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the genomic instability commonly observed in tumors, which is 
a well‑known enabling characteristic assisting the transition of  
cells from normal to oncogenic by the acquisition of  the various 
hallmarks of  cancer.[4] RIGI is a high‑frequency event that occurs 
at a higher frequency and then can be explained by specific gene 
mutations. For example, MN formation was used to measure 
the DNA damage after 7 days in both high‑dose rate  (HDR) 
and low‑dose rate  (LDR)‑irradiated mouse lymphocytes cells. 
The frequency of  MN induction in the HDR population cells 
was higher compared to the equivalent LDR population cells 
following in  vivo exposure to 0–4.45‑Gy X‑rays.[5] In addition, 
the findings of  Al‑Mayah et al. showed that exosomes from the 
irradiated cell‑conditioned media of  2‑Gy directly irradiated 
MCF7  cells  (breast epithelial cancer cells) induced early and 
late (20/24 population doublings following medium/exosome 
transfer) DNA damage within the unirradiated MCF7 cells. The 
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Introduction
The classical paradigm in the radiobiology field states that the 
biological effects of  radiation are due to the deposition of  energy 
and associated DNA damage in the cell nucleus.[1] However, in 
the early 1990s, significant evidence emerged to challenge classical 
target theory and highlighted the potential role of  nontargeted 
effects.[1,2] These nontargeted effects, including radiation‑induced 
genomic instability  (RIGI) which is observed in the progeny 
of  cells exposed to ionizing radiation, can be manifested in 
different ways such as gene mutations, chromosomal instability, 
micronucleus (MN) formation, and an enhanced death rate.[2,3] 
In addition, there is considerable overlap between RIGI and 
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progeny of  irradiated and bystander cells continue to produce 
and release exosomes, which then affect their own progeny at 
later times, a response that is observed as Genomic instability 
(GI).[6] Furthermore, a significant induction of chromosome 
aberrations (CAs) in the hemopoietic system of  CBA/H mice 
was observed at 24 months following a whole‑body exposure 
to high (neutron) and low (X‑ray) linear energy transfer (LET) 
irradiation.[7] Watson et al. reported the first evidence of in vivo 
chromosomal instability induced by a bystander mechanism. 
A mixture of  irradiated and labeled unirradiated bone marrow 
cells of  CBA/H mouse transplanted into female recipients 
displayed a significant induction of CAs in the labeled unirradiated 
cells.[8] RIGI arises nonclonally within the clonal descendants’ 
multiple generations following the original exposure and can also 
arise in the descendants of  cells that have not been irradiated but 
as a result of  the perturbation of  intercellular communication 
resulting from the irradiation of  subpopulations of  cells. Unlike 
conventional observed effects, RIGI has a tendency to plateau 
with increasing dose.[9,10]

The risk associated with exposure to ionizing radiation has 
been determined from epidemiological data, most notably on 
the Japanese atomic bomb survivors.[11] However, there are only 
limited epidemiological data on cancer risk at very low doses. 
The UNSCEAR (2017) Committee assessed epidemiological 
studies analyzing cancer risk based on individual doses due to 
environmental exposures. The overall findings of these studies 
do not deliver evidence of  a risk of  cancer per unit dose higher 
than that derived from studies of  high radiation doses. There is 
considerable uncertainty in the estimates owing to both limited 
statistical power and limitations in other aspects such as residual 
confounding and inaccuracies in exposure assessment. Therefore, 
the bounds of  uncertainty do not cancel a lower risk per unit 
dose than that observed in studies of  higher doses.[12] Thus, the 
risk associated with the low‑dose and LDR radiation exposure 
typically associated with human exposure is determined by 
extrapolation from the high‑dose and HDR exposure data. This 
extrapolation relies on a number of assumptions; these include 
the assumption that DNA is a critical target with the yield of 
damage increasing linearly with dose, with a corresponding linear 
increase in the probability of  mutations at low doses (and a more 
rapid increase at higher doses and dose rates) and the relative 
efficiencies of DNA repair and misrepair. These assumptions 
form the basis of  the linear no‑threshold hypothesis. In addition 
to direct DNA damage, nontargeted effects such as RIGI may 
also modify cancer risk at low doses, but the overall impact is 
unclear, although the response is likely to be nonlinear with 
dose.[11]

The goal of  the current study was to explore the role of  dose 
(0.1 and 1 Gy) and dose rate (0.0031 Gy/min compared to 
0.42 Gy/min) for X‑ray irradiation on the induction of  RIGI 
in normal human diploid lung fibroblast cells. MN assay was 
used as a marker of  RIGI with oxidative stress explored as a 
potential mechanism. Assays were performed either immediately 
after irradiation or after approximately 10 and 20 population 
doublings.

Genome Integrity
Vol. 10: 3, 2019

Materials and Methods
Cell culture
Human fibroblast 19 (HF19) cells, a primary nontransformed 
human lung fibroblast, [13] were cultured in Minimum 
Essential Medium with Earle’s salts without L‑glutamine and 
supplemented with 10% fetal bovine serum  (Sigma: F7524), 
2‑mM L‑glutamine  (Gibco: 25030), 1% nonessential amino 
acids  (Gibco: 11140), and 1%  (w/v) penicillin/streptomycin 
solution (Sigma: P0781) in a fully humidified 5% CO2 incubator 
at 37ºC. Cells were passaged twice weekly. During irradiations, 
the solid caps of  the flasks were sealed tight in order to maintain 
the optimal pH of  the medium during irradiation while out of  
the gassed incubator and subsequently opened to allow gas 
exchange just prior to replacing into the a fully humidified 5 % 
CO2 incubator at 37ºC. 

X‑ray irradiation
Irradiations were performed at the Oxford Institute for Radiation 
Oncology, University of  Oxford, with 250‑kV constant potential 
X‑rays filtered with 1.25‑mm Sn, 0.25‑mm Cu, and 1.5‑mm 
Al. Cells were seeded at 1.5 × 106 in T75 flasks and incubated 
for  ≈  24  h prior to irradiation  [Figure  1]. HDR irradiations 
at 0.42 Gy/min were performed with the flask on a Perspex 
sheet positioned 500 mm above source with the tube operated 
at 12 mA, whereas LDR irradiations of  0.0031 Gy/min were 
performed with the flask placed on a Perspex shelf  850 mm 
above the source with the tube operated at 0.3 mA. The shelf  
supporting the flask is the center of  the Perspex box of  a 
Stuart incubator which was used to maintain the temperature 
at ≈ 37°C during the irradiation. Dosimetry rate measurements 
were performed using Gafchromic EBT3 film  (Imaging 
Equipment Ltd., Chilcompton, UK) placed on the base of  a 
T75 flask filled with an identical volume of  liquid used for the 
biological experiments. The exposed film was scanned 24 h latter 
in transmission mode at 48‑bit  red, green, and blue (RGB) (16 
bits per color) with 300 dots per inch resolution using a flatbed 
scanner (Epson Expression 10000XL). All the films were scanned 
centrally using a template and in an identical orientation as 
recommended by the manufacturer’s guidelines. The dose was 
calculated using the optical density of  the red channel corrected 
using the blue channel to compensate for small nonuniformities 
in the film. The batch of  EBT3 film was calibrated from 0 to 
5 Gy following recommendations of  the report of  American 
Association of  Physicists in Medicine (AAPM) Task Group 61.[14]

Micronucleus assay
The frequency of  MN induction in HF19 cells was measured using 
a cytokinesis‑block protocol technique adapted from Erexson and 
Kligerman, and  Erexson et al.[15,16] Immediately following irradiation, 
cells were treated with 6‑µg/ml cytochalasin‑B and subsequently 
incubated for 40 h. Cells were then harvested and centrifuged (at 
200 × g at room temperature for 10 min), the supernatant was 
discarded, and the remaining pellets were resuspended. Once 
resuspended, 1 ml of  hypotonic solution (warmed KCl; 0.55‑g 
potassium chloride  (Sigma, P3911) and 100‑ml ultrapure water 
kept in a 37°C water bath) was subsequently added in a drop‑wise 



Elbakrawy, et al.: Chromosome instability – Role of dose and dose rate

Open Access3 Genome Integrity
Vol. 10: 3, 2019

Open Access

manner followed by a further 10‑ml KCl. The tubes were then 
incubated at 37°C for 5 min prior to adding 3 drops of  25% 
glacial acetic acid in methanol (3:1 fixative); all tubes were inverted 
once and centrifuged. Following removal of  the supernatant, 
the pellets were resuspended in 10 ml of  3:1 fixative  (added 
drop‑wise) and left at room temperature for 10 min. Cells were 
further centrifuged, the supernatant was discarded, and pellets 
were resuspended in 0.5–1 ml of  3:1 fixative depending on the 
pellet size. The resulting fixed cell suspension was dropped onto 
individually labeled, clean/degreased microscope slides, and these 
were left to dry at room temperature before analysis. In addition, 
MN assay was used to investigate the induction of  MNs at 5 and 
10 passages, corresponding to approximately 10 and 20 population 
doublings (15 and 20 days, respectively), following irradiation.

Staining of slides
In brief, two Coplin jars were each filled with a 50‑ml prepared 
phosphate buffer solution  (pH  6.8). A  0.0031‑g acridine 
orange  (Sigma: A6014) was added to the first jar. Slides were 
stained for 25 s in the acridine orange/buffer solution and then 
quickly dipped for a few seconds in the buffer‑only jar.[10,11] Finally, 
they were left to dry at room temperature before analysis on a 
fluorescent microscope.

Scoring micronuclei
Slides were coded and analyzed in a blind and random fashion. 
MNs were scored only in binucleated (BN) cells, and at least 500 
BN cells were scored per group for four biological replicates. MN 
induction was quantified as the percentages of  BN cells within 
MNs (%MN/BN).[17]

Oxidative stress
The Muse oxidative stress reagent has been widely used to detect 
reactive oxygen species (ROS) in cellular populations and is based 
on dihydroethidium (DHE).[18] This reagent penetrates the cell 
where DHE is oxidized by superoxide anions and forms the 

DNA‑binding fluorophore ethidium bromide or a structurally 
similar product. This reagent intercalates with DNA giving 
rise to a red fluorescence‑enabling ROS+ cells (cells exhibiting 
ROS) to be distinguishable from ROS− cells. Cells were seeded 
at 1.5 × 106 cells per T75 for 24 h prior to irradiation. Samples 
were collected ≈ 1.5 h following irradiation and again after 30 days 
corresponding to approximately 20 population doublings. The 
media were collected and saved in a labeled sterile universal tube. 
The flasks were washed twice with 10‑ml phosphate‑buffered 
saline  (PBS): the first PBS was added to the universal tube 
but the second wash of  10‑ml PBS was discarded. The cells 
were detached from each flask by adding 1.5‑ml  (0.025%) 
trypsin‑ethylenediaminetetraacetic acid (EDTA) solution for 30–
60 s and incubated at 37ºC for 3–5 min to allow cells to dissociate 
from the flask base. The trypsin‑EDTA solution was also collected 
and added to the universal contents. Dissociated cells were collected 
with the universal tube contents (saved media, PBS, and trypsin) 
and added back to the universal tube. All cells were centrifuged, 
the supernatants were discarded, and the remaining pellets were 
resuspended. Once resuspended, 200 µl of  sterileDulbecco’s 
phosphate-buffered saline (DPBS) was subsequently added to 
each tube. Ten microliters of  the resulting cell suspension was 
added to 190 µl of  the Muse oxidative stress reagent working 
solution. The cell suspension was then mixed thoroughly by 
vortexing at medium speed for 3–5 s. Samples were incubated for 
30 min at 37°C in the dark. Finally, samples were run on the Muse 
cell analyzer (Muse™ Oxidative Stress Kit, Millipore) according 
to the manufacturer’s protocol.

Statistical analysis
Data for the distribution of  MN among BN cells in a pooled 
dataset were examined for normality. The MN data were shown 
not to have normal distribution; it was therefore further subjected 
to the Fisher’s exact test to calculate the P values. P ≤ 0.05 was 
considered statistically significant. While for oxidative stress 

Figure 1: Experimental design for high dose rate (HDR) and low dose rate (LDR) x-ray irradiation.
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measurements, the combined data from three independent 
experiments were compared by the Student’s t‑test, with 
two‑tailed P < 0.05 indicating statistically significant differences. 
The error bars represent the standard error of  the mean of  
replicate experiments (standard error of  the mean).

Results
Micronucleus assay analysis
The variation in the percentage of  BN cells with MNs (%MN/
BN) produced with the assay performed immediately, after ≈ 10 
population doublings, and after ≈ 20 population doublings is 
shown in Figures 2‑4, respectively.

Under all radiation conditions studied, the data demonstrate a 
significant induction of  BN cells with MNs produced during the 
first division following irradiation when compared to unirradiated 
controls [Figure 2]. A similar response was observed for 0.1‑ and 
1‑Gy HDR acute exposures when the assay was performed 
24 h after seeding the flasks  (pre‑LDR). While no significant 
difference was observed between MN inductions following a 

0.1‑Gy acute exposure and a 0.1‑Gy LDR protracted exposure, 
the data showed an enhanced MN induction following a 1‑Gy 
protracted exposure (over a 5.4 h) compared to a 1‑Gy acute 
exposure (P ≤ 0.001). However, no significant difference was 
observed between this protracted exposure and the delayed 1‑Gy 
acute exposure performed directly following the 1‑Gy protracted 
exposure (post‑LDR: ≈29.4 h postseeding the flask), although the 
control assay performed at this time (0 Gy post‑LDR) showed 
no difference to the main 0‑Gy control (0 Gy pre‑LDR). This 
suggests that the timing of  the assay and subsequent harvest 
postseeding may potentially modulate the measured yield of  
radiation‑induced MNs.

Likewise, the results of  the delayed cellular response following 
10 population doublings  [Figure  3] and 20 population 
doublings [Figure 4] following irradiation all show a significant 
increase in MN induction across all irradiated groups when 
compared to unirradiated controls. Neither HDR nor LDR 
exposure showed that a significant difference was observed 
between the 0.1‑  and 1‑Gy responses, although there is a 
suggestion that acute exposures may have a slightly enhanced 
yield when compared to protracted exposures.

Figure 2: The percentage of binucleate cells (BN) with micronuclei 
(MN) (%MN/BN) for high (0.42 Gy/min) and low (0.0031 Gy/min) dose 
rate at 0, 0.1 and 1 Gy immediately following irradiation, with addition 
of cytochalasin B immediately following irradiation (<5 minutes). 
Data represent the combined data of four independent but parallel 
experiments performed on different days. Error bars represent the 
standard error of the mean (SEM)

Figure 4: The percentage of binucleate cells (BN) with micronuclei 
(MN) (%MN/BN) at high (0.42 Gy/min (and low (0.0031 Gy/min) dose 
rate at 0, 0.1 and 1 Gy after 20 population doublings. Data from four 
independent experiments, error bars represent the standard error of 
the mean (SEM)

Genome Integrity
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Figure 3: The percentage of binucleate cells (BN) with micronuclei 
(MN) (%MN/BN) at high (0.42 Gy/min) and low (0.0031 Gy/min) dose 
rate at 0, 0.1 and 1 Gy at 10 population doublings post irradiation. Error 
bars represent the standard error of the mean (SEM)

Figure 5: Percentage of HF19 cells with ROS+ at 1.5 hours following 
x-ray irradiation at 0.1 and 1 Gy HDR and LDR. Combined data from
three independent experiments. Error bars represent the standard
error of the mean (SEM)
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Oxidative stress
The variation in the percentage HF19 cells exhibiting enhanced 
levels of  ROS following irradiation 1.5 h postexposure and  20 
population doublings later are displayed in the Figure 5 and 
Figure 6 respectively. For both time points, there was a significant 
enhancement in the response for both acute and protracted 
1‑Gy exposures. The degree of  enhancement observed was 
similar for acute and protracted exposures, although there is an 
indication that the fraction of  cells responding was slightly lower 
at the later time point. For the lower 0.1‑Gy exposures, only the 
protracted 0.1‑Gy exposure produced a statistically significant 
enhancement over controls in the fraction of  cells responding 
1.5 h postexposure, but no enhancement was observed at the 
later time point.

Discussion
CAs present during the first mitosis and associated MN 
following division are predominantly produced as a result of  the 
initial DNA damage produced by the interaction of  IR within 
the cell and associated repair and misrepair. While the formation 
of  these sites of  initial DNA damage such as double‑strand 
breaks (DSBs) increases linearly with the dose,[19] the probability 
of  misrepair between sites and the formation of  aberrations 
and MNs is dependent on the relative separation of  these sites 
of  damage. Therefore, they typically follow a linear‑quadratic 
dose–response for low‑LET radiation due to the increasing 
chance of  interaction between sites due to their increasing 
density with increasing dose. The MN containing acentric 
chromosome or chromatid fragments are a result of  unrepaired 
or misrepaired DNA breaks. This occurs when the repair 
capacity of  the cells is insufficient to repair an excessive level 
of  DSB production. This is due to either inappropriate function 
of  enzymes involved in the nonhomologous end‑joining 
pathway[20] or misrepair of  DSBs caused by the dysfunctional 
homologous recombination.[21] Recently, Pantelias et  al. have 
demonstrated the hypothesis that the premature chromosome 
condensation dynamics in asynchronous micronucleated cells 
rigger chromosome shattering in a single catastrophic event. This 

is a hallmark of  chromothripsis which underlies the disruption 
of  tumor suppressor genes and activation of  oncogenes.[22] In 
peripheral blood lymphocytes, this occurs in a reproducible 
fashion for a given radiation quality, and the induction of  
CAs  (such as dicentric chromosomes) and MNs is routinely 
used for biodosimetry[23] It is therefore not unexpected that the 
data presented here indicate that the yield of  MN is greater for 
1 Gy than 0.1 Gy. DNA DSBs are typically repaired with a half  
time of  ≈ 20 min,[24] and so for protracted exposures (LDR), 
where total irradiation times are comparable to or exceed the 
repair half‑time, there is a significant reduction in biological 
effectiveness for a range of  endpoints, due to the decrease 
in lesion density  (and therefore the probability of  misrepair) 
resulting from lesion repair. It was not unexpected that the 
immediate yield of  MN formation following a 0.1‑Gy LDR was 
similar to that of  a 0.1‑Gy HDR, due to the limited number 
and therefore low density of  DNA lesions and the total LDR 
irradiation time only slightly longer than the DSB repair time. 
Although it was a little surprising that the pre‑LDR 1‑Gy acute 
exposure was lower than the 1‑Gy protracted exposure, still 
the timing of  the addition of  cytochalasin‑B and subsequent 
harvest is significantly different and potentially results in 
different MN detection efficiencies. The difference between 
the HDR and LDR groups  (under the same conditions of  
collection) in terms of  the timing of  adding cytochalasin‑B 
and the timing of  the subsequent harvesting of  cells can lead 
to different collection efficiencies as like is not being compared 
with like. It was therefore not too surprising to see different 
results, and this was one of  the reasons pre‑  and post‑acute 
experiments were performed [Figures 1, row 2 and 3]. When 
the acute irradiation was performed 29.4 h, rather than 24 h, 
after plating  (corresponding to the end of  the protracted 
exposure), then the MN yield was found to be similar to that 
for the protracted exposure. The limited difference between 
the HDRs compared to LDR yields is potentially a result of  the 
DSB yield following a 1‑Gy exposure at a low enough density 
that the probability of  interaction between acute exposures is 
relatively small and a higher dose may be required to detect 
a significant difference between the acute and protracted 
exposures. Typical dose–response curves obtained for MN[25] 
are often relatively linear up to 1–2 Gy, with the dose‑square 
component becoming significant at higher doses. Due to loss 
of  the replicative capacity of  many of  these cells containing 
IR‑induced CA and MN, the number of  these cells quickly falls 
with time and subsequent cell division,[26] with those found at 
later times experiencing RIGI. Shimura and Kojima noted that 
the lowest dose of  photons required to observe a statistically 
significant increase in the formation of  MN and chromosomal 
aberrations in peripheral blood lymphocytes irradiated in vitro 
was of  the order of  0.1 Gy.[27]

The initial pioneering experiments of   Kadhim et al [28] showed 
a significant induction of  RIGI in hemopoietic stem cells only 
following exposure to high‑LET alpha‑particles but not following 
3Gy low‑LET X‑ray exposure. Subsequent studies did, however, 
show a significant induction of  RIGI following lower doses of  

Figure  6: Percentage of HF19 cells with ROS+ at 20 population 
doublings following x-ray irradiation at 0.1 and 1 Gy HDR and LDR. 
Combined data from three independent experiments. Error bars 
represent the standard error of the mean (SEM)
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0.1 Gy and 1 Gy.[29] RIGI was also shown to be induced and 
persist in hemopoietic stem cells for the remaining lifetime after 
whole‑body irradiation of CBA/H mice to 3 Gy of 250‑kV X‑rays. 
Kadhim et al. also observed RIGI in the progeny of HF19 cells 
exposed to 3 Gy of  X‑rays but not those of  HF12 cells.[30] Likewise, 
experiments in other systems have demonstrated that low‑LET 
radiation is capable of  inducing RIGI.[31,32] While some studies have 
shown an increasing response with increasing dose, numerous other 
studies have indicated that RIGI (measured using CA or MNs) 
lacks a radiation dose–response which is dose independent or has 
a threshold dose above which no additional RIGI is induced.[33]

The results presented here clearly show a significant induction of 
MN in HF19 fibroblast cells compared to unirradiated controls at 
10 and 20 population doublings following irradiation with 0.1 Gy 
and 1 Gy delivered either as an acute (HDR) or protracted (LDR) 
exposure. The MN formation was higher in 0.1 Gy which could 
be due to the bystander effects as the change in gene expression 
occurs as early as 1 h postradiation in doses as low as 0.05 Gy in 
bystander cells.[34] Our findings of induction of GI instability at 
low‑dose (0.1 Gy) low‑LET X‑ray irradiation in HF19 cells agree 
with the results of  Kadhim who has observed that the delayed 
chromosomal aberrations were increased over controls in bone 
marrow cells from both CBA/H and C57BL/6 in bred strains 
following exposure to 0.1 (low)‑ and 1 (high)‑Gy dose X‑ray 
irradiation.[35] There is a minimal difference between the observed 
levels of  MN produced between the two doses used, and the data 
suggest that LDR exposure may be slightly more effective than 
the corresponding HDR. These data are consistent with the data 
of  Belyakov et al., which demonstrated RIGI in the progeny of 
irradiated primary human AG01522B fibroblast cells which were 
subsequently subcultured for up to 30 days postirradiation with 
X‑ray doses from 1 to 8 Gy (240 kV at 0.78 Gy/min) and observed 
using MN assay.[32] The fraction of  MNs from 8 days onward was 
observed to be significantly smaller than the initial response which 
peaked at around 3 days. Likewise, Trott et al. observed delayed 
MN in the progeny of surviving V‑79 Chinese hamster cells up 
to 4 weeks following irradiation with 250‑kV X‑rays (dose rate: 
0.8–0.9 Gy/min), with the frequency increasing with dose up 
to 3 Gy, above which the level was constant.[9] Werner, Wang, 
and Doetsch (2017) also showed persistent MN induction in 
the progeny of  mouse epithelial cells 7 days postirradiation with 
320‑kV X‑rays (for 2, 4, and 6 Gy).[36] Turner et al. showed an 
increase in persistent MN formation in mouse lymphocytes 7 days 
postirradiation of C57BL/6 mice with 320‑kV X‑rays for both 
protracted (0.31 cGy/min) and acute exposures (1.03 Gy/min).[5] 
There was no statistically significant difference in the response 
between the two‑dose rates and the response increase up to 2.2 Gy 
with no further increase at 4.45 Gy.[5] In addition, Graupner et al. 
have observed a significant increase in MN formation in the blood 
samples taken from CBAB6 F1 mice 2 days following low‑LET 
irradiation with a total body absorbed dose of ∼3 Gy (3.2‑Gy 
chronic LDR γ‑ray [2.2 mGy/h] and 2.6‑Gy acute HDR 
X‑ray [1.3 Gy/min]). Both HDR and LDR groups displayed more 
induction of  MN/BN, tenfold and threefold higher respectively, 
compared to the blood from unirradiated mice.[37]

Genome Integrity
Vol. 10: 3, 2019

It has previously been shown that RIGI does not require genetic 
alterations for the effect to be initiated or perpetuated,[38,39] and 
this along with the high frequency of  instability responses has led 
to the speculation that alterations in gene expression modulating 
cellular homeostasis may underlie the instability response.[40] 
Gene expression is regulated through epigenetic alterations such 
as chromatin remodeling, DNA methylation, and microRNA 
expression.[41] A number of  studies have demonstrated that IR can 
result in changes in methylation[42,43] and microRNA expression.[44] 
Inflammatory processes have also been proposed as a potential 
mechanism[45] involving proinflammatory cytokines linked with 
oxidative stress and ROS which can modulate the background 
level of  DNA damage.[38,46,47] This would be consistent with the 
results presented above, which show an increase in the level of 
cellular ROS following 1‑Gy high and LDR X‑ray exposure, 
not only 1.5 h following exposure but also after 20 population 
doublings. Although there is a slight suggestion of  enhancement 
of the level of ROS at 20 population doublings later for the 0.1‑Gy 
exposures, this is not significantly different to the 0‑Gy control.

Conclusion
The work presented explores the role of  dose and dose rate on 
RIGI, determined using a MN assay, in normal primary HF19 cells 
following exposure to either 0.1 Gy or 1 Gy of  X‑rays, delivered 
either as an acute (0.42 Gy/min) or protracted (0.0031 Gy/min) 
exposure. While the expected increase in MN was observed 
following the first mitosis of the irradiated cells compared to 
unirradiated controls, the results also demonstrate a significant 
enhancement in MN yields in the progeny of  these cells at 10 and 
20 population doublings following irradiation. Minimal difference 
was observed between the two doses used (0.1 and 1 Gy) and 
the dose rate (acute and protracted). The results also show an 
enhancement of the cellular levels of ROS after 20 population 
doublings, which suggests that IR could potentially perturb the 
homeostasis of  oxidative stress and so modify the background 
rate of  endogenous DNA damage induction. Therefore, these 
nontargeted effects have the potential to be important for the 
low‑dose and dose‑rate exposures. There are two main messages 
of  this manuscript: (a) moderate radiation dose can be harmful 
not more than low dose regarding the induction of  late (or 
delayed) genotoxic effect and (b) MNs are not the best endpoint 
to quantify RIGI in cultured fibroblasts.
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