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Abstract

Random-pattern skin flap is commonly used for surgical tissue reconstruction due to its ease and lack of axial vascular
limitation. However, ischemic necrosis is a common complication, especially in distal parts of skin flaps. Previous
studies have shown that FGF21 can promote angiogenesis and protect against ischemic cardiovascular disease, but
little is known about the effect of FGF21 on flap survival. In this study, using a rat model of random skin flaps, we found
that the expression of FGF21 is significantly increased after establishment skin flaps, suggesting that FGF21 may exert a
pivotal effect on flap survival. We conducted experiments to elucidate the role of FGF21 in this model. Our results
showed that FGF21 directly increased the survival area of skin flaps, blood flow intensity, and mean blood vessel
density through enhancing angiogenesis, inhibiting apoptosis, and reducing oxidative stress. Our studies also revealed
that FGF21 administration leads to an upregulation of autophagy, and the beneficial effects of FGF21 were reversed by
3-methyladenine (3MA), which is a well-known inhibitor of autophagy, suggesting that autophagy plays a central role
in FGF21's therapeutic benefit on skin flap survival. In our mechanistic investigation, we found that FGF21-induced
autophagy enhancement is mediated by the dephosphorylation and nuclear translocation of TFEB; this effect was due
to activation of AMPK-FoxO3a-SPK2-CARM1T and AMPK-mTOR signaling pathways. Together, our data provides novel
evidence that FGF21 is a potent modulator of autophagy capable of significantly increasing random skin flap viability,
and thus may serve as a promising therapy for clinical use.

Introduction

Random-pattern skin flap is a technique used in tissue
reconstruction, and is not limited in flap position and
direction due to the lack of axial vasculature'?. Therefore,
this technique is particularly popular in various clinical
specialties such as plastic, trauma, and hand surgery>*.
However, due to the lack of axial blood vessels, the skin
flap’s blood supply mainly depends on the microvascular
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network at the pedicle of the flap, and the blood flow at
the distal end of the flap is often poor and inadequate,
often leading to ischemic necrosis™®. Ischemia is a parti-
cularly troublesome issue when the length-to-width ratio
of the flap exceeds 2:1, greatly limiting the clinical appli-
cation and efficacy of the random flap”®. Thus, novel
strategies to improve flap viability are of great clinical and
scientific interest.

Various published studies have used growth factors to
augment skin flap survivability, especially fibroblast
growth factors (FGF)°~''. For example, FGF1 and FGF2
were shown to improve survival of ischemic skin flap
through increasing cutaneous vasculature and preventing
ischemia'®~'2, In 2000, Nishimura et al. isolated fibroblast
growth factor 21 (FGF21) from mouse embryonic
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tissues'?, which regulated various metabolic func-
tions'*!”. Since its discovery, FGF21 has been reported to
normalize glucose and lipid homeostasis, thus preventing
the development of metabolic disorders, such as obesity
and diabetes'®!”. Furthermore, FGF21 is also found to
exert cell-protective effects in metabolically active organs,
such as the liver and pancreas'®'®. Recently, FGF21 has
been shown to promote angiogenesis, inhibit oxidative
stress and apoptosis in vascular diseases?* %%, As vascular
networks from the pedicle of random skin flaps is often
insufficient to supply blood and nutrients to the distal
flap, angiogenesis is thought to play a critical role for the
survival of distal flaps"*>. Furthermore, reducing oxidative
stress can also help improve skin flap viability by limiting
ischemia-reperfusion injury in ischemic tissues when
blood flow is recanalized**~2°, Thus, we hypothesized that
FGF21 can promote the survival of random flaps by
promoting angiogenesis and inhibiting oxidative stress.

In addition to angiogenesis and oxidative stress,
autophagy, a lysosomal-dependent and highly conserved
process of macromolecular material circulation in
eukaryotic cells, is also essential for cell survival and
maintenance®’. Past reports have suggested that FGF21
could promote autophagy in several models**~*°, and that
FGF21’s protective effects in ischemic and ischemia-
reperfusion injuries are due to its ability to upregulate
autophagy”'. However, while autophagy may enhance cell
survival, it can also accelerate cell death. Therefore, it is
unclear if FGF21’s modulation of autophagy will be ben-
eficial in all settings of ischemia, and there have been no
past studies of the effect of FGF21 in the random
flap model.

In this study, we explored whether FGF21 plays a sub-
stantial role in modulating the viability of random skin
flaps by evaluating its effects on angiogenesis, oxidative
stress, and autophagy. Furthermore, using conventional
molecular biology methods, we performed mechanistic
studies to elucidate the mechanism by which FGF21
improves survival of skin flaps. Overall, our results suggest
that FGF21 significantly improves skin flap viability via
activation of TFEB through AMPK signaling pathways,
which leads to increased autophagy, subsequently upre-
gulating angiogenesis and reducing oxidative stress.

Materials and methods
Animals and ethics statement

Adult male Sprague-Dawley rats (250-300g) from
Wenzhou Medical University (License No. SCXK [Z]]
2005-0019), were housed in a standard condition (tem-
perature: 23 £2°C, humidity: 50+ 5%, 12h light/dark
cycle), and free fed with food and water. Experimental
procedures involving animals complied with the Guide for
Care and Use of Laboratory Animals of the China
National Institutes of Health, with acceptance of the
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Animal Care and Use Committee of Wenzhou Medical
University (wydw 2017-0022).

Antibodies and regents

These following chemicals were used in the study:
FGF21 (P6101) was obtained from Beyotime Biotechnol-
ogy (Jiangsu, China); 3-methyladenine (3MA, M9281)
from Sigma-Aldrich Chemical Company (Milwaukee, W1,
USA); Dorsomorphin (Compound C, HY-13418A) and
Torinl (HY-13003) were purchased from Med Chem
Express (Monmouth Junction, NJ, USA). H&E Staining
Kit, DAB developer from Solarbio Science & Technology
(Beijing, China); the BCA Kit, NE-PER™ Nuclear and
Cytoplasmic Extraction Reagents, and Immunoprecipita-
tion Kit from Thermo Fisher Scientific (Rockford, IL,
USA); the ECL Plus Reagent Kit from PerkinElmer Life
Sciences (Waltham, MA, USA); superoxide dismutase
(SOD), glutathione (GSH), malondialdehyde (MDA) assay
kits, and pentobarbital sodium from Jiancheng Technol-
ogy (Nanjing, China). Primary antibodies were purchased
from companies as following: FGF21 (26272-1-AP), VEGF
(19003-1), SOD1 (10269-1), VPS34 (12452-1), MMP9
(10375-2), HO1 (10701-1), cathepsin D (CTSD, 21327-1),
and Caspase 3 (CAPS3, 19677-1) from Proteintech Group
(Chicago, IL, USA); cytochrome ¢ (CYC, 14796), Bax
(32027), endothelial nitric oxide synthase (eNOS, 11940S),
AMPK (2532), p-AMPK (2537), mTOR (2983), p-mTOR
(2971), FOXO3a (12829), p-FOXO3a (9466), and CARM1
(3379) from Cell Signaling Technology (Beverly, MA,
USA); P-TFEB (Ser221) (AF3708) from Affinity Bios-
ciences (OH, USA), SQSTM1/p62 (ab56416) from Abcam
(Cambridge, UK); LC3B (L7543) from Sigma-Aldrich
Chemical Company (Milwaukee, WI, USA); Cadherin5
(A02632-2) from Boster Biological Technology (Wuhan,
China); GAPDH (AP0063) from Biogot Technology
(Shanghai, China); Histone-H3 (17168-1-AP) and SKP2
(15010-1-AP) from Proteintech Group (Chicago, IL,
USA). Horseradish peroxidase (HRP)-conjugated IgG
secondary antibody was purchased from Santa Cruz Bio-
technology (Dallas, TX, USA). Fluorescein isothiocyanate
(FITC)-conjugated IgG secondary antibody was obtained
from Boyun Biotechnology (Nanjing, China). And 4',6-
Diamidino-2-phenylindole (DAPI) solution was from
Beyotime Biotechnology (Jiangsu, China).

Establishment of a skin flap model

Two percent (w/v) of pentobarbital sodium (40 mg/kg)
was injected intraperitoneally to rats for anesthesia. The
random-pattern skin flap was established in the central
dorsum according to the modified McFarlane flap model
performed in published studies®>**. In brief, after shaving
hair and disinfecting, a caudal skin flap (3 cm x 9 cm) was
cut and separated from subcutaneous deep fascia on the
rat back. Subsequently, both sacral arteries were exposed
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and sectioned. Then the flap was covered on the donor
bed and sutured by 4-0 silk. The flap was averagely divi-
ded into three area from its distal part to the pedicle in the
following order: Area I, Area II, and Area III. Sham rats
did not received any operation, and the skin in the dor-
sum back was marked to delineate Area I, Area II, and
Area III, corresponding to animals with flap surgery. In
our experimental model, Area I is normally healthy, and
Area III is normally necrotic without intervention. Area II,
on the other hand, is usually ischemic and tending toward
necrosis. To promote flap survival, Area II was used as the
watershed area at which therapies are targeted to inhibit
ischemia and potential necrosis. Therefore, Area II was
selected for histological and molecular biological
examination.

Preparation of adeno-associated virus (AAV) vector

AAV-TFEB shRNA was obtained from Shanghai Gen-
echem Company (Shanghai, China). pAV-U6-shRNA
(TFEB)-CMV-EGFP was produced by synthesizing
TFEB-activated protein kinase’s shRNA sequence and
cloning into pAV-U6-shRNA-CMV-EGFP plasmid. Then,
pAV-U6-shRNA (TFEB)-CMV-EGFP, Ad helper (adeno-
virus helper plasmid), and AAV Rep/Cap expression
plasmid were used to produce AAV9-U6-shRNA (TFEB)-
CMV-EGFP via transfection of AAV-293 cells. In a
similar process, scramble control was produced using
AAV9-U6-shRNA  (scramble)-CMV-EGFP. Iodixanol
gradient method was used to purify viral particles. Titers
of AAV9-U6-shRNA (TFEB)-CMV-EGFP and AAV9-U6-
shRNA (scramble)-CMV-EGFP were determined by
quantitative PCR, and were 1.243x10'%, 122 x 10"
genomic copies per ml, respectively.

Animal groups and treatment protocols

Hundred and forty-four rats operated with random-
pattern skin flap were randomly divided into seven
groups: a Control group (1 = 30), a FGF21 group (1 = 30),
a FGF21+3MA group (n=24), a FGF21+ AAV-
Scramble Control group (Scramble, n = 18), a FGF21 +
AAV-TFEB short hairpin RNA group (TFEB shRNA, n =
18), a FGF21+ CC group (n=12), a FGF21+CC+
Torinl group (n = 12). The FGF21 group was treated with
FGF21 (100 ug/kg/day) by daily subcutaneous injection
for 7 days after operation of flap model, while the Control
group with equal volume of saline using the same pro-
tocol. The FGF21 + 3MA mice were treated with FGF21
(100 pg/kg/day) and 3MA (0.5 mg/kg/day) with the same
protocol. The FGF21+ CC group and FGF21+CC+
Torinl groups received CC (1.5 mg/kg/day, intraper-
itoneal) or Torinl (2 mg/kg/day, intraperitoneal) with the
same dose of CC 30 min before FGF21 administration
(dose) every time. Fourteen days before the operation, rats
in the Scramble group and the TFEB shRNA group
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received 18 micro ml viral vectors daily in PBS with 5 x 10°
packaged genomic particles total by subcutaneous injec-
tions via a microsyringe; after the surgical procedure,
AAV-treated rats received FGF21 using the aforemen-
tioned protocol. Seven days after the surgical procedure,
all animals were euthanized with excess anesthesia, and
tissue samples (0.5cm x 0.5cm) were harvested from
Area 1II of the flaps.

Assessment of flap survival area and edema

Macroscopic behavior of the flap was observed and
recorded daily. The survival area percentage of skin flap
was assessed using photograph of flap by Image] software
(National Institutes of Health, Bethesda, MD): The per-
centage of survival area was calculated with the following
formula: % survival = survival area + total area x 100%.

Flap tissue edema was evaluated by the tissue water
content. Samples harvested on post-op day (POD) 7 were
dehydrated in an autoclave of 50°C and weighed daily
until the weight remained constant over 2 days. Then the
tissue water content was calculated as: percentage of tis-
sue water content of flap = (weight prior to autoclave —
final dry weight) + initial weight x 100%.

Laser Doppler blood flow (LDBF) imaging

Blood supply under flap was visualized using LDBF
imaging. Rats were anesthetized and placed in a prone
position on the 7th day after surgery, and the skin flap was
scanned by Laserflo BPM (Vasamedic, St. Paul, MN,
USA), a laser doppler instrument that features deep
penetration and ability to visualize small vessels with
adequate depth®®, The results were quantified by moor
LDI Review software (ver.6.1; Moor Instruments), and
blood flow intensity was assessed using perfusion units
(PU). Scans were repeated three times and averaged for
each animal before statistical comparison between groups.

Hematoxylin and eosin (H&E) staining

Six tissue samples were collected per group for histo-
pathologic analysis. Specimen were fixed in 4% (v/v)
paraformaldehyde and embedded in paraffin wax before
being cut as tissue sections of 4-pm thickness, which were
used for H&E staining. Next sections were visualized via
light microscopy (x200 magnification) to evaluate histo-
logical changes, including swelling, granulation, and
microvascular reconstruction. To assess the level of
microcirculation, mean vessel density of flap tissue was
counted by the number of vascular cross section per unit
area (/mm?) from randomly selected fields.

Immunohistochemistry (IHC)

After deparaffinizing tissue specimen in xylene, ethanol
was used for rehydration, and samples were blocked with
3% bovine serum and repaired in 10.2 mM sodium citrate
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buffer. Then, the following primary antibodies were used
for incubation overnight as 4 °C: CD34 (1:100), Cadherin5
(1:100), VEGF (1:300), CASP3 (1:200), SOD1 (1:100),
CTSD (1:100). Then, samples were treated with HRP-
conjugated secondary antibody, stained by DAB kit, and
counterstained with hematoxylin. Lastly, stained sections
were visualized under light microscopy (x200 magnifica-
tion) using the DP2-TWAN image-acquisition system
(Olympus Corp., Tokyo, Japan). Quantification was per-
formed for Cadherin5, VEGF, SOD1, CASP3, and CTSD
expression levels, and number of CD34-positive blood
vessels was enumerated. Measurements were obtained
from three random sections, with six random visual

fields each.

Immunofluorescence

Tissue specimen were deparaffinized and rehydrated as
described above. Three percent (v/v) of HyO, was used to
quench endogenous peroxidase and tissue antigen was
repaired with 10.2 mM sodium citrate buffer. Three per-
cent bovine serum for 30 min was used for blocking.
Specimen were incubated with primary antibodies against
LC3B (1:200), TFEB (1:100) for 2 h at room temperature
for primary staining, followed by 1h, 37°C incubation
with anti-rabbit secondary antibodies DAPI staining. Cells
from the specimen were visualized using fluorescence
microscope and the DP2-TWAN image-acquisition sys-
tem (Olympus Corp., Tokyo, Japan). This method was
used to assess LC3II-positivity and TFEB translocation
into nucleus.

TUNEL staining

DNA damage was assessed using TUNEL (terminal
deoxynucleotide transferase-mediated (dUTP) nick-end
labeling) staining according to manufacturer’s instruc-
tions. In brief, sections, after deparaffinization, rehydra-
tion, blocking, and treatment with 10.2mM sodium
citrate buffer, were stained for 30 min at 37 °C with in situ
cell death detection kit (Roche China, Shanghai, China).
Then, nuclei was stained with DAPI. TUNEL positive cells
were visualized using a fluorescence microscope (Olym-
pus Inc, Tokyo, Japan), enumerated in six randomly
selected fields from each specimen.

Western blotting and Immunoprecipitation

After animals were euthanized, skin samples from Area II
of flap were harvested for western blotting and Immuno-
precipitation. For western blotting, six samples per group
were homogenized in radioimmunoprecipitation assay
(RIPA) lysis buffer (#sc-24948, Santa Cruz Biotechnology,
Inc., Dallas, Texas), yielding lysates of total tissue protein.
Another six samples per group (except the FGF21 4+ 3MA
group) were processed to extract cytoplasmic protein and
nuclear protein by NE-PER (Nuclear and Cytoplasmic
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Extraction Reagents). Then, protein contents were mea-
sured with BCA assay, and protein was separated by sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE), electro-transferred to polyvinylidene difluoride
(PVDF) membranes, blocked with 5% skimmed milk, and
probed with the following antibodies overnight at 4°C:
FGF21(1:1000), VEGF (1:1000), MMP9 (1:1000), Cadherin5
(1:1000), CYC (1:1000), Bax (1:1000), CASP3 (1:1000),
SOD1 (1:1000), eNOS (1:1000), HO1 (1:1000), Beclinl
(1:1000), VPS34 (1:1000), LC3B (1:500), CTSD (1:1000), p62
(1:1000), TEEB (1:1000); P-TFEB (Ser221) (1:1000), AMPK
(1:1000), p-AMPK (1:1000), FOXO3a (1:1000), p-FOXO3a
(1:1000), CARM1 (1:1000), Histone-H3 (1:1000), SKP2
(1:1000), and GAPDH (1:1000). After 2 h secondary anti-
body incubation, the ECL Plus Reagent Kit was used to
visualize bands. Image Lab 3.0 software (Bio-Rad, Hercules,
CA, USA) was used to measure intensity of each band. For
Immunoprecipitation studies, briefly, antibodies were
immobilized to the Coupling Resin, and tissue lysates were
pre-cleaned and immunoprecipitated with the immobilized
resin at 4°C overnight. Samples were eluted for western
blotting. All visual WB results are presented as a pair of
marker and GAPDH bands from one sample most repre-
sentative of the group.

Assessment of SOD, GSH, and MDA level

Oxidative stress levels in ischemic skin flaps were
evaluated using assays for SOD, GSH and MDA. Seven
days after operation, specimen from Area II was stored
at —80°C, and then weighed, homogenized, and diluted
to 10% (v/v) in ice bath. Then, SOD activity was assessed
by the xanthine oxidase method, GSH level by modified
5,5'-dithiobis [2-nitrobenzoic acid] method, and MDA
content by reaction with thiobarbituric acid (TBA) at
90-100 °C.

Statistical analysis

Statistical analysis was performed by SPSS ver. 19 soft-
ware (Chicago, IL, USA). All data are expressed as means
+ SEM. Comparisons between two independent groups
were performed using two-tailed, unpaired t-test. Com-
parisons among more than three groups was performed
using one-way ANOVA, with Bonferroni adjustment for
post hoc pairwise comparisons. A p-value <0.05 was
considered statistically significant.

Results
FGF21 ameliorates random-pattern skin flap survival
After the “modified McFarlane flap model” was per-
formed in rats, the distal part of flaps became swollen and
pale. Necrosis developed in flap Area I, with the tissue
appearing dark, dry, crumpled, and stiff. Necrosis gradu-
ally expanded toward the pedicle of skin flaps and its
progression subsided on Day 7 after flap establishment. In
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Sham group; *p < 0.05 and *p <001 vs. random skin flap Day 3 group. Data were expressed as means + SEM (n = 6 per group).

order to detect the expression of FGF21 after random skin
flap establishment, we excised tissue from the center part
of Area II at several time points from the operation, and
FGEF21 levels were assessed. Western blot analyses showed
that FGF21 was significantly enhanced in skin flaps
immediately after establishment compared with the Sham
group, with levels peaking at Day 3 (Fig. 1a, b). Therefore,
we hypothesized that FGF21 may play a substantial role in
the survival of random skin flaps. To further explore the
relationship of FGF21 and skin flap survival, we admi-
nistered exogenous FGF21 and compared flap survival at
7 days compared with flaps in the control group. Here, we
found significantly improved flap survival in the group
treated with FGF21 compared with the Control group
(Fig. 1c, d). Qualitatively, flaps in the Control group were
more swollen and bruised with more obvious venous
blood stasis (Fig. 1e). Water content of flap, which is a
measure of tissue edema, was significantly higher in the
Control group than the FGF21 group (Fig. 1f).
Microvascular network reconstruction was visualized by
LDBF (Fig. 1g). The FGF21 group showed a significantly
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stronger signal intensity of blood flow in flaps than the
Control group (Fig. 1h). Vessel density was also evaluated
using histology staining with H&E (Fig. 1i), and vessel
density in the FGF21 group was significantly increased
compared with controls (Fig. 1j). Similarly, the number of
CD34-positive vessels under IHC was also significantly
higher in the FG21 group than in the control group
(Fig. 1k, I). Together, these results show that FGF21 plays
a crucial role in flap survivability, and that exogenous
administration of FGF21 leads to significantly improved
flap survival by preventing ischemia.

FGF21 upregulates angiogenesis in flaps

To explore whether FGF21 upregulates angiogenesis in
skin flaps, we measured the levels of various markers of
angiogenesis using IHC and western blotting. Results
from both methods showed that VEGF, which is expres-
sed in vascular endothelial cells and stromal cells (Fig. 2a),
increased significantly in the FGF21 group compared with
the Control group (Fig. 2b, f, i). Likewise, integral absor-
bance of Cadherin5 in IHC and its expression in western
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blotting were increased by FGF21 treatment (Fig. 2¢, d, g, j).
Furthermore, FGF21 enhanced the level of MMP9 as
well (Fig. 2e, h). These results suggest that FGF21 upre-
gulates angiogenesis, a key determinant of skin flap sur-
vival, by activating the expression of VEGF, MMP9, and
Cadherin5.

FGF21 inhibits apoptosis in flaps

To explore possible mechanisms of cell-death inhibition
by FGF21, we assessed DNA damage by TUNEL staining,
in which the nuclei were stained blue and dUTP nick-
ends of damaged DNA were labeled green. As shown,
levels of DNA damage were decreased in the FGF21 group
(Fig. 3a, b). This finding suggests that levels of apoptosis, a
form of programmed cell death, may also play a role in

Official journal of the Cell Death Differentiation Association

modulating flap survival in FGF21-treated animals. To
assess the levels of apoptotic activity, IHC and western
blotting were used to analyze apoptosis-related proteins.
Under IHC (Fig. 3c), decreased integral absorbance of
CASP3 was observed in the FGF21 group (Fig. 3d).
Moreover, levels of Bax, CYC and CASP3 were analyzed
by western blotting (Fig. 3e, f, g), showing significantly
lower expressions in the FGF21 group (Fig. 3h, i, j).
Together, these results indicate that FGF21’s positive
effect on flap survival may be due to inhibition of apop-
tosis and subsequent DNA damage.

FGF21 attenuates oxidative stress in flaps
Oxidative stress, and subsequent damage, is a key
factor in skin flap necrosis, especially during perfusion-
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reperfusion injury. Thus, we assessed whether FGF21
impacts oxidative stress levels in skin flaps. IHC analysis
showed that FGF21 effectively increased the level of
SODI, a crucial enzyme against oxidative stress (Fig. 4a,
b). Western blotting also showed the similar results
SOD1 levels in the FGF21 group (Fig. 4c, f). We also
found higher levels of eNOS (Fig. 4d, g) and HO1
(Fig. 4e, h) in the FGF21 group, consistent with a lower
level of oxidative stress. Furthermore, SOD, GSH, and
MDA assays were processed, and results demonstrated
that SOD activity (Fig. 4i) and GSH content (Fig. 4j), two
endogenous antioxidative chemicals, increased sig-
nificantly in the flap tissue with FGF21 treatment. MDA
content, on the other hand, was depressed in the FGF21
group (Fig. 4k). Together, these results demonstrate that
FGF21 leads to significantly reduced oxidative stress,
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possibly contributing to its pro-survival effects on
random-pattern skin flaps.

FGF21 promotes autophagy in flaps

Given FGF21’s activity on angiogenesis, apoptosis, and
oxidative stress, we hypothesized that FGF21’s effects may
be due in part to modulation of autophagy. To this end,
autophagy-related proteins were analyzed to make sure
whether autophagy was activated by FGF21. Beclinl,
BPS34 and LC3II are essential constituent proteins of
autophagosomes, CTSD is a marker of lysosomes, and p62
is a substrate of autophagic flow””. Our results showed
higher percentage of positive cells with LC3II labeled
autophagosomes in the dermal layer of the FGF21 group
than the Control group (Fig. 5a, b). By IHC, we found that
FGF21 increased expression of CTSD (Fig. 5c, d).
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Moreover, western blot analysis revealed higher levels of
Beclinl, as well as LC3II, CTSD, and VPS34, in flap tissues
derived from the FGF21 group (Fig. 5e, f, g), with lower
levels of p62. These results collectively suggest that FGF21
promotes autophagy in rat random-pattern skin flap.

3MA reverses effect of FGF21 on survival promotion in flaps

To determine whether FGF21’s increase of autophagy is
beneficial for skin flap viability, we co-administered 3MA,
a well-known autophagy inhibitor, with FGF21 and
assessed outcomes. First, to validate that 3MA indeed
inhibits autophagy when co-administered with FGF21, we
assessed autophagy markers using IHC and western
blotting. Immunofluorescence showed that the percen-
tage of positive cells with LC3II labeled autophagosomes
in the dermal layer was significantly reduced by 3MA
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(Fig. 6a, b), and WB also exhibited that 3MA co-
administration significantly decreased the expression of
LCII, Beclinl, VPS34, and CTSD, and obviously increased
the expression of p62 (Fig. 6¢, d). The above results
demonstrated that 3MA successfully inhibited autophagy
stimulated by FGF21 in random skin flaps.

Next, we evaluated whether 3MA co-administration
impacted flap viability outcomes of FGF21-treated skin
flaps. Our results showed that in the FGF21 + 3MA
group, flap survival decreased significantly when com-
pared with the FGF21 group (Fig. 6e, f). Similarly, 3MA
worsened flap edema (Fig. 6g), resulting in a significant
difference in water content (Fig. 6h). LDBF results also
showed that 3MA reduced the density of subcutaneous
blood vessels (Fig. 6i), and after quantification, the dif-
ference was significant (Fig. 6j). H&E staining revealed
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that the mean vascular density in the FGF21+3MA
group was significantly reduced (Fig. 6k, 1). Moreover,
IHC staining showed that significantly fewer CD34-
positive blood vessels were found in the FGF21 + 3MA
group (Fig. 6m, n). Together, these results showed that
3MA largely reversed FGF21’s survival benefit for skin
flaps. Thus, it could be speculated that activating autop-
hagy is a main mechanism by which FGF21 promotes flap
survival.

3MA reverses effects of FGF21 on angiogenesis, oxidative
stress, and apoptosis in flaps

To further validate autophagy as a main player in FGF21’s
benefit for skin flap survival, we explored the effect of 3MA
co-administration on angiogenesis, oxidative stress, and
apoptosis. Here, we found that the expression of
angiogenesis-related proteins (MMP9, VEGF, Cadherin5) in
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the FGF21 + 3MA group was significantly reduced, com-
paring to the FGF21 group, indicating that autophagy
promoted angiogenesis in the random flap model (Fig. SA,
D). Similarly, 3MA significantly increased the expression of
apoptosis-related proteins (Bax, CYC, CASP3), indicating
that autophagy inhibited apoptosis in FGF21-treated skin
flaps (Fig. SB, D). Also, 3MA significantly reduced the levels
of protective proteins (SOD1, eNOS, HO1) against oxida-
tive stress (Fig. SC, D). In addition, the tissue content of
SOD (Fig. SE) and GSH (Fig. SF) was significantly less in the
FGF21 + 3MA group, and MDA was increased (Fig. SQ),
indicating that autophagy protected tissues from oxidative
stress in FGF21-treated flaps. Altogether, our results sug-
gest that FGF21 increased the level of autophagy, which is a
main mechanism by which FGF21 promotes angiogenesis,
inhibits apoptosis and reduces oxidative stress in random-
pattern skin flaps, ultimately improving flap viability.
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FGF21 boosted autophagy via enhancing TFEB activity
Previous studies have shown that TFEB plays an
important role in the regulation of autophagy. We
assessed levels of dephosphorylation and nuclear trans-
location of TFEB after FGF21 treatment in random skin
flaps, and our results showed that the percentage of TFEB
translocation into nucleus in the dermal layer was sig-
nificantly higher in the FGF21 group than the control
group (Fig. 7a, b). In addition, western blotting also
revealed that the intranuclear level of TFEB was sig-
nificantly increased by FGF21, while the level of P-TFEB
(Ser221) was decreased (Fig. 7c, d). These results suggest
that FGF21 increased TFEB dephosphorylation, and
nuclear translocation, indicating that FGF21 augments
autophagy via activation of TFEB. To further validate that
TFEB activation is responsible for FGF21’s augmentation
of autophagy, we utilized TFEB shRNA to silence TFEB
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activity, and designed a trial comparing three groups: the
FGF21-only group, the FGF21 + Scramble group (non-
active shRNA), and the FGF21 + TFEB shRNA group.
Results showed that both the level of P-TFEB (Ser221)
and nuclear expression of TFEB in the TFEB shRNA
group were significantly lower than that in the Scramble
group, while there was no significant difference in nuclear
expression of TFEB between the FGF21 group and the
FGF21 + Scramble group (Fig. 7g, h). These results sug-
gest that transfection of TFEB shRNA successfully
inhibited phosphorylation and nuclear translocation of
TFEB.

Next, we evaluated the effect of inhibiting TFEB on
FGF21-induced autophagy in skin flaps. Immuno-
fluorescence displayed that there was no significant
difference in the proportion of positive cells with LC3II
labeled autophagosomes in the subcutaneous tissues
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between the FGF21 group and the FGF21 + Scramble
group, while the proportion in the TFEB shRNA group
was significantly lower than in the FGF21 4 Scramble
group (Fig. 7e, f). Similarly, WB results showed that the
levels of Beclinl, VPS34, CTSD, LC3II, p62 were not
significantly different between the FGF21 group and
the FGF21 + Scramble group, and the expression of
Beclinl, VPS34, CTSD, LC3II, and p62 was sig-
nificantly lower in the FGF21 + TFEB shRNA group
than in the FGF21 + Scramble group, while p62 was
opposite (Fig. 7i, j). Together, these results suggest that
TFEB activation and nuclear translocation is a major
mechanism by which FGF21 increases the level of
autophagy.
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FGF21 activated AMPK-mTOR pathway and AMPK-FoxO3a-
SPK2-CARM1 signaling cascade in flaps

According to published reports, there are two important
pathways that modulate TFEB: the AMPK-mTOR and the
AMPK-FoxO3a-SPK2-CARM1 signaling cascades. We
investigated whether these two pathways were activated in
skin flaps treated with FGF21. Our results showed that
FGF21 increased the expression of p-AMPK and inhibited
p-mTOR in cytoplasm, while the expression of AMPK
and mTOR was not significantly different in the two
groups (Fig. 8a, b), indicating that FGF21 activated the
AMPK-mTOR pathway. In the nucleus, FGF21 increased
the expression of AMPK, p-AMPK, FOXO3a, p-FOXO3a,
CARM]1, and inhibited the expression of SPK2 (Fig. 8c, d),
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indicating that FGF21 also activated the AMPK-FOXO3a-
SPK2-CARM1 pathway. To confirm the interaction of
CARM1 and TFEB, Immunoprecipitation was performed
in the Control and FGF21 groups. The result showed that
the higher level of CARMI1 associated with TFEB
expression with consistency (Fig. 8e, f).

To investigate whether FGF21-induced TFEB activation
was mediated by AMPK-FoxO3a-SPK2-CARM1 and
AMPK-mTOR signaling pathways in skin flaps, we further
explored the effects of compound C, an AMPK blocker,
on AMPK-FoxO3a-SPK2-CARM1 and AMPK-mTOR
signaling pathways and flap survival. Our results showed
that FGF21 promoted the AMPK-mTOR pathway medi-
ated TFEB dephosphorylation and nuclear translocation,
and that these effects were reversed after use of com-
pound C (Fig. 8a, b). The mTOR inhibitor, Torinl, was
also used to examine whether the effect of FGF21 is
through mTOR. Western blotting results indicated the
mTOR activation and TFEB inhibition by compound C in
FGF21-treated flaps were reversed after Torinl treatment
(Fig. 8a, b). Moreover, results of western blotting and
Immunoprecipitation demonstrated that FGF21 activated
AMPK-FoxO3a-SPK2-CARM1 signaling pathway in flaps,
and compound C inhibited the FGF21-mediated signaling
pathway stimulation (Fig. 8c—f). Finally, western blotting
results also indicated compound C significantly inhibited
FGF21-mediated enhancement of autophagy and angio-
genesis, and depression of apoptosis and oxidative stress
in the ischemic flaps (Fig. 8g, h). Together, our results
confirmed that FGF21 activated TFEB in skin flaps
through AMPK-FoxO3a-SPK2-CARM1 and AMPK-
mTOR signaling pathways.

Discussion

While random-pattern skin flaps are convenient tools
in tissue reconstruction, distal ischemic necrosis is a
common clinical complication, limiting the use of ran-
dom flaps and reducing the success of surgery>>>°. The
main reasons for ischemic necrosis at the distal flap are
insufficient blood supply and ischemia-reperfusion
injury®®®”. Oxidative stress and apoptosis are two
important mechanisms of ischemia-reperfusion injury,
leading to further damage or necrosis of the tissue®*>’.
In our studies, our results showed that FGF21 plays a
central role in skin flap survival, and that administration
of exogenous FGF21 improves flap viability by activation
of autophagy and subsequent enhancement of angio-
genesis, inhibition of apoptosis, and reduction of oxi-
dative stress.

FGF21, a member of the FGF family, is a polypeptide of
209 amino acids, which has the function of regulating cell
growth, differentiation and metabolism in the body™.
Previous studies have shown that FGF21 promotes
angiogenesis through Dynamin-2 and Rab5-mediated
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pathways in endothelial cell models'>. Furthermore,
FGF21 was reported to ameliorate myocardial ischemia/
reperfusion injury through enhancing autophagy®’. In
addition, the role of FGF21 in inhibiting oxidative stress
and apoptosis has also been reported®>*!. Therefore, we
hypothesized that FGF21 may reduce ischemic necrosis in
random-pattern skin flaps, which was validated in our
present work. Necrosis of the flap was fully evaluated, and
the survival area, the water content, and the distribution
of the vascular network under LDBF were all improved,
suggesting that FGF21 is a potent promoter of flap
viability.

To evaluate FGF21’s activity on angiogenesis, we per-
formed H&E staining and IHC staining of CD34-positive
vascular cells, and found that FGF21 increased the density
of blood vessels in the flap tissue. We then investigated
whether FGF21 modulates MMP9, VEGF, and Cadherin5,
which are known to enhance angiogenesis*>*>. MMP9
promotes the dissociation of cell junctions between
mature vascular cells**, VEGF contributes to multiple
processes of angiogenesis (particularly mitosis of vascular
cells) and Cadherin5 promotes the formation and
maturation of neovascularization®’. Our results showed
that with FGF21 treatment, MMP9, VEGF and Cadherin5
were all increased in the ischemic flap tissue. This sug-
gests that FGF21 is a strong promoter of angiogenesis in
the rat random flap model.

Next, we evaluated whether oxidative stress, a key
determinant of tissue survival, is affected by FGF21. In the
injury and repair process, when blood flow of ischemic
tissue is resumed, oxygen molecules brought by the blood
easily react to form superoxide anion which undergoes
lipid peroxidation with the cell membrane and destroys it,
causing cell-death tissue necrosis and producing MDA in
the process*®*’. Previous studies have shown that oxida-
tive stress can be depressed by autophagy enhancement®,
Thus we hypothesized that FGF21 may promote flap
survival via inhibiting oxidative stress accumulation. Here,
we showed via both IHC and WB that FGF21 increases
the expression of SOD1, eNOS, and HO1, which are
known to alleviate oxidative stress and reduced the level
of MDA. Therefore, our results demonstrate that FGF21
is an inhibitor oxidative stress in random skin flaps.

Several studies have reported that FGF21 is also capable
of inhibiting apoptosis***’. For example, FGF21 depres-
sed the level of apoptosis through activating the PI3K/Akt
signaling pathway in a hypoxic-ischemic brain injury
model of neonatal rats®. Apoptosis play a major role in
the viability of ischemic skin flaps, so we hypothesized
that FGF21 may have an inhibitory effect on apoptosis in
our experimental model. From our TUNEL staining
results, we found that flaps treated with FGF21 exhibited
reduced DNA damage in cells, which may be a result of
inhibited apoptosis. During apoptosis, various cellular
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Fig. 8 FGF21 activates AMPK-mTOR pathway and AMPK-FoxO3a-SPK2-CARM1 signaling cascade in flaps. On the 7th day after operation,
samples were harvested from the Control, FGF21, FGF21 4+ CC, FGF21 + CC + Torin1 groups for the evaluation. a Western blotting showing the
cytoplasmic levels of AMPK, p-AMPK, mTOR, p-mTOR and P-TFEB (Ser221) which were corrected by GAPDH as internal control; and nuclear levels of
TFEB which were corrected by Histone-H3 as internal control. b Histogram showing quantificational comparison of AMPK, p-AMPK, mTOR and
p-mTOR. ¢ Western blotting showing the nuclear levels of AMPK, p-AMPK, FOXO3a, p-FOXO3a, SKP2, and CARM1 which were corrected by Histone-
H3 as internal control. d Histogram showing quantificational comparison of AMPK, p-AMPK, FOXO3a, p-FOXO3a, SKP2, and CARM1 between the
Control and FGF21 groups. @ Western blotting for Immunoprecipitation of CARM1 and TFEB. f Histogram exhibiting the quantification of CARM1 and
TFEB levels under Immunoprecipitation. g Western blotting showing levels of proteins of LC3lIl, p62, VEGF, SOD1, and CASP3 which were corrected by
GAPDH as internal control. h Histogram showing quantificational comparison of LC3II, p62, VEGF, SOD1, and CASP3. Significance: *p < 0.05 and **p <
0.01 vs the Control group; @p < 0.05 and @@p < 001 vs the FGF21; p < 005 and %% < 0.01 vs the FGF21 + CC. Data were expressed as means + SEM

(n =6 per group).
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stresses activate the mitochondria-mediated apoptotic
pathway, leading to the release of CYC from mitochon-
dria, which activates the caspase cascade and the final
CASP3 as an executor of apoptosis®>. Moreover, Bax is a
pro-apoptotic protein that regulates the release of CYC"?,
Our molecular studies showed that FGF21 reduced the
expression of CASP3, Bax, and CYC in ischemic flap tis-
sues, suggesting that FGF21 inhibits apoptosis in rat
random flaps.

Autophagy, a major process of degrading intracellular
waste, is a known target of FGF21 and a known modulator
of angiogenesis, apoptosis, and oxidative stress. It plays an
essential role in maintaining intracellular homeostasis,
and, in the setting of tissue damage, it alleviates the
accumulation of toxins and waste released by damaged
intracellular organelles®®. In order to further study the
mechanism of FGF21 promoting flap survival, the role of
autophagy in the flap model was evaluated. Mechan-
istically, autophagy is responsible for degrading excess or
severely damaged biomacromolecules and organelles by
lysosome pathways via autophagosome formation, fusion
of autophagosome and lysosome, and degradation of
autophagic substrates”’. In our present work, we showed
that FGF21 leads to increased markers of autophagy
activity. Moreover, after autophagy was inhibited with
3MA, angiogenesis in the flap tissue was reduced, oxida-
tive stress and apoptotic activities were enhanced, and flap
survival rate was decreased. Together, these results
demonstrate that FGF21 enhanced angiogenesis, inhibited
apoptosis and inhibited oxidative stress augmenting
autophagy, ultimately improving skin flap survival.

To further elucidate the mechanism of action of FGF21
and how it promotes skin flap survival, we also explored
upstream mechanisms of autophagy activity. Autophagy is
thought to be regulated by post-transcriptional mechan-
isms, in which transcription factors play an essential
role®. Recently, transcription factor EB (TFEB), a mem-
ber of the MiT/TFE subfamily of the helix-loop-helix
(bHLH) transcription factor family, has been shown to
exert crucial effects in promoting autophagy-related
transcriptional regulation56’57. Therefore, the relation-
ship between tissue TFEB and autophagy activity was
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investigated in this study. Mechanistically, in the cyto-
plasm, phosphorylated TFEB and molecular chaperone
14-3-3 combine to form the TFEB-14-3-3 complex; when
cells are stimulated by environmental signals (such as
starvation, toxicity and oxidation), dephosphorylation of
TFEB causes its dissociation from the TFEB-14-3-3
complex®®. Then, free TFEB enters the nucleus and
binds to many coordinated lysosomal expression and
regulation (CLEAR) elements in DNA sequences which
are related to autophagy, namely GTCACGTGAC. This
initiates expression of autophagosome forming proteins
LC3, Beclinl, and VPS34, and autophagy-related lysoso-
mal functional proteins, such as CTSD*’. In this study,
FGF21 was shown to increase TFEB expression, and that
autophagy activity in the flap model is regulated by TFEB.
Taken together, our results show that FGF21 promotes
autophagy via increasing the level of TFEB.

We also investigated how FGF21 regulates TFEB levels.
Current studies have shown that intracellular TFEB is
activated by various factors such as intracellular trophic
disorders, pathogen invasion, macromolecular metabolic
disorders and others®®. These factors are related to
nutritional deficiency caused by insufficient blood supply.
In hypoxic, ischemic and hypoglycemic conditions,
intracellular ATP reduction or increased AMP/ATP ratio
can activate the phosphorylation of AMPK, which reg-
ulates cell metabolism through its downstream signaling
pathways®®. In the cytoplasm, the activation of the
AMPK-mTOR pathway induces dephosphorylation of
Ser211 of TFEB, leading to the dissociation of the TFEB-
14-3-3 complex, allowing free TFEB to enter the
nucleus®. In the nucleus, the activation of AMPK-
FoxO3a-SPK2-CARM1 signaling cascade increases the
level of CARM1, a co-activator of TFEB, which binds to
TFEB and methylates promoter sequences, thereby
inducing efficient transcription of intracellular autophagic
genes®'. In the present study, we demonstrated that both
AMPK-mTOR and AMPK-FoxO3a-SPK2-CARM1 sig-
naling pathways are activated after treating flaps with
FGF21. Furthermore, compound C, an AMPK blocker,
inhibited the FGF21-mediated activation of these signal-
ing pathways. Together, our results confirmed that FGF21
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activated TFEB in skin flaps through AMPK-FoxO3a-
SPK2-CARM1 and AMPK-mTOR signaling pathways.
Notably, the effect of FGF21 on AMPK-mTOR signaling
is inconsistent across various studies. In neurons of Alz-
heimer’s disease, FGF21 was found to induce the activa-
tion in AMPK-mTOR signaling®®, which is consistent
with our findings. However, AMPK-mTOR signaling has
also been shown to be inhibited by FGF21 in pancreatic
islet cells®®®, The mechanisms of the differential effects
of FGF21 in various cell types are unknown, which need
further investigation. Of note, Chen et al. reported that
FGF21 promoted autophagy in the liver via PP2A-
mediated TFEB activation independent of AMPK. Whe-
ther FGF21 enhanced TFEB mediated autophagy through
PP2A signaling in ischemic flaps should be explored in
future studies®*.

Naturally, there are several limitations of the present
study that still need to be further investigated. For
example, formation of double-membrane vesicles or
autophagosomes is the key feature of macroautophagy,
and electron microscope (EM) examination is a superior
approach to identify these sub-cellular organelles com-
pared with immunofluorescence staining of LC3IIL
Therefore, EM examination is necessary to be performed
in the future. Moreover, in our study, a single dose of
FGF21 was administered right after injury; the optimal
dose and schedule of FGF21 should further evaluated to
maximize translational and therapeutic value.

In conclusion, our studies showed that FGF21 activates
AMPK-FoxO3a-SPK2-CARM1 and AMPK-mTOR sig-
naling pathways, leading to increased intracellular TFEB
expression, thereby augmenting tissue autophagy in
ischemic random flaps. Higher levels of autophagy then
enhance angiogenesis, inhibit apoptosis, and reduce oxi-
dative stress, ultimately leading to increased flap viability.
Together, these results provide strong evidence of
FGF21’s therapeutic benefit for random-pattern skin flaps
with novel mechanistic insight, highlighting FGF21’s
potential for clinical translation pending further
evaluation.
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