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Abstract: The main purpose of the present paper is to improve the performance of the
adaptive neuro-fuzzy inference system (ANFIS) in predicting the thermophysical properties of
Al2O3-MWCNT/thermal oil hybrid nanofluid through mixing using metaheuristic optimization
techniques. A literature survey showed that the use of an artificial neural network (ANN) is the
most widely used method, although there are other methods that showed better performance.
Moreover, it was found in the literature that artificial intelligence methods have been widely used for
predicting the thermal conductivity of nanofluids. Thus, in the present study, genetic algorithms (GAs)
and particle swarm optimization (PSO) have been utilized to search and determine the antecedent and
consequent parameters of the ANFIS model. Solid concentration and temperature were considered as
input variables, and thermal conductivity, dynamic viscosity, heat transfer performance, and pumping
power in both the internal laminar and turbulent flow regimes were the outputs. In order to evaluate
and compare the performance of the models, two statistical indices of root mean square error (RMSE)
and determination coefficient (R) were utilized. Based on the results, both of the models are able
to predict the thermophysical properties appropriately. However, the ANFIS-PSO model had a
better performance than the ANFIS-GA model. Finally, the studied thermophysical properties were
developed by the trained ANFIS-PSO model.

Keywords: thermophysical properties; ANFIS; PSO; GA; MWCNT-Al2O3 nanoparticles;
dynamic viscosity; thermal conductivity; heat transfer performance

1. Introduction

According to Choi and Eastman [1], the introduction of nanofluids, which are a suspension of
nano-sized particles in conventional fluids (i.e., water, ethylene glycol (EG), oil, and so forth), has opened
new doors to improve heat transfer rate. After this pioneering study, many researchers conducted
different projects on preparation methods [2–4], characterization [5,6], thermophysical properties [7–11],
heat transfer performance [12–16], and the possible applications [17–19] of different nanofluids. Due to
the importance of nanofluids, many researchers have reviewed the published literature on different
aspects of nanofluids, such as their thermophysical properties [20,21], methods regarding their
modeling and simulation [22], and their applications [23,24].

Materials 2019, 12, 3628; doi:10.3390/ma12213628 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0003-0275-0975
https://orcid.org/0000-0002-3290-3162
http://www.mdpi.com/1996-1944/12/21/3628?type=check_update&version=1
http://dx.doi.org/10.3390/ma12213628
http://www.mdpi.com/journal/materials


Materials 2019, 12, 3628 2 of 13

No one would disagree that conducting an experimental study on the thermophysical properties
and heat transfer of nanofluids is time-consuming and costly. Thus, it would be useful to have a tool to
predict the thermophysical properties and heat transfer of nanofluids. Here, artificial intelligence could
be utilized. Over the last decade, a growing body of literature has been published on the application
of artificial intelligence in predicting the thermophysical properties of different nanofluids [25–27].
In this regard, Li et al. [28] employed an adaptive neuro-fuzzy inference system (ANFIS) and an
artificial neural network (ANN) to predict the thermophysical properties of SWCNT/Silver-water
nanofluid. They proposed a new correlation to predict the thermophysical properties. In another study
performed by Hojjat [29], the thermal and hydrodynamic performance of a nanofluid was predicted by
ANN method. They used four parameters of thermal conductivity, the Reynolds number, the solid
concentration of nanoparticles, and the Prandtl number as the input variables to predict the Nusselt
number and pressure drop. They found that there was a good agreement between the experimental
data and the ANN output. The mixed convection of a water-based nanofluid with CNT nanoparticles
has been modeled using ANFIS by Selimefendigil and Oztop [30]. Alrashed et al. [31] experimentally
studied the thermophysical properties of Cu-water nanofluid and employed the ANN method to
predict the thermophysical properties. They stated that the ANN has a good capacity in predicting
the thermophysical properties of the studied nanofluid. Baghban et al. [32] used different machine
learning methods (ANFIS, ANN, and least square support vector machine (LSSVM)) to predict the
thermophysical properties of a CNT-water nanofluid. They reported that the LSSVM possesses the best
performance over the other studied methods. Adio et al. [33] employed a genetic algorithm-polynomial
neural network (GA-PNN) and a fuzzy C-means clustering-based adaptive neuro-fuzzy inference
system (FCM-ANFIS) to predict the dynamic viscosity of MgO-EG nanofluid at different temperatures
and solid concentrations. They reported that both of the employed methods possessed a good capability
to predict the dynamic viscosity of the nanofluid. Table 1 presents a summary of the published literature
on the application of artificial intelligence in predicting the thermophysical properties of nanofluids.
Moreover, Bahiraei et al. [34] and Ramezanizadeh et al. [35] have reviewed different machine learning
methods employed by researchers to predict the thermophysical properties of various nanofluids.

Table 1. A summary of the recently published literature on using neural networks in predicting the
thermophysical properties of nanofluids.

Reference Nanofluid Studied Properties Method

Bagherzadeh et al. [26] F-MWCNT-Fe3O4/EG Thermal conductivity Enhanced ANN
Alrashed et al. [36] Diamond- and MWCNT-COOH/water Viscosity, density, and thermal conductivity ANFIS and ANN
Bahrami et al. [27] Fe-CuO/EG-water Dynamic viscosity ANN

Safaei et al. [37] ZnO-TiO2/EG Thermal conductivity ANN and Curve-fitting
Ghasemi et al. [38] COOH-MWCNT/EG Thermal conductivity ANN and Curve-fitting

Kannaiyan et al. [39] Al2O3-SiO2/water Thermal conductivity and density ANN
Moradikazerouni et al. [40] SWNT-EG Thermal conductivity ANN and curve-fitting

Hemmat Esfe et al. [41] Al2O3/Water-EG (60%–40%) Thermal conductivity ANN
Eshgarf et al. [42] MWCNT-SiO2/EG-Water viscosity ANN
Vakili et al. [43] CuO/Water-EG Thermal conductivity ANN

Maddah et al. [44] MWCNT-Carbon (60%–40%)/SAE
10W40-SAE 85W90 (50-50%) Viscosity ANN

Vafaei et al. [45] MgO-MWCNT/EG Thermal conductivity ANN

A literature survey showed that most of the conducted studies evaluated the thermal conductivity
of nanofluids by applying the ANN method. Even though many researchers have appropriately
used a variety of artificial intelligent methods for predicting the thermophysical properties, the novel
artificial intelligent methods (e.g., hybrids and ensembles) have still not been used to fully explore the
thermophysical properties. In the present study, the performance of an ANFIS model in predicting
the thermophysical properties, heat transfer performance, and pumping power of MWCNT-Al2O3/oil
hybrid nanofluid has been improved through combining it with metaheuristic optimization techniques;
genetic algorithms (GAs) and particle swarm optimization (PSO) have been utilized to search and
determine the antecedent and consequent parameters of the ANFIS model. The temperature and
solid concentration were considered as the input variables, and thermophysical properties (thermal
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conductivity and dynamic viscosity), heat transfer, and pumping power were the output variables.
The performance of the ANFIS models (ANFIS-GA and ANFIS-PSO) were evaluated using two
statistical indices of root mean square error (RMSE) and determination coefficient (R).

2. Experimental Data

In the present study, the experimental data of thermophysical properties as well as theoretical
data of heat transfer performance and pumping power of a hybrid oil-based nanofluid containing
MWCNT and Al2O3 nanoparticle presented by Asadi et al. [46] have been used. They prepared
the nanofluid samples by employing the two-step method, which is a method widely used in the
literature. The measurement of the thermal conductivity and dynamic viscosity of the nanofluid were
done at different temperatures (25–50 ◦C) and solid concentrations (0.125–1.5 vol.%). Measuring the
dynamic viscosity of the nanofluid, they employed a Brookfield cone and plate viscometer, which had
been calibrated before starting the experiments. Moreover, they used the KD2 Pro thermal analyzer
(Decagon device, Pullman, WA, USA) to measure the thermal conductivity of the nanofluids.

3. Adaptive Neuro-Fuzzy Inference System

Jang was the first researcher who introduced the adaptive neuro-fuzzy inference system (ANFIS)
in 1993 [47]. In general, the chief incentive of using ANFIS is to make a powerful mixture of an
artificial neural network (ANN) and a fuzzy inference system (FIS) [36]. The FIS is constructed based
on the if-then rules, so that the relationship between input and output variables can be determined
through the regulations [48]. Hence, it can be fitted as a prediction model for situations when input
and output data are highly uncertain; as under these conditions, the uncertainties in the data cannot be
considered in classical prediction methods [49]. Principally, two inference systems of Mamdani and
Takagi–Sugeno are implemented in fuzzy logic [50]. ANFIS is usually applied based on the inference
system of Takagi–Sugeno [51].

The ANFIS structure consists of five layers, as displayed in Figure 1. In each layer, the nodes are
divided into two forms of adaptable and fixed. In this system, the nodes of layers 2, 3, and 5 (circular
nodes) signify fixed nodes, and the nodes of layers 1 and 4 (square nodes), known as adaptive nodes,
represent nodes in which parameters are capable to learn [52].
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Figure 1. ANFIS Structure.

In order to explain the rules of each layer, we take two fuzzy if-then rules into consideration
as follows:

Rule1 : if x is A1 and y is B1 then f = p1x + q1y + r1, (1)

Rule2 : if x is A2 and y is B2 then f = p2x + q2y + r2, (2)
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where x and y are input variables, Ai and Bi are fuzzy sets, and f is the output (linguistic variables).
{pi, qi, ri} are consequent parameters, which should be measured during the ANFIS training process.
The function of each layer can be measured as follows:

Layer 1: In this layer, each node, i, is defined by a membership function. The variables in fuzzy
logic become fuzzy by means of membership functions. In fact, these membership functions are curves
that define how a point in the input space is mapped to a membership value in the interval of [0,1] [53].
Membership functions have various forms; the most common one is the Triangular, Trapzoidum,
and Gaussian membership function.

O1.i = σAi(x), (3)

O1.i = σBi(x), (4)

where x is defined as the input of node i and O1.i is the membership function of Ai, which is usually
defined by the Gaussian function as follows:

σAi(x) = exp

−(x− c)2

σ2

. (5)

In this formula, σ stands for standard deviation and C is the center of the Gaussian membership
function, which are called antecedent parameters. These parameters are relevant to membership
functions, and their value is measured by the optimization algorithm.

Layer 2: The firing strength of a rule is defined by the following relation:

ωi = σAi(x) × σBi(x) i = 1.2. (6)

Layer 3: The firing strength of each rule is normalized by dividing the firing strength of the ith
rule to the total firing strength of all rules.

O3.i = ωi =
ωi

ω1 +ω2
i = 1.2. (7)

Layer 4: The result section of the fuzzy rule is measured as follows:

O4.i = ωi fi = ωi(pix + qiy + ri) i = 1.2, (8)

where {pi, qi, ri} are the set of consequent parameters, which are computed by the optimization algorithm.
Layer 5: In this layer, all the outputs of Layer 4 are added to each other.

O5.i =
R∑

i=1

ωi fi i = 1.2. (9)

3.1. ANFIS Training

In general, two structural parameters of the ANFIS model include antecedent and consequent
parameters [54]. The gradient-based methods are usually used to adjust the antecedent and consequent
parameters in the ANFIS model [55]. One of the issues with the gradient-based methods is that the
answer is placed in local optimality, and convergence rate is slow [56,57]. Metaheuristic optimization
algorithms, such as particle swarm optimization (PSO) or the genetic algorithm (GA), can be utilized
as an effective solution for the issues relating to the gradient-based methods [58–60]. The process of
training an ANFIS model using metaheuristic optimization techniques (PSO and GA) is displayed in
Figure 2.
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3.2. Genetic Algorithm

One of the most effective metaheuristic methods used to find the minimum and maximum points
of a target function is the genetic algorithm [61]. This algorithm was first presented by Holland in 1967
and then completed by Goldberg in 1989 [62,63]. Genetic algorithms utilize Darwin’s natural selection
principles to find the optimal formula for predicting or matching patterns. Genetic algorithms are
frequently great options for random prediction techniques.

In genetic algorithm solutions, the problem is searched for randomly, step by step. The objective
of the search is to find better answers at every stage rather than just the previous one. One of the
highlighted features of the genetic algorithm is its ability to run in parallel, which helps it solve
complex problems [64]. In this method, the parameters of the search space are first shaped in
the form of strings called chromosomes. Each chromosome denotes an answer to the problem in
question. Together, the chromosomes form a set called the population, and at the beginning of the
operation, the initial population elements are typically selected randomly. The algorithm applies two
crossover intersection and mutation functions on population elements iteratively and makes a new
population from another one. The answers of a population are usually called the generation. In the
end, the favorable answers are produced in the last generation, after the finite repetition. Without a
shadow of a doubt, all answers are not necessarily optimal. In order to determine the optimality of
each answer, a criterion is used that is called “the objective function.” The target function allocates a
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value to each population chromosome of one generation, which specifies the suitability of this answer
rather than the other answers of the same generation.

3.3. Particle Swarm Optimization (PSO)

The PSO algorithm is one of the optimization methods, inspired by nature, which was first
invented in 1995 by Hub and Kennedy [65]. This algorithm is mostly utilized to solve numerical
optimization issues with very big search space without knowing about the target function gradient [66].
To solve a problem, a population of candidate solutions moves randomly, using a simple formula,
into the problem domain. It then explores, aiming to find the optimal global solution (each candidate
solution is called a particle).

As in the PSO algorithm, a population of solutions is randomly produced by the algorithm,
which look for the answer by moving within the problem domain, in a similar way to the genetic
algorithm [67]. Nevertheless, unlike genetic algorithms, in the PSO algorithm, a random velocity is
assigned to each potential answer of the optimization problem, or rather each particle, such that in each
iteration, any particle is moved regarding its velocity. Furthermore, in the PSO algorithm, unlike the
genetic algorithm, the best solution for the optimization problem (from the start of the program to the
last repetition) should be stored by each particle. The PSO algorithm is fundamentally appropriate for
solving continuous unconstrained maximization problems, like the genetic algorithm [68]. Yet, they can
also be utilized to solve optimization problems (including minimization or maximization) in a
continuous state with some changes in definition of the function definition [58].

4. Results and Discussion

The values of thermal conductivity, as well as dynamic viscosity, heat transfer performance,
and pumping power in both the internal laminar and turbulent flow regimes were measured at
temperatures of 25, 30, 35, 40, 45, and 50 ◦C, and volume fractions of 0.125%, 0.25%, 0.5%, 1%, and 1.5%
so as to train and test the presented models in this paper. Among all the experimental data, 80% were
randomly utilized as training data, and the surplus were used to test the models.

The two statistical indices correlation coefficient (R), which compares the linear relationship
between the experimental and predicted values, and the root mean square of error (RMSE),
which compares the deviation between the predicted and actual values through some positive
values, were chosen in this study so as to assess and compare the performance of developed models
in prediction.

Table 2 demonstrates the parameters of the genetic and the PSO algorithms in which the stopping
factor is the number of iterations. The parameters in Table 2 were chosen based on the authors’
experience and through trial and error. It is noteworthy to mention that the RMSE is considered as a
target function for the optimization algorithms.

Table 2. Genetic algorithm (GA) and particle swarm optimization (PSO) algorithm parameters.

GA Parameters PSO Parameters

Population Size 20 Population Size 20
Maximum Number of Iterations 1000 Maximum Number of Iterations 1000

Crossover Percentage 0.7 Inertia Weight 1
Mutation Percentage 0.5 Inertia Weight Damping Ratio 0.99

Mutation Rate 0.1 Personal Learning Coefficient 1
Selection Pressure 8 Global Learning Coefficient 2

Gamma 0.2

Table 3 displays the values of the statistical indices computed for any models in predicting
thermophysical properties. Inspecting the lowest value of RMSE, it can be concluded that the
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ANFIS-PSO model shows the best performance in estimating studied thermophysical properties,
rather than the ANFIS-GA.

Table 3. The values of the root mean square of error (RMSE) computed for the models.

Model ANFIS-GA ANFIS-PSO

Data Set Train Test Train Test
Thermal Conductivity 3.91 ×10−4 1.44 × 10−3 3.47 × 10−4 5.11 × 10−4

Dynamic Viscosity 7.07 8.55 4.56 7.31
HTP in internal laminar flow regime 8.38 × 10−2 2.89 × 10−1 5.68 × 10−2 2.14 × 10−1

HTP in internal turbulent flow regime 1.37 × 10−2 2.24 × 10−2 1.11 × 10−2 2.35 × 10−2

PP in internal laminar flow regime 5.59 × 10−2 5.64 × 10−2 3.99 × 10−2 6.22 × 10−2

PP in internal turbulent flow regime 2.45 × 10−2 1.30 × 10−2 8.66 ×10−3 1.12 × 10−2

In order to perform further examinations, the regression diagram of the experimentally measured
values versus the predicted values are displayed in Figure 3. As can be observed, the points are
scattered around the fit line (the fit line represents the experimental data), indicating a great adjustment
between the model output values and the actual values. It is easy to perceive that having a correlation
coefficient close to one, the ANFIS-PSO model gives a minor error compared to the other model in
predicting thermophysical properties.
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Figure 3. Regression plot for (A) thermal conductivity, (B) dynamic viscosity, (C) internal laminar flow,
(D) internal turbulent flow, (E) internal laminar pumping power, and (F) internal turbulent pumping
power prediction of Mg(OH)2-MWCNT-oil hybrid nanofluid.

Finally, since the ANFIS-PSO model performed better than the ANFIS-GA model in predicting
thermophysical properties, in the present study, this model is utilized as the preferred one to develop
the thermophysical properties in different temperatures ranging from 20–50 ◦C and solid concentrations
ranging from 0%–1.6%. Employing the well-trained ANFIS-PSO model, the input data set considered
all the states of temperature and solid concentration with increments of 1 ◦C and 0.1 vol.% in the
mentioned ranges, respectively. Regarding the capability of the proposed ANFIS-PSO model in accurate
estimation of the thermophysical properties of Al2O3-MWCNT-oil hybrid nanofluid, the outputs of the
ANFIS-PSO model regarding temperature and solid concentration are shown in a three-dimensional
mesh plot (Figure 4). As can be seen, the ANFIS-PSO model produces a smooth surface that shows
the high accuracy of the model. The values of the studied thermophysical properties in the defined
temperature and solid concentration data set obtained from the ANFIS-PSO models are displayed in
Figure 4.
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Figure 4. Three-dimensional mesh plot of the developed; (A) thermal conductivity, (B) dynamic
viscosity, (C) HTP in the internal laminar flow regime, (D) HTP in the internal turbulent flow regime,
(E) pumping power in the internal laminar flow regime, and (F) pumping power in the internal
turbulent flow regime using ANFIS-PSO via temperature and solid concentration.

5. Concluding Remarks

In this paper, in order to improve the performance of the ANFIS model to predict the thermophysical
properties of Al2O3-MWCNT/thermal oil hybrid nanofluid, PSO and genetic algorithms were utilized.
In this method, the antecedent and consequent parameters of the ANFIS model were regulated by
the searching mechanism of optimal values of genetic algorithms and PSO. In order to train and
test the models, data sets of experimental thermophysical properties measured by Asadi et al. [46]
at different temperatures and solid concentration were employed. Thermal conductivity coefficient,
dynamic viscosity, heat transfer performance, and pumping power in both internal laminar and
turbulent flow regimes were utilized as predictive parameters. Based on the outcomes, we can
conclude that the use of metaheuristic algorithms can be helpful in improving the ANFIS model
training process. The results demonstrate that both models are capable of predicting thermophysical
properties, appropriately. However, based on comparisons between models, the ANFIS-PSO model
produced better results in comparison to the ANFIS-GA model. Finally, using the ANFIS-PSO model
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at a temperature range of 10–50 ◦C and a volume fraction of 0%–2%, the studied thermophysical
properties were developed.
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