 34 ROIs. We 

assessed the effect of these 16 SNPs on brain tissue-specific expression levels of their 

nearest genes, and identified 15 significant tissue-specific eQTLs with P-value less than 0.05 

(see Table III for details). This indicates the power of our method for identifying biologically 

meaningful imaging genetic associations.
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IV. DISCUSSION

In this paper, we have presented an enrichment-based imaging genetic association study 

(eIGAS) framework to explore the collective effect of a genetic variant on a brain region by 

integrating fine-grained voxel-wise imaging genetic associations with anatomically or 

functionally annotated ROI information. We have demonstrated its effectiveness using 

imaging genetics data from an AD study. In addition to associations identified by traditional 

ROI-based or voxel-based approaches, our approach has reported novel SNP-ROI findings 

and demonstrated their biological significance. This indicates the increased power of the 

presented method on identifying individually modest while collectively substantial signals.

The real power of eIGAS, however, can be affected by several factors. First, Fisher’s test 

requires a pre-defined threshold to determine the list of significant SNP-voxel pairs. 

Although this makes the framework more flexible in practice for tightening or relaxing 

voxel-level effects, it considers only the count of significant pairs without taking the full 

spectrum of association statistics. Rank-based enrichment strategies (e.g., [15]) can be 

employed in our framework to overcome these limitations. Another issue is that eIGAS 

requires to compute voxel-level associations in advance, which is both time and space 

demanding, especially given millions of SNPs in GWAS data. Therefore, another direction is 

to design parallel computational framework for accelerating the voxel-level GWAS. Another 

interesting future direction is to compare the performances between our enrichment-based 

approach and random field theory strategies as implemented in SPM (www.fil.ion.ucl.ac.uk/

spm/).
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Fig. 1: 
Comparison of brain ROI genetic analysis strategies. Shown from top to bottom are the 

results of traditional ROI-level analysis, traditional voxel-level analysis with the 2nd-best 

voxel representing the ROI, and the proposed eIGAS analysis.
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Fig. 2: 
Brain maps of ROIs associated with top eIGAS SNPs.

Yao et al. Page 9

IEEE EMBS Int Conf Biomed Health Inform. Author manuscript; available in PMC 2020 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yao et al. Page 10

TABLE I:

Participant characteristics

Subjects HC SMC EMCI LMCI AD

Number 236 91 289 200 182

Gender(M/F) 122/114 38/53 163/126 117/83 109/73

Age(mean±sd) 76.2±6.7 72.5±5.6 71.7±7.2 74.3±8.3 75.4±7.7

Edu(mean±sd) 16.4±2.7 16.9±2.6 16.1±2.6 16.3±2.8 15.9±2.7

APOE ε4 26.81% 32.97% 43.06% 50.50% 64.84%

HC=Healthy Control; SMC=Significant Memory Concern; EMCI=Early Mild Cognitive Complaint; LMCI=Late Mild Cognitive Complaint; 
AD=Alzheimer’s Disease.
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TABLE II:

Details of 19 AD risk SNPs.

SNP Chr Position Closest gene Major/minor

rs6656401 1 207692049 CR1 G/A

rs6733839 2 127892810 BIN1 C/T

rs35349669 2 234068476 INPP5D C/T

rs190982 5 88223420 MEF2C A/G

rs10948363 6 47487762 CD2AP A/G

rs2718058 7 37841534 NME8 A/G

rs1476679 7 100004446 ZCWPW1 T/C

rs11771145 7 143110762 EPHA1 G/A

rs28834970 8 27195121 PTK2B T/C

rs9331896 8 27467686 CLU T/C

rs10838725 11 47557871 CELF1 T/C

rs983392 11 59923508 MS4A6A A/G

rs10792832 11 85867875 PICALM G/A

rs17125944 14 53400629 FERMT2 T/C

rs10498633 14 92926952 SLC24A4-RIN3 G/T

rs4147929 19 1063443 ABCA7 G/A

rs429358 19 45411941 APOE T/C

rs3865444 19 51727962 CD33 C/A

rs7274581 20 55018260 CASS4 T/C
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TABLE III:

eQTL analysis of eIGAS findings.

SNP Chr Gene P Tissue

rs10792832 11 PICALM 1.8e-2 Occipital cortex

rs11771145 7 EPHA1 1.4e-3 Occipital cortex

rs11771145 7 EPHA1 2.0e-3 Thalamus

rs11771145 7 EPHA1 1.8e-2 Temporal cortex

rs28834970 8 PTK2B 3.8e-2 Frontal cortex

rs28834970 8 PTK2B 1.1e-4 Temporal cortex

rs28834970 8 PTK2B 6.0e-3 Putamen

rs35349669 2 INPP5D 9.1e-3 Frontal cortex

rs3865444 19 CD33 3.3e-2 Frontal cortex

rs4147929 19 ABCA7 2.4e-2 Temporal cortex

rs6656401 1 CR1,CR1L 1.9e-2 Occipital cortex

rs6656401 1 CR1,CR1L 2.8e-3 Temporal cortex

rs6733839 2 BIN1 3.6e-2 Frontal cortex

rs9331896 8 CLU 6.1e-5 Temporal cortex

rs983392 11 MS4A6A,MS4A4E 1.1e-2 Frontal cortex
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