Skip to main content
. 2019 Nov 9;24:102083. doi: 10.1016/j.nicl.2019.102083

Table 5.

Within-Network Optimality Regression Analyses: Salience Network.

β Std. Err. t p pcorrected
Efficiency Factor
Overall model: F(6,840) = 1.44, p = 0.196
PCL-R −0.007 0.037 −0.20 0.840 1.000
SUD −0.024 0.037 −0.63 0.526 1.000
Age 0.086 0.036 2.35 0.019 0.057
Race 0.009 0.038 0.23 0.819 1.000
IQ −0.046 0.039 −1.20 0.232 0.696
TBIs −0.027 0.037 −0.71 0.476 1.000
Constant 0.010 0.036 0.29 0.774 1.000
Vulnerability Factor
Overall model: F(6,840) = 0.68, p = 0.666
PCL-R −0.002 0.034 −0.05 0.963 1.000
SUD −0.020 0.035 −0.58 0.561 1.000
Age −0.011 0.034 −0.33 0.743 1.000
Race −0.038 0.036 −1.06 0.289 0.867
IQ −0.007 0.036 −0.19 0.846 1.000
TBIs 0.059 0.035 1.71 0.087 0.261
Constant 0.025 0.034 0.75 0.451 1.000
Hubness Factor
Overall model: F(6,840) = 0.89, p = 0.499
PCL-R 0.031 0.038 0.81 0.420 1.000
SUD −0.012 0.039 −0.30 0.764 1.000
Age 0.020 0.038 0.54 0.593 1.000
Race −0.016 0.040 −0.39 0.694 1.000
IQ −0.028 0.040 −0.71 0.479 1.000
TBIs 0.076 0.039 1.95 0.051 0.153
Constant −0.019 0.038 −0.52 0.606 1.000

β-values were corrected for the three comparisons in the salience network within-network optimality analysis.