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A regulatory variant of CHRM3 is associated with
cannabis-induced hallucinations in European
Americans
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Lindsay A. Farrer5, Henry R. Kranzler 6 and Joel Gelernter 1,7

Abstract
Cannabis, the most widely used illicit drug, can induce hallucinations. Our understanding of the biology of cannabis-
induced hallucinations (Ca-HL) is limited. We used the Semi-Structured Assessment for Drug Dependence and
Alcoholism (SSADDA) to identify cannabis-induced hallucinations (Ca-HL) among long-term cannabis users (used
cannabis ≥1 year and ≥100 times). A genome-wide association study (GWAS) was conducted by analyzing European
Americans (EAs) and African Americans (AAs) in Yale-Penn 1 and 2 cohorts individually, then meta-analyzing the two
cohorts within population. In the meta-analysis of Yale-Penn EAs (n= 1917), one genome-wide significant (GWS)
signal emerged at the CHRM3 locus, represented by rs115455482 (P= 1.66 × 10−10), rs74722579 (P= 2.81 × 10−9), and
rs1938228 (P= 1.57 × 10−8); signals were GWS in Yale-Penn 1 EAs (n= 1092) and nominally significant in Yale-Penn
2 EAs (n= 825). Two SNPs, rs115455482 and rs74722579, were available from the Collaborative Study on the Genetics
of Alcoholism data (COGA; 3630 long-term cannabis users). The signals did not replicate, but when meta-analyzing
Yale-Penn and COGA EAs, the two SNPs’ association signals were increased (meta-P-values 1.32 × 10−10 and 2.60 ×
10−9, respectively; n= 4291). There were no significant findings in AAs, but in the AA meta-analysis (n= 3624),
nominal significance was seen for rs74722579. The rs115455482*T risk allele was associated with lower CHRM3
expression in the thalamus. CHRM3 was co-expressed with three psychosis risk genes (GABAG2, CHRNA4, and HRH3) in
the thalamus and other human brain tissues and mouse GABAergic neurons. This work provides strong evidence for
the association of CHRM3 with Ca-HL and provides insight into the potential involvement of thalamus for this trait.

Introduction
Cannabis is the most widely used illicit drug. It has

acute and chronic effects on physical and mental health;
adverse effects include rapid heartbeat, disorientation,
lack of physical coordination, panic attacks or anxiety,
depression or sleepiness, deterioration in cognitive func-
tion, and brain abnormalities after long-term use1–3. The
pharmacological effects of cannabis are due primarily to

tetrahydrocannabinol (THC), which mimics the activity of
endocannabinoids such as anandamide. Both THC and
endocannabinoids efficiently bind to the G-protein-
coupled cannabinoid receptor, CB1, in the brain and
transiently inhibit the release of either the inhibitory
neurotransmitter γ-aminobutyric acid (GABA) or the
excitatory transmitter glutamate4. Although there is
another well-characterized cannabinoid G-protein-
coupled receptor, CB2, only CB1 receptors are abun-
dantly expressed in the brain, where they are localized
specifically on axons and axon terminals. These effects are
largely responsible for the psychoactive effects of canna-
bis, which include potentially therapeutic ones (e.g.,
analgesia) and reinforcing effects (e.g., relaxation,
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hallucination, or altered perception)3,5. Our under-
standing of the biology of cannabis-induced hallucina-
tions (Ca-HL) remains limited.
Genome-wide association study (GWAS) is a useful

strategy to study the genetics and ultimately the biology of
hallucinations. Here we carried out the first GWAS of Ca-
HL among European American (EA) (total N= 4291) and
African American (AA) (total N= 3624) long-term can-
nabis users. We identified one genome-wide significant
(GWS) signal close to the gene cholinergic receptor
muscarinic 3 (CHRM3), predisposing to Ca-HL in EAs,
with the finding nominally replicated in AAs.

Materials and methods
Subjects, genotyping, and imputation
Subjects were selected from among previously described

samples, Yale-Penn 1 (n= 5540) and 2 (n= 3675)6, which
were recruited from five eastern US sites to participate in
studies of the genetics of drug (opioid or cocaine) or
alcohol dependence6. All participants were given written
informed consent that was approved by the institutional
review board at each recruiting site. Certificates of con-
fidentiality were provided by the National Institute on
Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism. Yale-Penn 1 samples were genotyped on
the Illumina (San Diego, CA, USA) HumanOmni1-Quad
v1.0 microarray. A total of 1,140,419 single-nucleotide
polymorphisms (SNPs) were genotyped in Yale-Penn 1.
Samples for Yale-Penn 2 were genotyped with the Illu-
mina HumanCore Exome array, which includes a total of
550,601 SNPs, including 268,631 exonic SNPs and
281,970 tagging SNPs. Quality control (QC) for micro-
arrays in each cohort was carried out using PLINK1.97

based on the following criteria: (1) individual genotype
missing rate < 2%, (2) SNP genotype missing rate < 2%, (3)
Hardy–Weinberg P > 1 × 10−6, and (4) minor allele fre-
quency (MAF) > 3%. After QC, samples from Yale-Penn 1
and 2 were subjected to ancestry analysis by comparison
with the 1000 Genomes Project phase 1 reference panel8.
Eigensoft9 was used for principal components (PCs)
analysis with the first ten PC scores serving to differ-
entiate EAs and AAs through K-means clustering10. For
each Yale-Penn cohort, SNPs from EAs and AAs were
imputed together using Minimac3 implemented in the
Michigan Imputation Server11 with the 1000 Genomes
phase 3 reference panel. We transformed dosage data into
best-estimate genotypes using PLINK1.9, retaining high-
quality genotyping data by filtering imputed data with
genotype imputation probability (GP) ≥ 0.9; the resulting
genotype data were transformed into plink binary format
data, which can be used directly in association tests with
the GWAS software, Genome-wide Efficient Mixed
Model Association (GEMMA)12. After retaining geno-
types with GP ≥ 0.9, individual genotyping missing rate

< 5%, MAF > 3%, and missing call frequency < 5%, there
were 8,200,853 and 5,916,265 remaining variants for Yale-
Penn 1 and 2 EAs, respectively, and 14,134,502 and
10,346,266 variants for Yale-Penn 1 and 2 AAs,
respectively.
Apart from the above Yale-Penn samples used in our

discovery GWAS, an independent cohort, the Collabora-
tive Study on the Genetics of Alcoholism data (COGA;
see Supplementary Information for detailed description of
COGA) was assigned as the replication cohort for the top
hits that emerged from Yale-Penn samples.

Definition of Ca-HL
Ca-HL was defined using similar questions in the Semi-

Structured Assessment for Drug Dependence and Alco-
holism (SSADDA)13 (for Yale-Penn) and the Semi-
Structured Assessment for the Genetics of Alcoholism
(SSAGA)14 (for COGA). For the SSADDA, this question
is, “Has your use of [marijuana] ever caused you emo-
tional or psychological problems like: Hearing, seeing, or
smelling things that weren’t really there?” In the SSAGA,
the question is “Because of your marijuana use, did you
ever experience any of the following: Hearing, seeing or
smelling things that weren’t really there?”. As in Yale-
Penn samples >90% of participants with Ca-HL used
cannabis ≥1 year and ≥100 times, these two criteria were
used to define comparison subjects (controls) who were
long-term cannabis users without Ca-HL. The same cri-
teria were used to select samples from COGA. The
sample sizes of our GWAS were not predesigned for
ensuring adequate power to detect a pre-specific
effect size.

Ca-HL sample description
For Ca-HL samples in Yale-Penn cohorts, there were

1092 Yale-Penn 1 EAs (cases= 51 and controls= 1041),
825 Yale-Penn 2 EAs (cases= 40 and controls= 785),
1610 Yale-Penn 1 AAs (cases= 149 and controls= 1461),
and 758 Yale-Penn 2 AAs (cases= 71 and controls=
687). Meanwhile, for replication samples from COGA,
2374 EAs (cases= 256 and controls= 2118) and 1256
(cases= 142 and controls= 1114) AAs had genotypic
data and reported long-term use of cannabis.

GWAS analysis
GWAS software
GEMMA12 was used separately in each Yale-Penn

subgroup of EAs and AAs, with adjustment for sex, age,
body mass index (BMI), the first three PCs of ancestry,
and the degree of relatedness among subjects. BMI was
used as covariant because of the consideration that it
could be a potential confounding factor affecting Ca-HL.
GEMMA uses linear mixed model to determine the
association between SNP and phenotype; it can account
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for relatedness among participants and can control for
population stratification and other confounding factors12.
We used GEMMA because it allowed us to account for
ancestry. A correction for inflation was not necessary,
because the inflation was low (all λ < 1.1) in our GWAS.
For summary statistics from GEMMA, the inverse var-
iance method implemented in PLINK1.9 was used to
generate fixed-effects meta-analysis P-values (meta-P) for
all variants by matching their chromosomal positions and
two alleles among the GWAS datasets from EAs and AAs
separately. We used a GWS threshold of P < 5.0 × 10−8.
GWAS summary statistics data for Yale-Penn samples are
freely available upon request.
For the two GWS variants that emerged in the meta-

analysis of Yale-Penn cohorts, we used logistic regression
via generalized estimating equation implemented in the R
package GWAF15, to correlate the two GWS variants’
genotypes from COGA with Ca-HL (defined exactly as for
Yale-Penn) and adjust for sex, age, the first three PCs of
ancestry, and array types. As BMI was not available in
COGA, it was not included as a covariate in the analysis.
The association results for these two GWS variants were
combined with the summary statistics of Yale-Penn 1 and
2, and COGA in the final meta-analysis using PLINK1.9.

Correlation between rs115455482 genotype and CHRM3
expression
To facilitate the biological interpretation of our top

association signal, we explored the potential relationship
between rs115455482 and CHRM3 expression across ten
brain tissues. We associated rs115455482 genotype with
CHRM3 expression in Braineac16, where genotype and
gene expression data of ten brain tissues, including occi-
pital cortex (OCTX), frontal cortex (FCTX), temporal
cortex, hippocampus (HIPP), intralobular white matter,
cerebellar cortex (CRBL), thalamus (THAL), putamen
(PUTM), substantia nigra (SNIG), and medulla (inferior
olivary nucleus, MEDU), were obtained from 134 healthy
human brains from the UK Biobank17.

CHRM3 co-expression analysis and disease gene-
enrichment analysis
Gene co-expression information can be used to evaluate

a gene’s function and identify related pathways. To
accomplish this for CHRM3 in Ca-HL, a novel bioinfor-
matics pipeline was created to search for genes co-
expressed with CHRM3 in an unbiased way genomewide.
First, CHRM3 co-expressed genes were identified with
COXPRESdb18, a database that provides gene co-
expression relationships for animal species, including
human, mouse, rat, and others. Next, the top 100 CHRM3
co-expressed genes, as well as CHRM3 itself (total 101
genes), were subjected to enrichment analysis of disease-
associated genes using the 2013 version WEB-based GEne

SeT AnaLysis Toolkit (WebGestalt)19 with default settings
of a minimum number of four genes (out of 101) required
for a gene category to be included in the enrichment
analysis. Enrichment analysis method “Disease Associa-
tion Analysis” of WebGestalt was used to test the
enrichment of disease-associated genes among these 101
genes. Finally, CHRM3 co-expressed genes that emerged
in the top ten enriched gene categories of disease-
associated genes were validated for co-expression with
CHRM3 using ten different types of human healthy brain
tissues (downloaded from Braineac database)17 and the
homologous gene in mouse, Chrm3, using six types of
cortical GABAergic neurons from mouse FCTX (gene
expression omnibus accession number GSE92522)20. The
ten brain tissues (total samples= 1340) are the same as
these listed above. In addition, we considered six types of
mouse single neurons (total samples= 584): martinotti
cells, interneuron selective cells, cholecystokinin expres-
sing (CCK)-basket cells, parvalbumin expressing (PV)
basket cells, chandelier cells upper layer (CHC1) and deep
layer (CHC2) of mouse brain, and long projecting cells.
All of the cells were isolated from mouse FCTX. The
correlation between CHRM3 and its co-expressed genes
emerged in the enrichment of disease-associated genes
was analyzed separately among ten brain tissues for
Pearson’s correlation by using MATLAB (Statistics
Toolbox Release 2015b, The MathWorks, Inc., Natick,
Massachusetts, USA). The same correlation analysis was
performed for the mouse homologous Chrm3 among six
types of single neurons. The adjusted P-value for sig-
nificance was 0.05/(10*24)= 2 × 10−4 for the co-
expression analysis with 10 brain tissues for 24 genes,
and in the co-expression analysis of 6 mouse GABAergic
neurons for 14 genes, the adjusted significance P-value
was 0.05/(6*14)= 5 × 10−4.

Results
In the discovery GWAS, we meta-analyzed Yale-Penn 1

and 2 EAs and AAs separately by population (Fig. 1). In
the meta-analysis of Yale-Penn EAs, three GWS SNPs
representing one signal were identified (see GWAS results
in Fig. 1 for EAs): rs115455482, rs74722579, and
rs1938228, which are highly correlated (r2 ≥ 0.95, MAF ~
0.06 in EAs when cases and controls were considered
together; Table 1 and Supplementary Table S1). The
association P-values were 1.66 × 10−10, 2.81 × 10−9, and
1.57 × 10−8 for rs115455482, rs74722579, and rs1938228,
respectively; the leading SNP rs115455482 is ~230 kb
upstream of transcript NM_000740 of CHRM3 (mus-
carinic acetylcholine receptor (AChR) M3). There were
no GWS SNPs identified in AAs (Supplementary Figs. 1
and 2 for AAs). Low inflation was observed in the meta-
analysis of Yale-Penn 1 and 2 for EAs (λ= 1.06; Supple-
mentary Fig. 3) and AAs (λ= 1.02; Supplementary Fig. 2).
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The independent COGA sample was used to attempt to
replicate these top signals in the discovery GWAS. Two of
these SNPs, rs115455482 and rs74722579, were available
in the COGA data; neither of these were significantly
associated with trait, although their β-effects were both in
the same direction (0.05 and 0.02, respectively). Further
meta-analysis of both Yale-Penn discovery EA samples
with the COGA EA replication sample (Table 1) for these
SNPs increased the statistical significance of the associa-
tion signals (meta-P-values of 1.32 × 10−10 and 2.60 ×

10−9 for rs115455482 and rs74722579, respectively). In
addition, meta-analysis for rs74722579 (MAF ~ 0.10)
including all available AA samples from Yale-Penn 1 and
2, and COGA (total cases= 362 and controls= 3404)
yielded a nominally significant meta-P-value (meta-P=
4.58 × 10−2); the analysis for rs115455482 was not sig-
nificant. For the latter variant, the minor allele is rare in
AAs (MAF= 0.01, meta-P= 1.37 × 10−1) (Table 1).
Taken together, the robust association signals for the two
top SNPs in EAs and the nominal significance for

Fig. 1 Manhattan plots showing genome-wide association signals of cannabis-induced hallucinations in long-term cannabis-exposed
European Americans (EAs) by meta-analysis. a Manhattan plot with three significant variants, rs115455482, rs74722579, and rs1938228, on
chromosome 1, in a meta-analysis of two EA cohorts. The three variants are in high linkage disequilibrium (all r2 ≥ 0.95) in EAs. The line in the plot
represents the genome-wide significance cutoff (5 × 10−8). b Regional Manhattan plot demonstrates rs115455482 is close to gene CHRM3 (and
regulates CHRM3 expression; see Fig. 2 and text). According to a published schizophrenia genome-wide association study36, these top three SNPs
associated with cannabis-induced hallucinations were not significantly associated with schizophrenia (all associations P ~ 0.25); one SNP rs12081830,
associated with cannabis-induced hallucination (P= 8.5 × 10−5), was nominally associated with schizophrenia (P= 4.3 × 10−2). rs115455482 and
rs12081830 are not highly linked with each other (r2 < 0.2 in EAs). The light blue line and right Y-axis show the observed recombination rate in the
1000 Genomes Project European samples (EUR, hg19). The SNPs are colored in accordance to r2 with rs115455482.
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rs74722579 in AAs (Fig. 1 and Table 1) support the
validity of the GWAS results.
To evaluate a potential underlying mechanism for the

association of rs115455482 genotype with Ca-HL, the
regulatory relationship between rs115455482 and CHRM3
expression was evaluated in the Braineac database. In
expression quantitative trait locus (eQTL) analysis,
CHRM3 was variably expressed among ten brain tissues
and differentially expressed among rs115455482*T risk
allele carriers in the THAL (P= 4.5 × 10−4; adjusted P=
4.5 × 10−3 across ten brain tissues) and PUTM (P= 1.6 ×
10−2; adjusted P= 1.6 × 10−1 across ten brain tissues)
(Fig. 2). Rs115455482 risk genotype TC (TT homozygotes
were too rare to be observed in this sample) was corre-
lated with lower mRNA expression of CHRM3 in THAL,

with the same trend found in other tissues, including
PUTM, OCTX, MEDU, SNIG, FCTX, HIPP, and CRBL.
To infer the potential biological function of CHRM3, we

carried out co-expression analysis. We obtained the top
100 co-expressed genes (Supplementary Table S2) with
respect to CHRM3 by application of COXPRESdb18 and
then performed enrichment analysis in disease-associated
gene categories in WebGestalt19, which showed that 24
genes were significantly enriched within the top 10
disease-associated gene categories (all raw P-values < 1 ×
10−2 and adjusted P-values < 1 × 10−2), including psy-
chotic disorders, epilepsy, and schizophrenia (Supple-
mentary Information “CHRM3 Co-Expression Analysis”
and Supplementary Table S3). According to GWAS
database GRASP21, CHRM3 is an epilepsy risk gene and

Table 1 Meta-analysis of rs115455482 and rs74722579 in European American (EA) and African American (AA) long-term
cannabis users.

Pop Cohorta Hallucination

control no.

Hallucination case no. SNPb Allele MAFc Effect β (SE)d P

Case Control

EA Yale-Penn 1 1041 51 rs115455482 T 0.167 0.040 0.13 (0.03) 4.93 × 10−9

rs74722579 C 0.177 0.048 0.12 (0.03) 1.66 × 10−8

Yale-Penn 2 785 40 rs115455482 T 0.088 0.031 0.08 (0.02) 4.08 × 10−3

rs74722579 C 0.088 0.036 0.07 (0.02) 3.15 × 10−2

COGAe 2118 256 rs115455482 T 0.059 0.058 0.05 (0.21) 8.08 × 10−1

rs74722579 C 0.063 0.064 0.02 (0.20) 9.34 × 10−1

Meta-

analysis

3944 347 rs115455482 T 0.11 1.32 × 10−10

rs74722579 C 0.10 2.60 × 10−9

AA Yale-Penn 1 1461 149 rs115455482 T 0.017 0.007 0.10 (0.06) 9.97 × 10−2

rs74722579 C 0.074 0.048 0.05 (0.02) 5.27 × 10−2

Yale-Penn 2 687 71 rs115455482 T 0.015 0.005 0.02 (0.01) 8.65 × 10−1

rs74722579 C - - - -

COGA 1114 142 rs115455482 T 0.011 0.013 −0.12 (0.61) 8.40 × 10−1

rs74722579 C 0.103 0.088 0.19 (0.26) 4.50 × 10−1

Meta-

analysis

3262 362 rs115455482 T 0.06 1.37 × 10−1

rs74722579 C 0.05 4.58 × 10−2

EA+ AA Meta-

analysis

7206 709 rs115455482 T 0.11 5.66 × 10−11

rs74722579 C 0.08 1.60 × 10−9

aIllumina microarray HumanOmni1-Quad v1.0 and HumanCore Exome array were used to genotype samples for Yale-Penn 1 and 2, respectively
bRs115455482 is highly linked with rs74722579 in EA (r2= 0.95) but not in AAs (r2 < 0.2). rs115455482 is a common variant in EAs but a rare variant in AAs, meanwhile
rs74722579 is a common variant both in EAs and AAs
cMinor allele frequency
dEffect β and SE based on likelihood ratio test by using the software Genome-wide Efficient Mixed Model Association (GEMMA)
eCOGA: Collaborative Study on the Genetics of Alcoholism
Note: The two variants are imputed with imputation score > 0.8 among all cohorts. Cannabis users who use cannabis ≥1 year and ≥100 times are defined as long-term
cannabis users. Results for meta-analyses of rs115455482 and rs74722579 among AAs, EAs and AAs+EAs are highlighted in bold in the table
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CHRM3 SNP rs10925980 was nominally associated with
genetic generalized epilepsies (P= 1.90 × 10−6) and Ca-
HL (P= 0.03) in EAs (see Supplementary Table S4). In
addition, 24 CHRM3 co-expressed genes were sig-
nificantly (all P-values < 1 × 10−2) correlated with CHRM3
in at least 1 of 10 brain tissues, with the same being true
for 14 Chrm3 co-expressed genes expressed in GABAer-
gic neurons (Supplementary Fig. 4).
The most frequently observed co-expression was

between CHRM3 and GABRG2, which was seen in eight
brain tissues (all P-values < 1 × 10−10 and r2 ≥ 0.6).
CHRM3 was also significantly co-expressed with
CHRNA4 and HRH3 in THAL (both P-values < 1 × 10−10

and r2 ≥ 0.7), and with HRH3 (P-value < 1 × 10−10 and
r2= 0.6) in PUTM. Furthermore, at the single-cell level,
the homologous mouse genes Chrm3 and Gabrg2 were
significantly co-expressed with one another in six differ-
ent GABAergic neuronal cells (all P-values < 1 × 10−5 and
r2 ≥ 0.6), whereas Hrh3 and Chrna4 were both sig-
nificantly co-expressed with Chrm3 at least in three dif-
ferent GABAergic single neurons (all P-values < 1 × 10−5

and r2 ≥ 0.4). Taken together, these results show that
CHRM3 is strongly co-expressed with GABRG2, HRH3,
and CHRNA4 (risk genes for psychotic disorders, epilepsy,
and schizophrenia) in THAL and other brain tissues.

Discussion
We report here biologically interesting GWS results

from a case–control GWAS of Ca-HL. There was one
GWS association signal at the CHRM3 locus in Yale-Penn
1 EAs, represented by rs115455482, rs74722579, and
rs1938228 (all r2 ≥ 0.95 in EAs; rs115455482 is rare in
AAs), with all three SNPs nominally significant in Yale-
Penn 2 EAs. Only rs115455482 and rs74722579 were
available in COGA, which when meta-analyzed with Yale-
Penn 1 and 2 samples increased the significance of the

association. We further evaluated the association of
rs115455482 and rs74722579 with Ca-HL in the Yale-
Penn 1 and 2, and COGA AA samples. The nominally
significant association for rs74722579 (a common variant
in both AAs and EAs) in the AA meta-analysis further
supports the association. Cis-eQTL analysis of CHRM3 in
brain showed the rs115455482*T risk allele to be asso-
ciated with lower expression of CHRM3 in brain tissue
THAL. Further co-expression analysis in large brain tissue
expression datasets and mouse single neurons demon-
strated a significant correlation between the expression of
CHRM3 or its mouse homologous Chrm3, and that of
three genes (GABRG2, CHRNA4, and HRH3) that have
been shown to affect risk for psychotic disorders,
including schizophrenia. Similar to CHRM3 itself, these
are all biologically relevant.
The protein product of CHRM3 is the muscarinic AChR

M3, which is localized to multiple tissues, including the
brain, smooth muscle, endocrine and exocrine glands, and
lungs. In human, mutation of CHRM3 causes disease of
the urinary bladder and a prune-belly-like syndrome22. In
mice, cannabinoids consistently increase acetylcholine
(ACh) and decrease ACh turnover in the HIPP23. Phar-
macological evidence has also implicated cholinergic
dysfunction in the manifestation of psychotic symptoms.
Muscarinic ACh receptors (AChRs) play important roles
in animal models that are used to examine sensory gating,
which is known to be disrupted in schizophrenic patients,
and the activation of muscarinic AChRs was suggested as
an alternative to classical antipsychotics for the treating of
psychotic symptoms23. Chrm3 knockout mice treated
with the antipsychotic drug oxotremorine that acts as
a selective muscarinic ACh receptor agonist24–26 dis-
played increased dopamine release, which is consistent
with Chrm3 playing an inhibitory role in dopamine
release24. In animal models, oxotremorine can reverse

Fig. 2 rs115455482 is a regulatory variant of CHRM3. The correlation between rs115455482 genotype and CHRM3 expression across ten brain
tissues in European samples. Line within each boxplot represents median and box region indicates the range from first quantile to third quantile. Up
and down whiskers, as well as dots outside box region, represent maximum value, minimum value, and outliers, respectively. The boxplot was
generated in Braineac (http://www.braineac.org/). The abbreviations for ten brain tissues are CRBL (cerebellar cortex), FCTX (frontal cortex), HIPP
(hippocampus), MEDU (medulla specifically inferior olivary nucleus), OCTX (occipital cortex), PUTM (putamen), SNIG (substantia nigra), TCTX (temporal
cortex), THAL (thalamus), and WHMT (intralobular white matter). Affymetrix ID t2387606 represents transcript IDs for CHRM3 at mRNA level.
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methamphetamine-, ketamine-, and cocaine-induced
hyperlocomotion26. Blockade of cholinergic receptors,
particularly muscarinic receptors, causes a psychosis
characterized by hallucinations and cognitive impairment
in normal human subjects and exacerbates symptoms in
schizophrenic patients26. This is consistent with the
assumption that cannabis use is an environmental risk
factor in the etiology of schizophrenia, as THC may
directly affect T-type calcium channels in the THAL by
increasing the excitability of THAL neurons27. In our
study, the risk rs115455482*T allele is most significantly
associated with lower expression of CHRM3 in THAL,
suggesting potential excitatory-to-inhibitory imbalance in
the THAL may predispose to cannabis-induced psychosis
or schizophrenia.
In the analysis of several brain tissue samples, CHRM3

expression was associated with the expression of three
other genes related to neuropsychiatric traits, GABRG2,
CHRNA4, and HRH3. GABRG2 was co-expressed with
CHRM3 across eight brain tissues and the same co-
expression pattern was observed for its mouse homo-
logous Chrm3 with Gabrg2 in six GABAergic single
neurons. GABRG2 encodes a γ-aminobutyric acid recep-
tor subunit; the receptor has chloride channel activity.
Mutations in GABRG2 have been associated with epilepsy
and febrile seizures28. Meanwhile, CHRNA4 and HRH3
are co-expressed with CHRM3 in specific brain tissues
(particularly in THAL) and the same pattern is observed
for the mouse homologs Chrna4 and Hrh3 with different
GABAergic neurons. CHRNA4 encodes CHRNA4 (the α4
nicotinic ACh receptor), which belongs to a superfamily
of ligand-gated ion channels that play a role in fast
synaptic signal transmission. CHRNA4 interacts with
CHRNB2 (the β2 nicotinic ACh receptor), which are cri-
tical for dopamine-dependent locomotor activation after
repeated nicotine administration29. Mutations in
CHRNA4 cause nocturnal frontal lobe epilepsy type 130

and polymorphisms of CHRNA4 have been reported in
association with nicotine dependence31–33. HRH3 encodes
the histamine receptor H3, which is ubiquitously released
from neurons, mast cells, and enterochromaffin-like cells,
and can regulate neurotransmitter release34. The sig-
nificant co-expression between CHRM3 and GABRG2,
CHRNA4, and HRH3 reflects the critical function of
CHRM3 in the brain, which raises the question of whe-
ther, in response to long-term cannabis use, there is
crosstalk between CHRM3 and the three noted genes in
Ca-HL.
Multiple lines of evidence support the involvement of

CHRM3 in schizophrenia, which has some symptoms
phenotypically close to Ca-HL. In a neural connectivity
GWAS in a Chinese schizophrenia case–control sample,
CHRM3 variant rs6700381 was significantly associated
with abnormal thalamo-orbital FCTX functional

connectivity in first-episode schizophrenia patients35. In a
multi-stage schizophrenia GWAS of up to 36,989 cases
and 113,075 controls36, 1 SNP rs72769124 near CHRM3
was possibly associated with schizophrenia (P= 5.5 ×
10−7; Supplementary Fig. S5). According to the Brainiac
database, neither rs6700381 nor rs72769124 is a CHRM3
eQTL among ten healthy brain tissues. These risk variants
may, however, be CHRM3 eQTLs under different condi-
tions or environmental exposures or in different brain
regions, or in different populations.
In our study, despite the lack of independent replication

of rs115455482 in COGA, when we meta-analyzed Yale-
Penn and COGA samples, the association of rs115455482
genotype with Ca-HL improved. The lack of significant
replication in COGA may be due to the differential dis-
tributions of cannabis-dependence (CAD) criterion
counts in Ca-HL cases and controls between Yale-Penn
and COGA samples (Supplementary Fig. S6). We found
that Ca-HL was significantly associated with CAD cri-
terion counts both in Yale-Penn and COGA samples
(Supplementary Fig. S7), which raises the question of
potential involvement of the interaction between
rs115455482 genotype and CAD severity in Ca-HL. As
shown in Supplementary Fig. S7, we observed that the
interaction between rs115455482*T and CAD criterion
count was significantly associated with Ca-HL in Yale-
Penn 1 EAs (P= 1.25 × 10−5) but not in Yale-Penn 2 EAs
(P= 8.94 × 10−2) or COGA EAs (P= 0.72). This may be a
potential reason for the lack of replication of rs115455482
in COGA, as the interaction between rs115455482*T and
CAD criterion counts were different among Yale-Penn
and COGA samples.
We note also a recent cannabis GWAS publication37

implicated CHRNA2 (and no other locus) as associated
with cannabis-use disorder. In our study, CHRM3 was
demonstrated to be significantly co-expressed with
CHRNA4 in the brain tissue THAL. CHRNA2 and
CHRNA4 encode the nicotinic AChR subunit α-2 and α-4,
respectively. Our result considered in that context pro-
vides additional weight to considering cholinergic sig-
naling as a mechanism of risk for cannabis-use disorder
and cannabis-induced harmful effects.
This study has limitations. The sample size (number of

Ca-HL cases) is small in the discovery GWAS, indicating
that the power of our GWAS is likely to be low except for
risk loci of large effect. Genes close to other prominent
SNP association signals (P < 5 × 10−7) in the meta-analysis
of Yale-Penn samples may warrant further study, includ-
ing APBA2, EFCAB3, MTRR, PRPRN2, SPATA6, and
FLJ12825 (SNPs mapped to these genes are included in
Supplementary Table S5). A continuous measure (e.g.,
frequency of having experienced hearing, seeing or
smelling things that were not really there after marijuana
use) would provide more statistical power and should be
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considered for future surveys eliciting information on
the trait.
In summary, we report one GWS association signal,

represented by rs115455482 and rs74722579 (r2 ≥ 0.95 in
EAs; rs74722579 is a common variant in both EAs and
AAs) at the CHRM3 locus, with Ca-HL. The findings were
GWS in our Yale-Penn 1 taken separately, with nominally
significant associations of two variants in one of two other
available samples of EAs. Additional support was obtained
for rs74722579 in the meta-analysis of AA samples. Our
findings are consistent with a model in which the reg-
ulatory variant rs115455482 affects the expression of
CHRM3 in THAL, which could alter the stimulatory
efficiency of cannabis on hallucinations, a potential
underlying mechanism for its association with Ca-HL.
Validation of these findings and the putative mechanism
is warranted to increase our understanding of the biology
of Ca-HL.
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