Table 3.
Performance of the classifiers (average F1 score and accuracy in 10-fold cross-validation).
| Criterion | Deep learninga, mean (SD) | Support vector machinesa, mean (SD) | Random forestsa, mean (SD) | |||
|
|
F1 score | Accuracy | F1 score | Accuracy | F1 score | Accuracy |
| 1 | 0.851 (0.005) | 0.740 (0.008) | 0.903 (0.032) | 0.842 (0.045) | 0.950 (0.015) | 0.924 (0.019) |
| 2 | 0.000 (0.000) | 0.638 (0.003) | 0.802 (0.044) | 0.828 (0.018) | 0.915 (0.005) | 0.943 (0.006) |
| 3 | 0.000 (0.000) | 0.865 (0.009) | 0.761 (0.038) | 0.917 (0.011) | 0.745 (0.088) | 0.944 (0.018) |
| 4 | 0.882 (0.001) | 0.789 (0.002) | 0.903 (0.042) | 0.833 (0.068) | 0.959 (0.017) | 0.936 (0.022) |
| 5 | 0.551 (0.249) | 0.486 (0.051) | 0.787 (0.034) | 0.721 (0.051) | 0.921 (0.022) | 0.920 (0.020) |
| 6 | 0.867 (0.002) | 0.765 (0.004) | 0.912 (0.006) | 0.852 (0.010) | 0.964 (0.002) | 0.943 (0.004) |
| 7 | 0.000 (0.000) | 0.840 (0.008) | 0.801 (0.029) | 0.924 (0.006) | 0.764 (0.057) | 0.936 (0.004) |
aThe classifier with the highest F1-score is italicized for each criterion.