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Inhibition of DNA damage response at telomeres
improves the detrimental phenotypes of
Hutchinson–Gilford Progeria Syndrome
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Corey Winston Jones-Weinert1, Emelie Wallén Arzt3, Giovanna Lattanzi6,7, Oliver Dreesen5, Claudio Tripodo4,

Francesca Rossiello1,9, Maria Eriksson3,9 & Fabrizio d’Adda di Fagagna 1,8,9*

Hutchinson–Gilford progeria syndrome (HGPS) is a genetic disorder characterized by pre-

mature aging features. Cells from HGPS patients express progerin, a truncated form of Lamin

A, which perturbs cellular homeostasis leading to nuclear shape alterations, genome

instability, heterochromatin loss, telomere dysfunction and premature entry into cellular

senescence. Recently, we reported that telomere dysfunction induces the transcription of

telomeric non-coding RNAs (tncRNAs) which control the DNA damage response (DDR) at

dysfunctional telomeres. Here we show that progerin-induced telomere dysfunction induces

the transcription of tncRNAs. Their functional inhibition by sequence-specific telomeric

antisense oligonucleotides (tASOs) prevents full DDR activation and premature cellular

senescence in various HGPS cell systems, including HGPS patient fibroblasts. We also show

in vivo that tASO treatment significantly enhances skin homeostasis and lifespan in a

transgenic HGPS mouse model. In summary, our results demonstrate an important role for

telomeric DDR activation in HGPS progeroid detrimental phenotypes in vitro and in vivo.
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Hutchinson–Gilford Progeria Syndrome (HGPS) is a rare
human genetic disease most often caused by heterozygous
mutations in the LMNA gene, the most common being

c.1824C>T, encoding lamin A and lamin C1,2. This mutation
results in aberrant splicing, which leads to the expression of a
truncated form of lamin A protein called progerin. Compared
with normal fibroblasts, HGPS fibroblasts exhibit nuclear shape
abnormalities, loss of heterochromatin, as indicated by low levels
of H3K9me3, H3K27me3, and of heterochromatin protein 1
alpha (HP1α)3. Interestingly, progerin expression is sufficient to
induce cellular senescence4 and its accumulation is known to
affect stem cell function both in vitro5 and in the skin of HGPS
mouse models6. Progerin levels accumulate in the skin and
arteries of healthy aged individuals and in dermal fibroblasts and
terminally differentiated keratinocytes7–10.

Importantly, HGPS nuclei accumulate DNA damage and
markers of DNA damage response (DDR) activation, and exhibit
chromosomal instability proposed to be associated with defi-
ciencies in the DNA double-strand break (DSB) repair11,12 and
caused by accelerated telomere shortening13,14 and
dysfunction15,16. Telomerase expression in progerin-expressing
human cells was found to suppress DDR activation, improve cell
proliferation rates, and restore many senescence-associated mis-
regulated genes17, suggesting that telomere dysfunction plays a
role in HGPS.

Thus, telomere dysfunction and its consequences are emerging
as key features in HGPS. The difficulty to therapeutically imple-
ment the use of telomerase ectopic expression argues for the
development of strategies to control telomere dysfunction. These
approaches will allow to both better understand the pathogenesis
of the disease and to test potential therapeutic approaches.

At the apex of the DDR-signaling network, following DSB
generation the protein kinase ataxia telangiectasia mutated
(ATM) is activated and it phosphorylates the histone variant
H2AX at serine 139 (named γH2AX)18,19. This event is required
for the secondary recruitment of DDR factors to the DSB to form
the so-called DDR foci, including the autophosphorylated form of
ATM (pATM), p53-binding protein 1 (53BP1), and phosphory-
lated KRAB-associated protein 1 (pKap1).

We recently demonstrated that noncoding RNAs are generated
at sites of DNA damage and control DDR activation (reviewed
in20). Upon DSBs induction, RNA polymerase II is recruited to
DSBs in a MRE11/RAD50/NBS1 (MRN)-dependent manner,
where it synthesizes damage-induced long noncoding RNAs
(dilncRNAs). dilncRNAs are subsequently processed by the
endoribonucleases DROSHA and DICER into shorter noncoding
RNAs termed DNA damage response RNAs (DDRNAs), which
support a full DDR activation and secondary recruitment of DDR
factors21–24.

We have also shown that telomere dysfunction, just like DSBs,
induces the transcription of telomeric dilncRNAs (tdilncRNAs)
and telomeric DDRNAs (tDDRNAs) from both DNA strands of
the telomere25,26. Such transcripts are necessary for DDR acti-
vation and maintenance at dysfunctional telomeres. Most
importantly, we demonstrated that the use of sequence-specific
blocking antisense oligonucleotides (ASOs) inhibits the functions
of tDDRNAs and tdilncRNAs and blocks telomere-specific DDR
both in cultured cells and in a mouse model bearing uncapped
telomeres25.

In this study, we demonstrate that progerin-induced telomere
dysfunction results in the transcription of tncRNAs, and that
their functional inhibition by telomeric sequence-specific anti-
sense oligonucleotides (tASOs) improves tissue homeostasis and
extends healthspan and lifespan in a transgenic HGPS mouse
model. Hence, our results reveal the contribution of telomeric
DDR signaling in HGPS pathogenesis and validate ASO-based

strategies as a promising approach to target telomeric
dysfunction.

Results
Progerin induces tncRNAs and tASO reduces DDR and rescues
proliferation. To explore the potential generation of telomere
transcripts and study their role in an amenable human cell model
of HGPS, we expressed WT or HGPS mutant form of the LMNA
gene product (lamin A or progerin, respectively) through retro-
viral delivery in human skin fibroblasts (Supplementary Fig. 1a).
As compared with lamin A-overexpressing and control unin-
fected cells, progerin expression resulted in increased number of
telomere dysfunction-induced foci (TIFs) per cell (Supplementary
Fig. 1b, c), a decrease in BrdU incorporation and in the percen-
tage of Ki67-positive cells, two independent measures of cell
proliferation (Supplementary Fig. 1d, e). Consistent with the
observed increased number of TIFs, progerin expression led to a
significant induction of both G-rich (teloG) and C-rich (teloC)
strands of tdilncRNAs and tDDRNAs (Fig. 1a, b, respectively). In
addition, progerin expression led to a loss of H3K9me3 and HP1α
heterochromatin marks and lamin B1 protein levels (Supple-
mentary Fig. 1f) and altered nuclear envelope shape, as deter-
mined visually and as measured by reduced nuclear shape
circularity (Supplementary Fig. 1g).

We next tested the impact of the direct inhibition of telomeric
noncoding RNA (tncRNA) functions by the use of sequence-
specific blocking ASOs designed against telomeric repeats
(tASOs). We observed that delivery by transfection of tASOs
complementary to either telomeric RNA strands (anti-teloG and
anti-teloC), but not a control ASO against an unrelated sequence,
significantly reduced the number of TIFs in progerin-expressing
cells, down to the levels of control cells (Fig. 1c and
Supplementary Fig. 1h).

Next, we tested the impact that telomeric DDR inhibition had
on cell proliferation. Both anti-teloG and anti-teloC ASOs
restored the proliferation rate of progerin-expressing cells to the
levels of lamin A-expressing control cells, as independently
measured by BrdU incorporation and Ki67 (Fig. 1d, e). Persistent
DDR activation at telomeres induces cellular senescence27–31.
Hence, we tested the impact of telomeric DDR inhibition on
cellular senescence by measuring senescence-associated-β-
galactosidase (SA-β-gal) activity. We observed that treatments
with both tASOs, but not with control ASO, strongly decreased
the percentage of progerin-induced SA-β-gal-positive cells (Fig. 1f
and Supplementary Fig. 1i). In all these assays, tASO treatments
left lamin A and progerin expression levels unaltered (Supple-
mentary Fig. 1j, k) and had no impact on cell proliferation in
control lamin A-expressing cells (Supplementary Fig. 1l, m).

Next, we investigated the potential link between telomeric
DDR activation and other features previously reported to be
altered by progerin expression, namely heterochromatin
reduction17,32, lamin B1 downregulation33, and altered nuclear
shape3. We observed that lamin B1 levels, as well as the
heterochromatin marks H3K9me3 and HP1α, which were
reduced in progerin-expressing cells, were left unaltered by
telomeric DDR inhibition by tASO treatments (Supplementary
Fig. 1n). Similarly, aberrant nuclear shape caused by progerin
expression was unaffected (Supplementary Fig. 2a, b).

TERRA are telomeric transcripts whose sequence contains
UUAGGG repeats34,35 that may be recognized by anti-teloG
ASO. TERRA levels, as detected at multiple subtelomeric regions,
were not affected upon tASO treatments (Supplementary Fig. 2c)
although their levels were mildly increased in progerin-expressing
cells, consistent with previous reports of TERRA induction at
dysfunctional telomeres36,37.
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These results demonstrate that ASO-mediated telomere-
specific inhibition of DDR signaling at dysfunctional telomeres
in progerin-expressing normal human skin fibroblasts is sufficient
to prevent their proliferative defects while leaving heterochro-
matic marks and nuclear shape unaltered. Therefore, telomeric
DDR signaling plays an important role in causing proliferative
defects and the senescent phenotype in progerin-expressing cells
and demonstrates that tASOs allow to dissect the distinct
contributions of telomeric DDR to cells’ fate.

tASO effects in low-level progerin-expressing and HGPS cells.
The results described so far were generated in cells constitutively
expressing relatively high levels of progerin after retroviral
delivery. To study the generation of tncRNAs in cells expressing
progerin at the levels observed in HGPS cells, we employed a
recently developed doxycycline-inducible lentiviral-based system
which allows the tunable expression of progerin17. Also in this
model we observed an increase in both tdilncRNAs and
tDDRNAs upon progerin expression (Fig. 2a, b). Telomeric DDR
inhibition by the use of tASOs, but not control ASO, significantly
increased cell proliferation rates, as independently evaluated by
EdU incorporation and the percentage of Ki67-positive cells
(Fig. 2c, d) and decreased the percentage of SA-β-gal-positive
cells (Supplementary Fig. 2d, e). These effects were not due to
altered progerin expression, as progerin levels remained

unaffected by ASO treatments (Supplementary Fig. 2f). Similarly,
ASO treatments had no effect on heterochromatin marks, lamin
B1 levels, and telomere length (Supplementary Fig. 2f–g and 2h, i,
respectively).

We next investigated the role of tncRNAs in primary dermal
fibroblasts from HGPS patients32. To this end, we compared early
and late population doubling (PD) HGPS cells approaching
cellular senescence and being ten PD older. Consistent with
previous reports38, we detected heightened progerin levels in late
PD cells compared with early PD cells (Supplementary Fig. 3a, b);
this was associated with increased numbers of TIFs, as
independently measured by pKap1 and 53BP1 DDR markers
(Supplementary Fig. 3c–e) and decreased proliferation rates as
measured by BrdU and Ki67 (Supplementary Fig. 3f, g) in late PD
cells. The quantification of tdilncRNAs and tDDRNAs revealed
higher levels in late PD HGPS cells (Fig. 2e, f), indicating that
tncRNA levels are physiologically modulated in HGPS cells as
they proliferate in culture and approach premature cellular
senescence. To study the role of tncRNAs in these cells, we
inhibited their functions by transfecting tASOs in late PD HGPS
cells. We observed that both anti-teloG and anti-teloC ASOs, but
not control ASO, significantly reduced the number of TIFs
(Fig. 2g, h). Moreover, ASO-based inhibition of tdilncRNAs and
tDDRNAs led to an increase in BrdU- and Ki67-positive cells
(Fig. 2i, j) and reduced the number of SA-β-gal-positive cells
(Fig. 2k and Supplementary Fig. 3h) without altering progerin
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Fig. 1 Inhibition of progerin-induced tncRNAs reduces proliferative defects and cellular senescence. a, b Total cell RNA was purified from human fibroblasts
transduced with a retroviral vector expressing either lamin A or progerin. a tdilncRNAs were quantified by strand-specific RT-qPCR. Error bars represent s.
d., n= 3 independent experiments. *P < 0.05; two-tailed Student’s t test. b tDDRNAs were quantified by miScript PCR amplification of gel-extracted small
RNAs (shorter than 40 nucleotides). Error bars represent s.d., n= 3 independent experiments. **P < 0.01; two-tailed Student’s t test. c Human fibroblasts
were transfected with the indicated ASOs and 24 h later transduced with a retroviral vector expressing either lamin A or progerin. Fixed cells were stained
for 53BP1 and TRF2 to quantify telomere dysfunction-induced foci (TIFs) as determined by 53BP1 co-localizing with TRF2. n= 3 independent experiments.
**P < 0.01; one-way ANOVA with multiple-comparison post-hoc corrections. At least 100 cells per sample were analyzed. d–f Cells from experiments
shown in c were pulsed with BrdU for 8 h and stained for BrdU (d), Ki67 (e), and SA-β-Gal activity (f). Bar graphs show the percentage of positive cells ±
95% confidence interval. n= 3 independent experiments. **P < 0.01; Chi-squared test. Source data are provided as a Source Data file
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levels (Supplementary Fig. 3i, j), heterochromatin marks
(Supplementary Fig. 3k), and TERRA levels (Supplementary
Fig. 3l). Importantly, RT-qPCR analysis of mRNA levels revealed
that inflammatory cytokines commonly associated with cellular
senescence, namely IL-1a, IL-6, and IL-8, were generally reduced
upon tASO, compared with control ASO treatment (Supplemen-
tary Fig. 3m).

Altogether, these results demonstrate that tdilncRNAs and
tDDRNAs play an important role in telomeric DDR activation

caused by progerin and that their sequence-specific ASO-
mediated inhibition improves the proliferative potential of HGPS
cells and reduces their premature entry into cellular senescence.

tASOs inhibit telomeric DDR in a skin mouse model of HGPS.
The skin is one of the first organs to show typical signs of disease
in HGPS patients. These include scleroderma-like skin changes,
loss of subcutaneous adipose tissue, and alopecia39. To test
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whether telomeric DDR signaling contributes in a relevant way to
these HGPS phenotypes in vivo, we employed a conditional
HGPS mouse model in which progerin is expressed in the keratin
5 (K5)-positive compartment of the skin40. This model recapi-
tulates several features of the HGPS skin phenotypes as described
previously40.

When we tested the levels of tncRNAs in skin samples of wild-
type (WT) and HGPS mice by RT-qPCR, we observed higher
levels of both tdilncRNAs and tDDRNAs in HGPS mice as
compared with WT (Fig. 3a, b), indicative of significant telomeric
dysfunction in this HGPS model.

We previously reported that systemic treatment with tASOs
through intraperitoneal injection effectively inhibits DDR activa-
tion in vivo as observed in liver and kidney in an inducible Trf2
knockout mouse model25. To assess the impact of treatment with
tASOs in HGPS mice, pregnant mice were systemically injected
with anti-teloG, anti-teloC, or control ASOs at embryonic day 17.
After birth, new-born mice received additional ASO treatments
by intraperitoneal injections every 3 days, starting at post natal
day 2. Immunohistochemical analyses of control ASO-treated
mouse epidermis showed a higher number of cells that stained
positive for the ATM target pKAP1 and 53BP1 compared with
similarly treated WT mice (Fig. 3c, e and Supplementary Fig. 4a,
d, respectively). Strikingly, such increased levels of markers of
DDR activation in HGPS mice were significantly reduced upon
tASOs treatment (Fig. 3c, e and Supplementary Fig. 4a, d), with a
more robust effect observed in anti-teloG-treated mice. When
TIFs were analyzed, we observed increased levels in HGPS mice
compared with WT and a significant reduction in HGPS mice
treated with tASO but not control ASO (Fig. 3d and
Supplementary Fig. 4b) in the absence of detectable telomere
lengthening (Supplementary Fig. 4c). Mouse epidermis is made of
a basal and suprabasal layer of cells and proliferation is confined
to the basal layer, while suprabasal layer is composed of
differentiated elements in a quiescent state41. We determined
the number of proliferating cells in ASO-treated skin by
immunohistochemistry against Ki67. In agreement with previous
studies in this HGPS mouse model40, the overall proliferation of
epidermal cells, expressed as the percentage of Ki67-positive cells,
was increased, likely due to a perturbed homeostasis, as compared
with that of WT mice. Such an increase was mainly contributed
by the induction of an aberrant proliferative activity within the
differentiative, suprabasal, layers of the epidermis, which under
normal conditions are quiescent (Fig. 3f and Supplementary
Fig. 4e). Interestingly, anti-teloG treatment induced a significant
decrease of the pathological proliferation observed in the
suprabasal layer of HGPS skin down to levels observed in WT

animals (Fig. 3f and Supplementary Fig. 4e) while the
proliferative fraction of the basal layer was not significantly
affected. These results indicate that anti-teloG can restore
homeostatic proliferation. This effect on keratinocyte prolifera-
tion was best observed by combined K5 and Ki67 immunostain-
ing (Supplementary Fig. 4e) which also allowed to exclude a
contribution of K5-negative nonepithelial proliferating cells (e.g.,
immune cells) in the epidermis. Within the same compartments,
we also evaluated the number of cells expressing p16, a marker of
cellular senescence. In the basal epidermis of HGPS mice, we
observed a significantly higher number of p16-positive cells
compared with WT animals, which was reduced by anti-teloG
treatment—p16 was widely expressed in the suprabasal layer both
in WT and HGPS mice and unaffected by treatments (Fig. 3g and
Supplementary Fig. 4f). Taken together, these results indicate that
in vivo sequence-specific targeting of tncRNAs by tASOs
successfully inhibits DDR signaling, limits the pathological
induction of p16 in the skin basal layer, and controls aberrant
suprabasal layer cells proliferation, reverting key pathological
features of this skin-specific HGPS mouse model.

tASOs improve skin homeostasis in HGPS mice. To study the
impact of reduced DDR activation by tASOs in the skin of HGPS
mice, we performed a thorough histopathological characterization
of the skin epidermal and dermal layers. Progerin expression in
this HGPS mouse model has previously been reported to induce
severe skin abnormalities, impairing homeostasis, and
development40,42. Indeed, in HPGS mice we observed epidermal
hyperplasia with hyperparakeratosis, basal layer disarray (i.e.,
alteration in the shape, orientation, and cell-to-cell adhesion of
basal cells), nuclear pleiomorphism and atypias, immune cells
infiltrate, along with increased apoptotic/necrotic figures, as
illustrated in Fig. 4a. These morphological modifications in the
epidermis were associated with alterations of the dermal layer
thickness ratio, increased dermal inflammatory infiltration and
stromal fibrotic remodeling, hyperplasia, and irregular matura-
tion of the sebocytes in sebaceous glands (Supplementary
Fig. 5a–h).

To determine the impact of tASO treatment on these
pathological features, we graded the severity of these skin
alterations according to a combined semiquantitative histopatho-
logical score (see “Methods” section) on haematoxylin and eosin
(H&E)-stained sections from ASO-treated mice. Overall, we
observed that tASO, but not control ASO, treatments reverted, to
different extents, the histomorphological alterations of HPGS
samples. Specifically, the degree of epidermal hyperplasia,

Fig. 2 Low levels of progerin expression and lamin A G608G mutation cause telomeric dilncRNAs and DDRNAs accumulation and their inhibition reduces
proliferative defects and cellular senescence. a, b Total cell RNA was isolated from human fibroblasts carrying a doxycycline (Dox)-inducible progerin
lentiviral-based system. a tdilncRNAs were quantified by strand-specific RT-qPCR. Error bars represent s.d., n= 3 independent experiments. *P < 0.05,
**P < 0.01; two-tailed Student’s t test. b tDDRNAs were quantified by miScript PCR amplification of gel-extracted small RNAs (shorter than 40
nucleotides). Error bars represent s.d., n= 3 independent experiments. *P < 0.05, **P < 0.01; two-tailed Student’s t test. c, d Lamin A, Progerin-expressing,
and control normal dermal fibroblasts (NDF) were transfected with the indicated ASOs. After 9 days cells were pulsed with EdU for 8 h and stained for EdU
(c) and Ki67 (d). Bar graphs show the percentage of EdU and Ki67-positive cells ± 95% confidence interval. n= 3 independent experiments. **P < 0.01;
Chi-squared test. At least 1000 cells per sample were analyzed. e, f Total cell RNA was isolated from HGPS patient-derived cells at early and late
population doubling (PD). e tdilncRNAs were quantified as in a. Error bars represent the s.d. n= 4 independent experiments. *P < 0.05, **P < 0.01; two-
tailed Student’s t test. f tDDRNAs were quantified as in b. Error bars represent the s.d. n= 3 independent experiments. *P < 0.05; two-tailed Student’s t
test. g Late PD HGPS patient fibroblasts were transfected with the indicated ASOs and stained for 53BP1 or pKap1 (red) and TRF2 (green) to quantify TIFs.
Co-localization analysis was assessed as in Fig. 1c. n= 3 independent experiments. *P < 0.05; one-way ANOVA with multiple-comparison post-hoc
corrections. At least 100 cells per sample were analyzed. h Representative stack images from quantifications shown in g. Scale bars, 10 μm. i–k HGPS
patient fibroblasts from the experiment shown in g were pulsed with BrdU for 24 h prior to fixation and stained for BrdU (i), Ki67 (j), and SA-β-Gal activity
(k). Bar graphs show the percentage of BrdU, Ki67, and SA-β-Gal-positive cells ± 95% confidence interval. n= 3 independent experiments. *P < 0.05, **P <
0.01; Chi-squared test. At least 300 cells per sample were analyzed. Source data are provided as a Source Data file
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architectural basal layer disarray, the extent of keratinocyte
nuclear atypias, and the dermal stromal remodeling were
significantly decreased by anti-teloG treatment (Fig. 4a, b and
Supplementary Fig. 5a–e). The observed increase in epidermal
and dermal thickness was also reduced by both tASOs
(Supplementary Fig. 5g, h). Expression of progerin arrests skin
development at post natal day 4 with a significant multilayered
appearance compared with the WT:42 we observed that treatment
with tASOs—anti-teloG more than anti-teloC—allowed a less
multilayered appearance, as observed by the analysis of epidermal

hyperplasia and thickness, and by a somehow more preserved
pool of cells expressing Keratin 15 (K15), a marker of epidermal
stem cells, in the basal layer (Supplementary Fig. 6a, b).
Importantly, tASO, but not control ASO, treatments reduced
the number of morphologically evident apoptotic/necrotic figures
in H&E sections, which was associated with an overall reduction
of keratinocyte apoptosis as independently assessed by TUNEL
assays (Fig. 4a and Supplementary Figs. 5f, 6c). Finally, in
agreement with an improved progression of skin development, an
overall assessment of the macroscopic phenotype of mice
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Fig. 3 A mouse skin model of HGPS shows increased levels of tncRNAs and their inhibition in vivo reduces DDR activation and cellular senescence.
a, b Total cell RNA was isolated from the skin of wild type (WT) and HGPS mice at post natal days 3 to 8. a tdilncRNAs were quantified by strand-specific
RT-qPCR. Error bars represent the s.d. n= 14 mice per group. **P < 0.01; two-tailed Student’s t test. b tDDRNAs were quantified by miScript PCR
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Scale bar, 50 μm. dMouse skin sections were stained for pKAP1 and TRF1 to quantify telomere dysfunction-induced foci (TIFs) as determined by pKAP1 co-
localizing with TRF1 in the basal layer of the skin. A cell was counted as positive if showing at least one TIF. n= 3 independent experiments. **P < 0.01; one-
way ANOVA with multiple-comparison post-hoc corrections. At least 300 cells per sample were analyzed. Quantification of Ki67 (f) and p16 (g) positive
cells in the supra basal and basal layers of epidermis. Error bars represent the s.d. n= 3–4 mice per group. *P < 0.05, **P < 0.01, ***P < 0.001; one-way
ANOVA with multiple-comparison post-hoc corrections. At least 300 cells per sample were analyzed. Source data are provided as a Source Data file
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indicated a significantly more preserved hair growth in the anti-
teloG-treated compared with control-treated HGPS mice from
day 8 and onwards (Supplementary Fig. 6d).

We next evaluated the impact of tASO treatments on skin
inflammation. By H&E staining we observed that HGPS mice
showed heightened levels of immune cells infiltrate in both the
dermal and epidermal compartments compared with WT animals
(Fig. 4a). Quantification of the number of infiltrating cells
expressing CD45, a pan-leukocyte marker, demonstrated their
prominent increase in the dermis of HGPS mice, compared with
WT animals, which was significantly reduced upon treatment
with both tASOs (Fig. 4c, d). Both In situ and RT-qPCR analyses
of mRNA expression of inflammatory factors in the skin of WT
and HGPS ASO-treated mice indicated an overall increase of

inflammatory cytokines in the skin of HGPS mice, with IL-1a
transcripts mainly associated with the suprabasal epidermis,
particularly at the upper granular layer, while IL-6 and IL-8
transcripts mostly localized within the dermis (Supplementary
Fig. 7). Consistently, HGPS mice showed increased cytokine
expression levels compared with WT mice and tASO treatments
variably affected their expression, demonstrating a statistically-
significant decrease for IL-8 within the dermal layer (Supple-
mentary Fig. 7h), and for IL-1a and IL-8 when whole skin RNA
was analyzed by RT-qPCR (Supplementary Fig. 7c, i).

Taken together, these results indicate that ASO-mediated
inhibition of telomeric DDR signaling in HGPS mice skin has
beneficial effects as indicated by improved tissue homeostasis and
reduced inflammation—noteworthy and differently from our
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observations in cultured cells, anti-teloC ASO had a generally
milder effect, consistent with its poorer in vivo biodistribution as
observed in the skin samples analyzed (Supplementary Fig. 8a, b).

Anti-teloG ASO administration extends lifespan of HGPS
mice. Given the positive histological outcomes induced by telo-
meric ASO treatment and most evidently by anti-teloG, we
investigated whether the systemic administration of ASOs could
impact the survival of HPGS mice. To this end, similarly to the
treatment schedule described above, pregnant mice were injected
with ASOs until death. Importantly, systemic ASO treatments
were well tolerated by both control and HGPS mice, with no
remarkable weight loss, indicating the absence of toxicities asso-
ciated with their administration (Supplementary Fig. 8c). As
previously reported, these transgenic HGPS mice have a drama-
tically shorter lifespan compared with WT animals40,42, with a
median survival of 8 days. Strikingly, treatment with anti-teloG
ASO significantly improved the survival of HPGS mice: max-
imum lifespan increased by 44% and median lifespan by 24%, as
compared with control ASO-treated mice (Fig. 4e). Under the
conditions employed, anti-teloC ASO treatment did not sig-
nificantly alter the lifespan of HGPS mice, in line with reduced
bioavailability and consistently less strong effects on DDR and
histopathological features and.

In summary, these results demonstrate that sequence-specific
targeting of progerin-induced tdilncRNAs and tDDRNAs by
ASOs allows telomeric DDR inhibition both in cultured human
cells and in vivo, resulting in improved skin homeostasis of
progeric mice and in a significant extension of their survival.

Discussion
Organismal aging is characterized by telomere dysfunction and
consequent DDR activation and accumulation of senescent
cells28,31,43–45. Animal models of telomere dysfunction, such as
that caused by telomere shortening upon telomerase inactivation
in mice, accelerate several features of physiological aging46–49.
However, the actual contribution of DDR activation at dysfunc-
tional telomeres to organismal aging remains uncharacterized.
This is also due to the fact that until now, no experimental
approach allowed telomere-specific DDR inactivation. We have
previously shown that tASOs can achieve efficient DDR inhibi-
tion at telomeres both in cultured cells and in vivo in mice
undergoing telomere dysfunction upon TRF2 genetic loss25.
However, their use in a physiological and clinically relevant
condition associated with telomeric DDR remained untested. We
used this experimental approach to determine the contribution of
telomere dysfunction and DDR activation in HGPS as a paradigm
of progeroid conditions. HGPS is associated with a number of
cellular and organismal alterations including and beyond telo-
mere dysfunction39,50.

Here we showed the impact of efficient inhibition of DDR
signaling emerging from telomeres in different HGPS cells sys-
tems and tissues by the use of inhibitory ASOs targeting
tdilncRNAs and tDDRNAs, the tncRNAs necessary for full DDR
activation25. Treatment with telomeric ASOs in three HGPS cell
systems rescued the proliferative defects and the entry into cel-
lular senescence without impacting on other features of progeroid
cells such as nuclear envelope shape alterations and loss of het-
erochromatin. These results demonstrate the relevant contribu-
tion of telomere dysfunction in the senescent phenotype of
HGPS cells.

In the skin of mice expressing progerin we observed DDR
activation in keratinocytes and the accumulation of tdilncRNAs
and tDDRNAs, supporting the notion that tncRNAs are specific
in vivo biomarkers of telomere dysfunction. ASO-mediated

inhibition of tncRNAs in the skin of HGPS mice led to a dra-
matic reduction of DDR activation and to a significant
improvement of macroscopic and histopathological features of
HPGS skin damage, either intrinsic to keratinocytes, or related to
increased inflammatory cell infiltration and stromal remodeling.
The effects of tASO treatment proved to be more conspicuous
through the administration of anti-teloG, which ultimately led to
a significant increase in the lifespan of HGPS mice. Anti-teloC
treatment showed an overall milder beneficial effect at the tissue
level and did not affect mice survival. Since anti-teloG and anti-
teloC ASO were equally effective in telomeric DDR inhibition and
rescue of proliferative defects when tested in cultured cells, the
observed in vivo differences are likely due to a suboptimal tissue
distribution of anti-teloC ASO, as indicated by its reduced
detection in the skin of this mouse model.

These results demonstrate that telomere dysfunction is a cau-
sative molecular mechanism of HGPS pathogenesis and that
controlling DDR at telomeres in a sequence-specific fashion may
represent an effective approach to improve the phenotypes of
HGPS. Most importantly conceptually, our results in cultured
cells and in mice indicate that not DNA damage per se but the
consequent DDR activation is responsible for the detrimental
effects observed.

It is worth reminding that these conclusions may have impact
beyond HGPS. The so-called telomere syndromes are a collection
of conditions associated with telomere dysfunction51 in which the
pathogenetic role of DDR activation consequent to telomere
dysfunction is unclear. Until recently, it was not possible to
selectively inhibit DDR at telomeres and monitor its effects. Here,
we have provided evidence that the use of ASOs against ncRNAs
is an efficient way to inhibit DDR signaling at dysfunctional
telomeres in a relevant animal model, and we have validated
ASOs as a potent therapeutic agent for HGPS and potentially for
any other disease caused by telomeric dysfunction.

Methods
Cell culture. BJ cells (ATCC) were grown in MEM, supplemented with 10% fetal
bovine serum (FBS), 1% L-glutamine, 1% nonessential amino acids, and sodium
pyruvate 1 mM. Phoenix amphotropic cells (ATCC) were grown in DMEM, sup-
plemented with 10% FBS, and 1% L-glutamine. HGPS patient-derived human
primary fibroblasts were grown in DMEM, supplemented with 20% FBS, and 1% L-
glutamine. Informed consent had been obtained for these cells, which were donated
to CNR Institute of Molecular Genetics by patient family to be used for research on
HGPS. Samples belong to BioLaM biobank at CNR Institute of Molecular Genetics
Unit of Bologna located in the Rizzoli Orthopedic Institute, Bologna, Italy. Normal
dermal fibroblasts (NDF) harboring pTRIPZ-v5-lamin A or pTRIPZ-v5-progerin17

were grown in MEM, supplemented with 15% FBS, and 1% L-glutamine, in the
presence of 1 μg ml−1 puromycin. For induction of progerin expression, NDFs
were cultured in the presence of doxycycline (2 μg ml−1) for 4 days. All cells were
grown at 37 °C, 5% CO2.

Retroviral transduction. Retrovirus producer Phoenix amphotropic cells were
transfected with expression vectors pLPC-lamin A and pLPC-Progerin (Addgene
plasmids numbers 69059 and 69061, respectively). Forty eight hours post trans-
fection, the concentrated viral supernatants were collected and used to perform
four rounds of infections in BJ human fibroblasts for a period of 2 days. After
infection, BJ cells were selected for 2 days in the presence of puromycin at a
concentration of 2 μg ml−1.

Animals and treatments. Mice were housed in within a pathogen-free animal
facility at the Karolinska Institutet, Huddinge, Sweden, and maintained in a 12-h
light/dark cycle, at 20–22 °C, and 50–65% air humidity. Mice were supplied with
RM3 pellets (Scanbur, Sweden) and drinking water ad libitum. This study was
performed in accordance with the institutional guidelines and regulations. Animal
studies were approved by the Stockholm South Ethical review board, Dnr. 35–15.
Breedings and genotyping were in accordance with previously described
procedures40,42. ASOs dissolved in PBS were intraperitoneally (i.p.) injected at a
concentration of 15 mg kg−1 from embryonic day 17 (i.p. injections of mothers),
and once every 3 days after birth, starting from post natal day 2 and until death.
For histology and immunohistochemical analysis, ASO-injected mice were sacri-
ficed at post natal day 6. Dorsal skin tissues were collected and either frozen and
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included in optimal cutting temperature compound or fixed in 4% paraf-
ormaldehyde (PFA) and embedded in paraffin.

RNA isolation. Total RNA from cultured cells was extracted with the Maxwell RSC
miRNA Kit (Promega) or with the mirVana miRNA Isolation kit (Life Technol-
ogies) for mRNA, DDRNA, and dilncRNA detection, according to the manu-
facturer’s instructions. Snap frozen skin tissue from mice was homogenized with a
TissueLyser II (Qiagen) at 30 Hz for 60 s and total RNA was extracted with the
Maxwell RSC miRNA Kit (Promega), according to the manufacturer’s instructions.

Real-time quantitative PCR. One micrograms of total RNA was reverse tran-
scribed using the SuperScript VILO cDNA Synthesis Kit. A volume corresponding
to 5 ng of initial RNA was employed for each real-time PCR reaction using SYBR
Green I Master Mix (Roche) on a Roche LightCycler 480 detection system. Each
reaction was performed in triplicate. Human and mouse Human ribosomal protein
lateral stalk subunit P0 (Rplp0) were used as control transcripts for normalization.
TERRA transcripts were quantified using subtelomeric primers described in ref. 37.
Primers sequences (5−3′ orientation) were:

Rplp0 (mouse and human) Fw: TTCATTGTGGGAGCAGAC
Rplp0 (mouse and human) Rv: CAGCAGTTTCTCCAGAGC
Progerin Fw: ACTGCAGCAGCTCGGGG
Progerin Rv: TCTGGGGGCTCTGGGC
IL-6 Fw (mouse): GAGGATACCACTCCCAACAGACC
IL-6 Rv (mouse): AAGTGCATCATCGTTGTTCATACA
IL-8 Fw (mouse): GTCCTTAACCTAGGCATCTTCG
IL-8 Rv (mouse): TCTGTTGCAGTAAATGGTCTCG
IL-1a Fw (mouse): CTACAGTTCTGCCATTGACC
IL-1a Rv (mouse): TTGAGCGCTCACGAACAGTT
IL-6 Fw (human): CAGCCCTGAGAAAGGAGACAT
IL-6 Rv (human): GGTTCAGGTTGTTTTCTGCCA
IL-8 Fw (human): TTGGCAGCCTTCCTGATTTC
IL-8 Rv (human): TCTTTAGCACTCCTTGGCAAAAC
IL-1a Fw (human): GGTTGAGTTTAAGCCAATCCA
IL-1a Rv (human): TGCTGACCTAGGCTTGATGA

Real-time quantitative PCR for small RNAs. One micrograms of total RNA was
fractionated on a 20% polyacrylamide, 7 M Urea gel, and RNA species shorter than
40 nucleotides were gel extracted. cDNA was synthesized using the miScript II RT
kit (Qiagen) with HiSpec buffer. Real-time PCR was performed using the miScript
PCR system (Qiagen), according to the manufacturer’s instructions. Each reaction
was performed in triplicate. mir17 was used as a control transcript for normal-
ization. Primer sequences (5−3′ orientation):

mir17 CAAAGTGCTTACAGTGCAGGTAG
teloG TAGGGTTAGGGTTAGGGT
teloC CCCTAACCCTAACCCTAA

Strand-specific real-time quantitative PCR. Detection of tdilncRNAs was per-
formed as previously described25. Briefly, RNA samples were treated with DNase I
(Thermo Scientific) at 37 °C for 1 h. Next, 1 μg of total RNA was reverse tran-
scribed using the Superscript First Strand cDNA synthesis kit (Invitrogen) with
strand-specific primers. qPCR was performed using SYBR Green I Master Mix
(Roche). A volume of cDNA corresponding to 8 ng of initial RNA was used. Each
reaction was performed in triplicate. Rplp0 was used as a control gene for nor-
malization. Primer sequences (5−3′ orientation):

Rplp0 Fw TTCATTGTGGGAGCAGAC
Rplp0 Rv CAGCAGTTTCTCCAGAGC
teloC Rv CCCTAACCCTAACCCTAA
teloG Rv TTAGGGTTAGGGTTAGGG
telo Fw CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT
telo Rv GGCTTGCCTTACCCTTACCCTTACCC TTACCCTTACCCT

Transfection. Transfections were carried out with Lipofectamine RNAiMAX
(Invitrogen) according to the manufacturer’s instructions.

ASOs sequences. The ASOs used were locked nucleic acid mixmer oligonucleo-
tides with a fully phosphorothioate backbone (Exiqon). They were used at a final
concentration of 20 nM for transfection of cultured cells and 15 mg kg−1 for mouse
injections. Sequences were as follows (5−3′ orientation):

Control ASO TTATCCGCTCACAATTCCACAT
anti-teloG ASO CCCTAACCCTAACCCTAACCC
anti-teloC ASO GGGTTAGGGTTAGGGTTAGGG

Telomere restriction fragment (TRF) analysis. Genomic DNA was extracted
from flash frozen cell pellets or skin tissues with the Qiagen DNeasy Blood and
Tissue kit. gDNA was digested with the AluI and MboI restriction enzymes, and
separated on a 0.7% agarose gel using either standard gel electrophoresis (human
cell pellets samples), or pulsed-field gel electrophoresis (mouse skin tissue samples).
DNA was then transferred to a nitrocellulose membrane, and probed with a P32-

labeled TTAGGG repeat probe (pSP73.Sty11; addgene #12401). Probed mem-
branes were exposed to a phosphorimager screen, and subsequently imaged on a
Typhoon Imager (GE).

Immunoblot. Cells were lysed in Laemmli buffer (2% SDS, 10% glycerol, 60 mM
Tris HCl pH 6.8). Thirty micrograms of whole cell lysates were resolved by SDS
polyacrylamide gel electrophoresis. Proteins were transferred to a nitrocellulose
membrane and subsequently blocked in 5% milk in TBST (Tris-Buffered Saline
0.1% Tween). Primary antibodies were incubated overnight at 4 °C and horseradish
peroxidase (HRP)-conjugated secondary antibodies were incubated for 1 h at RT.
Image acquisition was performed with a ChemiDoc Imager (Bio-Rad). Uncropped
and unprocessed scans of all immunoblots are available in the Source Data file.

Immunofluorescence for cultured cells. Cells were fixed with 4% PFA solution.
After incubation with blocking solution, cells were stained with primary antibody
for 1 h at RT, washed, and incubated with secondary antibodies for 45 min at RT.
Nuclei were stained with DAPI (1 μg ml−1). Samples were mounted in mowiol
solution (Calbiochem). For BrdU incorporation, cells were labeled with 10 μg ml−1

BrdU (Sigma) for 8–24 h and incorporation was evaluated by immunofluorescence
after DNA denaturation. NDFs were labeled with 10 μM EdU for 8 h and EdU was
detected using the Click-IT EdU (Alexa 488) protocol (Thermo Fisher Scientific).

Senescence-associated-β-galactosidase assay (SA-β-Gal). Cells were washed
in PBS, fixed for 10 min in 4% PFA, washed, and incubated at 37 °C (in the absence
of carbon dioxide) with fresh SA-β-Gal stain solution (pH 6.0): Potassium ferri-
cyanide 5 mM, Potassium ferrocyanide 5 mM, Sodium dihydrogen phosphate
0.4 M, Sodium hydrogen phosphate 92 mM, Sodium chloride 150 mM, Magnesium
dichloride 2 mM, and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 1 mg
ml−1. Staining was evident in 2–4 h and maximal in 12–16 h.

Imaging. Immunofluorescence images were acquired using a wide field Olympus
Biosystems Microscope BX61 or a GE Healthcare DeltaVision Elite high-resolution
fluorescence microscope. For co-localization between DDR markers and telomeres,
software-based image deconvolution of DeltaVision acquisitions was performed in
order to generate optical sections at different levels along the z axis of the cell. Co-
localization was assessed by ImageJ software with a customized ImageJ macro to
allow 3D stack analysis. Two points were considered co-localizing if their respective
intensities were higher than the threshold of their channels and if five pixels or
more overlapped between both channels within the same section of the stack.
Olympus wide field microscopes were used for the remaining imaging experiments
(BrdU, Ki67, and DDR markers). Comparative immunofluorescence analyses were
performed in parallel with identical acquisition parameters. Tissue immuno-
fluorescence images were acquired using a Nikon A1R and A1+ imaging systems
(Nikon Corporation, Japan). Images were analyzed using NIS elements (Nikon
Corporation, Japan). Immunohistochemical images of p16 were acquired using
either a Zeiss Axioplan 2 microscope (Carl Zeiss AG, Germany) coupled to the
Zeiss Axiocam MRm camera or a Zeiss Axioscope A1 (Carl Zeiss AG, Germany)
equipped with a Zeiss Axiocam 503 digital camera. Images were analyzed with the
Image-Pro Insight 9.1 software and with the Zen 2 image analysis software.

Circularity image analysis. Processing of each DeltaVision Elite high-resolution
image consisted of a consecutive series of algorithms implemented as plugins in the
freely available software ImageJ (http://imagej.nih.gov/ij/). Briefly, the image is
deconvoluted into separate color channels and subsequently, the lamin A/C channel is
extracted and used for pixel intensity-based threshold segmentation. For circularity
quantification, the outlines of segmented nuclei are determined using edge detection
algorithms based on differential brightness cutoffs. Circularity indexes range from 1.0
(representing a perfect circle) to 0 (representing a straight line).

In situ hybridization. IL-1a, IL-6, IL-8, and K15 transcripts were detected using
RNAscope (Advanced Cell Diagnostic) in accordance with the manufacturer’s
protocol with only a few modifications: target retrieval was performed for 20 min
and Protease Plus was applied on sections for 30 min. A minimum of 3 dots per cell
was set to be counted as a positive cell. RNAscope assay was followed by addition
of anti-keratin 5 antibody in order to identify the epidermal basal layer. Secondary
antibody was added and sections were counterstained with DAPI (1:1000, Ther-
moFisher Scientific) prior to mounting.

Chromogenic in situ hybridization. In situ hybridization was performed on 4-µm-
thick formalin-fixed paraffin-embedded skin tissue sections using custom bioti-
nylated probes (Exiqon) with the following sequences (5−3′ orientation):

To detect anti-teloC ASO: CCCTAACCCTAACCCTAACCC/3Bio/
To detect anti-teloG ASO: GGGTTAGGGTTAGGGTTAGGG/3Bio/
Following deparaffinization and endogenous peroxidase quenching with 3%

H2O2, pre treatment was performed at 98–104 °C for 15 min followed by protease
treatment at 40 °C for 15 min. The biotinylated probes were used at a final
concentration of 5 µM and hybridized at 40 °C for 2 h. ISH signal was detected by
incubating sections for 30 min at room temperature with HRP-conjugated

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13018-3 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4990 | https://doi.org/10.1038/s41467-019-13018-3 | www.nature.com/naturecommunications 9

http://imagej.nih.gov/ij/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


streptavidin and DAB (3,3′-Diaminobenzidine) substrate-chromogen. The slides
were counterstained with haematoxylin.

Histopathological examination. Dorsal skin samples were fixed in 4% PFA at 4 °C
overnight. Following fixation, the samples were transferred to 70% ethanol,
dehydrated, and embedded in paraffin. Paraffin-embedded tissues were cut into 4-
μm sections and routinely stained with haematoxylin and eosin (H&E) for histo-
pathological analysis.

For the histopathological evaluation of skin damage, a semiquantitative scoring
system was applied, which included the following variables: epidermal hyperplasia,
basal layer disarray, keratinocyte nuclear atypia, keratinocyte apoptotic/necrotic
figures, and dermal stromal remodeling. All the variables were morphologically
evaluated and scored according to the degree of severity (0, absent; 1, mild; 2,
moderate; 3 severe) and extent (1, focal; 2, multifocal; 3, diffuse). An overall
morphological skin damage score was calculated for each sample as the product of
the degree of severity and the extent.

Tissue immunohistochemistry. Paraffin-embedded tissues were cut into 4-μm
sections. Tissue sections were rehydrated and subjected to heat-induced epitope
retrieval by incubation in sodium citrate buffer (10 mM, pH 6.0 or pH 9) in a water
bath. Endogenous peroxidase activity was blocked using a solution of 2.5%
hydrogen peroxide in methanol, followed by specimen blocking with 1.5% nor-
malized goat, rabbit, or rat serum. Primary antibodies were applied to sections
followed by overnight incubation at 4 °C. Sections were incubated with either
biotinylated-goat anti-rabbit secondary antibody (1:800, Invitrogen), followed by
the label antibody (ABC Elite, Vector Laboratories), or with horseradish
peroxidase-conjugated donkey anti-rabbit secondary antibody (1:500, Nove by Life
Technologies). Enzymatic activity was revealed using 3–3′-diaminobenzidine
chromogenic substrate (Dako Cytomation). Mayer’s hemotoxylin (Histolab) was
used as counsterstain. Tissue sections were mounted with mounting medium for
light microscopy (Pertex, Histolab).

Automated quantification of nuclear DDR markers. For automated quantification
of nuclear DDR markers, whole sample scans were obtained using a Leica Aperio
ScanScope CS slide scanner (Leica Biosystems) and the Aperio Image Scope software
(version 12.3.2.8013). From the whole scans of each IHC-stained section, five non-
overlapping high-power microscopic fields were extracted and the epidermis was
manually segmented. Nuclear segmentation and assessment of nuclear positivity was
then automatically determined by the Nuclear Hub Image Analysis package and the
result was expressed as a percentage. Positive nuclei were also automatically scored
according to the staining intensity (low, intermediate, and high).

Antibodies. Anti-lamin A/C (Santa Cruz, sc6215, 1:1000 and Cell Signaling
Technology, 2032T, 1:1000); anti-BrdU (Becton Dickinson, 347580, 1:20), anti-
Ki67 (Abcam, ab16667, 1:50); anti-TRF2 (Millipore, 05–521, 1:200); anti-Tubulin
(Sigma-Aldrich, T5168, 1:2000); anti-HP1α (Sigma-Aldrich, H2164, 1:2000); anti-
H3K9me3 (Millipore, 05–1242, 1:2000); anti-lamin B1 (Abcam, ab16048, 1:5000);
anti-p16 (Santa Cruz Biotechnology, sc-1207, 1:800); anti-Keratin5 (BioSite, PRB-
160P, 1:500 and Abcam, ab52635, 1:100); anti-phospho KAP-1 (S824) (Bethyl
Laboratories, A300–767A, 1:200); anti-53BP1 (Novus Biologicals, NB100–304,
1:1000), Anti-CD45, (Abcam, ab10558, 1:500).

Statistical analysis. Results are shown as mean ± standard error of the mean (s.e.m.)
or standard deviation (s.d.) or as percentages ± 95% confidence interval as indicated. P
value was calculated by the indicated statistical tests, using Prism software. In figure
legends, n indicates the number of independent experiments. Survival distributions of
the different treatment groups were plotted using the Kaplan–Meier estimator and
statistical analysis was performed using log-rank (Mantel–Cox) test.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors state that all data generated during this study are included in the article, its
supplementary information file, and the Source Data file, and are available from the
corresponding author upon reasonable request.
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