Skip to main content
. 2019 Oct 31;16(21):4224. doi: 10.3390/ijerph16214224

Table 2.

Results of regression analyses examining the relationships between romantic relationship status (single vs in love) and hormone levels, controlling for age and BMI (N = 116).

Dependent Variable Predictors Β t (112) P
Model 1: R2 = 0.006, F (3,112) = 0.22, p = 0.88
E2 Love status 1 0.04 0.43 0.66
Age 0.03 0.36 0.72
BMI −0.05 −0.53 0.60
Model 2: R2 = 0.06, F (3,112) = 2.23, p = 0.09
FSH Love status 1 0.17 1.81 0.07
Age 0.05 0.58 0.56
BMI −0.14 −1.51 0.13
Model 3: R2 = 0.07, F (3,112) = 2.72, p = 0.048
LH Love status 1 0.20 2.15 0.03
Age 0.08 0.85 0.40
BMI −0.13 −1.37 0.17
Model 4: R2 = 0.02, F (3,112) = 0.88, p = 0.45
PRL Love status1 −0.04 −0.45 0.65
Age 0.03 0.35 0.72
BMI −0.15 −1.60 0.11
Model 5: R2 = 0.08, F (3,112) = 0.33, p = 0.02
E2/T Love status 1 0.18 1.90 0.06
Age 0.06 0.64 0.52
BMI 0.06 0.62 0.54
Model 6: R2 = 0.02, F (3,112) = 0.88, p = 0.45
fT Love status 1 −0.24 −2.68 0.008
Age −0.05 −0.53 0.60
BMI −0.16 −1.75 0.08
Model 7: R2 = 0.02, F (3,112) = 0.88, p = 0.45
CT Love status 1 −0.15 −1.63 0.10
Age −0.10 −1.11 0.27
BMI −0.14 −1.49 0.14

1 Coded as single = 0, in love = 1.