Table 5.
Within-Network Optimality Regression Analyses: Salience Network.
| β | Std. Err. | t | p | pcorrected† | ||
|---|---|---|---|---|---|---|
| Efficiency Factor | ||||||
| Overall model: F(6,840) = 1.44, p = 0.196 | ||||||
| PCL-R | −0.007 | 0.037 | −0.20 | 0.840 | 1.000 | |
| SUD | −0.024 | 0.037 | −0.63 | 0.526 | 1.000 | |
| Age | 0.086 | 0.036 | 2.35 | 0.019 | 0.057 | |
| Race | 0.009 | 0.038 | 0.23 | 0.819 | 1.000 | |
| IQ | −0.046 | 0.039 | −1.20 | 0.232 | 0.696 | |
| TBIs | −0.027 | 0.037 | −0.71 | 0.476 | 1.000 | |
| Constant | 0.010 | 0.036 | 0.29 | 0.774 | 1.000 | |
| Vulnerability Factor | ||||||
| Overall model: F(6,840) = 0.68, p = 0.666 | ||||||
| PCL-R | −0.002 | 0.034 | −0.05 | 0.963 | 1.000 | |
| SUD | −0.020 | 0.035 | −0.58 | 0.561 | 1.000 | |
| Age | −0.011 | 0.034 | −0.33 | 0.743 | 1.000 | |
| Race | −0.038 | 0.036 | −1.06 | 0.289 | 0.867 | |
| IQ | −0.007 | 0.036 | −0.19 | 0.846 | 1.000 | |
| TBIs | 0.059 | 0.035 | 1.71 | 0.087 | 0.261 | |
| Constant | 0.025 | 0.034 | 0.75 | 0.451 | 1.000 | |
| Hubness Factor | ||||||
| Overall model: F(6,840) = 0.89, p = 0.499 | ||||||
| PCL-R | 0.031 | 0.038 | 0.81 | 0.420 | 1.000 | |
| SUD | −0.012 | 0.039 | −0.30 | 0.764 | 1.000 | |
| Age | 0.020 | 0.038 | 0.54 | 0.593 | 1.000 | |
| Race | −0.016 | 0.040 | −0.39 | 0.694 | 1.000 | |
| IQ | −0.028 | 0.040 | −0.71 | 0.479 | 1.000 | |
| TBIs | 0.076 | 0.039 | 1.95 | 0.051 | 0.153 | |
| Constant | −0.019 | 0.038 | −0.52 | 0.606 | 1.000 | |
β-values were corrected for the three comparisons in the salience network within-network optimality analysis.