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Abstract

Each year, over 50 million Americans suffer from persistent pain, including debilitating 

headaches, joint pain, and severe back pain. Although morphine is amongst the most effective 

analgesics available for the management of severe pain, prolonged morphine treatment results in 

decreased analgesic efficacy (i.e., tolerance). Despite significant headway in the field, the 

mechanisms underlying the development of morphine tolerance are not well understood. The 

midbrain ventrolateral periaqueductal gray (vIPAG) is a primary neural substrate for the analgesic 

effects of morphine, as well as for the development of morphine tolerance. A growing body of 

literature indicates that activated glia (i.e., microglia and astrocytes) facilitate pain transmission 

and oppose morphine analgesia, making these cells important potential targets in the treatment of 

chronic pain. Morphine affects glia by binding to the innate immune receptor toll-like receptor 4 

(TLR4), leading to the release of proinflammatory cytokines and opposition of morphine 

analgesia. Despite the established role of the vIPAG as an integral locus for the development of 

morphine tolerance, most studies have examined the role of glia activation within the spinal cord. 

Additionally, the role of TLR4 in the development of tolerance has not been elucidated. This 

review attempts to summarize what is known regarding the role of vIPAG glia and TLR4 in the 

development of morphine tolerance. These data, together, provide information about the 

mechanism by which central nervous system glia regulate morphine tolerance, and identify a 

potential therapeutic target for the enhancement of analgesic efficacy in the clinical treatment of 

chronic pain.
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Opioids and the Management of Pain

The perception of pain is an important evolutionary phenomenon that allows escape from 

danger, avoidance of harmful stimuli, and attention to tissue damage. However, chronic pain 

perception in the absence of an ongoing injury, or during treatment of an illness, is aversive 

without purpose and detrimental to quality of life. Chronic pain, defined as pain lasting more 

than three months, impacts approximately 55% of the population over the age of 20, and 

includes debilitating headaches, joint pain, severe back pain, and cancer-related pain1,2. 

Despite their discovery thousands of years ago, opiates remain the most common and 

effective option for pain management3. Indeed, over 90% of chronic pain sufferers receive 

some form of opioid therapy 4, with morphine being amongst the most commonly prescribed 

drugs.

In addition to modulating pain, opioids have widespread central and peripheral effects, many 

of which interfere with the beneficial aspects of opioids5. Indeed, the negative side effects 

associated with opioid consumption, including respiratory depression, gastrointestinal 

immotility, and addiction render these drugs unsatisfactory for long-term pain 

management1,6. Although a multitude of opioids (man-made drugs sharing similar structures 

with the plant-derived opium6) were synthesized in hopes of harnessing the natural analgesic 

potency of opiates while minimizing the negative side effects, few are as potent as morphine, 

and the pinnacle, analgesia without the side-effect profile, has not been realized5.

The average duration of opioid consumption for chronic pain management is 105 days7. 

Prolonged morphine treatment reduces analgesic efficacy (i.e., tolerance), thereby requiring 

steadily larger doses for the maintenance of analgesia3. Dose escalation increases the risk of 

developing negative side effects, including anti-analgesia, addiction, withdrawal, and 

respiratory depression4, and is not always sufficient to overcome tolerance and reinstate 

analgesic efficacy3. Indeed, opioid tolerance is a significant impediment for sufficient pain 

relief in approximately 60% of patients8. However, the mechanisms underlying the 

development of morphine tolerance are not completely understood, and the role of 

inflammation has been largely ignored until relatively recently.

Opioid Action in the CNS: The PAG & the Descending Analgesic Pathway

The midbrain periaqueductal gray (PAG) and its descending projections to the rostral 

ventromedial medulla (RVM) and spinal cord comprise a critical neural circuit for both 

endogenous and exogenous opioid-mediated analgesia9–13. The PAG was first identified as 

an essential neural substrate for pain modulation in the 1960s, when it was demonstrated that 

electrical stimulation of the rat PAG produces analgesia so profound as to allow for invasive 

abdominal surgery to be performed in the absence of anesthesia14,15. In humans, electrical 

stimulation of the PAG is still used today for the management of intractable pain16–18. PAG 

stimulation produced analgesia is attenuated by intra-PAG injection of the mu opioid 

receptor (MOR) antagonist naloxone,19 suggesting an opioid-dependent mechanism.

The PAG contains a high density of MOR containing neurons,20–22 and microinjection of 

opioid antagonists into the PAG significantly attenuates the analgesic effects of systemic 
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morphine23–25. Similarly, site-specific lesions of PAG MOR-containing neurons (using the 

cytotoxin saporin (a ribosome inactivating protein) conjugated to the MOR ligand 

Dermorphin) significantly reduce the antinociceptive effects of systemic morphine 

suggesting that PAG MOR is critical for morphine action26. The density of MOR 

immunoreactivity within the vIPAG is positively correlated with the degree of analgesia 

produced by morphine, such that male rats with normal levels of MOR immunoreactivity in 

the vIPAG have significantly lower ED50 values (4.07 mg/kg) compared with animals in 

which MOR levels were reduced 2-fold (12.55 mg/kg). Indeed, in animals with low PAG 

MOR, systemic administration of 10 mg/kg of morphine results in only a 20% maximum 

possible analgesic effect in comparison to 100% in animals with a complete complement of 

MOR. Together, these data indicate that the PAG is an essential site for opioid-mediated 

analgesia.

Morphine and other opioids bind to neuronal MOR6, a prototypical G-protein coupled 

receptor (GPCR), and are generally thought to elicit analgesia by hyperpolarizing 

GABAergic neurons (‘GABA disinhibition hypothesis’)9,11,27–33. In vitro, MOR binding on 

PAG neurons inhibits miniature inhibitory postsynaptic potential frequency and decreases 

the probability of presynaptic GABA release31,34. In vivo, injection of GABA antagonists 

into the PAG partially mimics the effects of morphine35. In part, morphine binding to vIPAG 

MOR hyperpolarizes GABAergic neurons34,36, thereby releasing vIPAG-RVM projection 

neurons from local tonic inhibition36. The PAG signals to RVM neurons, which then signal 

to the spinal cord to inhibit nociceptive dorsal horn neurons and produce 

antinociception37–39. Indeed, lesions of the RVM and spinal dorsal horn abolish PAG 

stimulation-produced antinociception, indicating that the PAG-RVM-spinal cord circuit is 

necessary for both exogenous and endogenous pain modulation40,41.

Neuronal Mechanisms of Opioid Tolerance

In addition to being a critical locus for both endogenous and exogenous pain modulation, the 

vIPAG is critical for the development of morphine tolerance24,42–51. Chronic vIPAG opioid 

administration results in the rapid development of behaviorally and physiologically defined 

opioid tolerance. In addition, repeated intra-vIPAG microinjections of morphine49 or the 

potent MOR agonists fentanyl43 or DAMGO47,49 result in tolerance to systemically 
administered morphine. Further, chronic administration of morphine into the ventrolateral, 

but not lateral or dorsal, PAG induces morphine tolerance51; this effect remains when the 

downstream target (RVM) is inhibited with the GABA agonist muscimol. Interestingly, these 

behavioral and electrophysiological changes underlying tolerance are prevented by intra-

vIPAG injections of the opioid receptor antagonist naltrexone24, indicating that the vIPAG is 

sufficient for the development of morphine tolerance.

Although the mechanisms by which morphine tolerance develops are not entirely 

understood, many current hypotheses include a role for increased glutamatergic and/or 

decreased GABAergic signaling31. Cerebrospinal fluid (CSF) from morphine-tolerant 

humans contains significantly higher levels of both glutamate and aspartate52, and morphine 

challenge increases glutamate in the CSF of morphine tolerant rats53. Increased expression 

of AMPA and NMDA receptor subunits54 and increased NMDA receptor binding55 in the rat 
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spinal cord has been shown to accompany tolerance development. Along these same lines, 

blockade of spinal cord glutamatergic signaling by intrathecal administration of NMDA56–61 

and AMPA62,63 receptor antagonists attenuates morphine tolerance. Together, these data 

indicate that, at least at the level of the spinal cord, opioid tolerance is accompanied by an 

increase in the excitatory neuroenvironment that is mediated by changes in glutamatergic 

signaling.

Studies examining the cellular responses of PAG neurons indicate that morphine tolerance, 

induced by repeated systemic or intra-vIPAG morphine, decreases the ability of opioids to 

initiate signaling through the PAG-RVM descending analgesic circuit44,45. Repeated 

pharmacological activation of the PAG-RVM circuit via direct microinjection of the 

excitatory amino acid agonist kainate or the GABAergic antagonist bicuculine is not 

sufficient to induce tolerance, indicating that tolerance requires opiate activation of MOR-

expressing GABAergic neurons that synapse onto PAG-RVM output neurons48. Indeed, 

Morgan and colleagues recently demonstrated that chronic vIPAG microinjections of 

morphine results in tolerance that is dependent on alterations in pre- and post-synaptic 

GABA release42. Chronic systemic morphine results in tolerance as evidenced by a 

decreased ability of MOR agonists to inhibit Ca2+ and activate K+ channels in dissociated 

neuronal cultures from the PAG or PAG slices64. Although NMDA receptor signaling is not 

important for PAG-mediated opioid tolerance65,66, data from the PAG supports a role for 

increased neuroexcitability in tolerance development. For example, intra-PAG 

microinjections of the cholecystokinin (CCK) antagonist proglumide prevent and even 

reverse tolerance to repeated PAG microinjections of morphine67. CCK excites neurons by 

opening depolarizing currents and inhibiting K+ conductance68–70, thereby directly 

opposing the mechanisms by which morphine hyperpolarizes neurons. Together, these data 

suggest that increased neuroexcitability at the level of the PAG significantly contributes to 

opioid analgesic tolerance by decreasing the ability of opioids to hyperpolarize neurons.

Glial Mechanisms of Opioid Tolerance

Since the 1990’s basic research has shifted focus from exclusive investigation of neuronal 

mechanisms underlying opiate analgesia and tolerance to investigation of both neuronal and 

central nervous system (CNS) glial involvement. It is now well established that chronic 

morphine induces a robust neuroinflammatory response in the CNS that enhances neuronal 

excitability and contributes to tolerance71–87. Although the importance of the vIPAG in 

tolerance development is well established, the majority of investigation of glial involvement 

in opioid signaling has been limited to spinal and medullary loci81,85,88–90.

Several lines of evidence implicate opioids as activators of CNS astrocytes and microglia85. 

In the spinal cord, morphine increases protein levels of the microglia and astrocyte activity 

markers OX-42 and glial fibrillary acidic protein (GFAP), respectively,71,72,91 and induces 

release of glially-derived proinflammatory cytokines73,74,81,84,86,87,90. Proinflammatory 

cytokines have been shown to decrease GABA receptor expression, increase the number and 

the conductance of AMPA and NMDA receptors, decrease glutamate transporter proteins, 

and decrease outward potassium currents85, resulting in an overall increase in 

neuroexcitability. Functionally, administration of the glial metabolic inhibitors 
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propentofylline, fluorocitrate, and minocycline reduce spinal OX-42, GFAP, and cytokines, 

and attenuate morphine tolerance72,76,87,91–97. Importantly, glial release of cytokines 

increases exponentially with repeated morphine administration,84 making these excitatory 

substances key players in the development of morphine tolerance.

Both morphine tolerance and opioid-induced sensitivity to pain (hyperalgesia) following 

repeated exposure to morphine is still observed in neuronal opioid receptor (mu, delta and 

kappa) knock out mice98, suggesting that the anti-analgesic effects of morphine are not 

mediated by traditional opioid receptor signaling. Recent in vivo and in vitro data confirm 

this, and demonstrate that the proinflammatory effects of morphine are mediated through the 

innate immune receptor Toll-like receptor 4 (TLR4)81. TLR4 is found on microglia, and to a 

lesser degree, astrocytes99,100. Opioids, including morphine, bind to the glycoprotein 

myeloid differentiation factor-2 (MD-2) on TLR478,79, and initiate an inflammatory 

response through nuclear factor kappa B (NFκB) activation and p38 mitogen activated 

protein kinase (MAPK) phosphorylation81. Activation of the NFκB pathway results in the 

robust release of proinflammatory cytokines including tumor necrosis factor, (TNF), 

Interleukin 1 βeta (IL-1β), and Interleukin 6 (IL-6)78,79,81. Spinal TLR4 activity opposes the 

acute effects of morphine, including antinociception, and contributes to opioid-induced 

hyperalgesia78,79, and systemic TLR4 antagonists prevent tolerance to systemic morphine78.

A nearly ubiquitous characteristic of opioid-induced neuroinflammation is TNF production, 

likely mediated via TLR4. Chronic systemic101 or intrathecal morphine administration 

increases TNF mRNA84,86,102,103 and protein53,86,101,102,104,105 in the rodent spinal cord, 

and TNF levels increase with the chronicity of morphine treatment84. Inhibition of spinal 

TNF signaling decreases morphine-induced release of proinflammatory cytokines (e.g., 

TNF, IL-1β, and IL-6) and activation of p38 MAPK54,102,106, indicating that TNF induces a 

positive feedback loop of neuroinflammation that contributes to decreased morphine 

efficacy. Functionally, immunomodulatory drugs that attenuate, abolish, or even reverse 

morphine tolerance (e.g., ibudilast (AV411)97,107, minocycline76,91,96,97,108, 

fluorocitrate72,82, propentofylline82,87,93,94,109) decrease the expression of TNF. However, 

these immunomodulatory drugs have widespread and non-specific effects, altering 

expression levels of several cytokines implicated in opioid tolerance, including 

IL-1β86,101,110 and IL-686,87,101. Although these data indicate that spinal TNF plays a 

significant role in morphine-induced inflammation and the development of morphine 

tolerance72–74,76,84–87,93,111,112, remarkably, very few studies have directly tested the role of 

TNF in isolation54,102,106.

Inflammation significantly contributes to morphine tolerance

Many mechanisms have been proposed to account for opioid tolerance, including MOR 

decoupling, internalization, and/or down-regulation of MORs113,114. However, in 

comparison to other opioids (e.g., DAMGO, fentanyl6), morphine does not result in MOR 

internalization, and is remarkably weak in terms of decreasing G-protein signaling and 

receptor desensitization115,116. Indeed, chronic morphine increases G-protein efficiency in 

the vIPAG42. Together with our recently published work (reviewed below)82,83,117, these 
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data suggest mechanisms other than MOR signaling also contribute to morphine tolerance at 

the level of the midbrain PAG.

Under basal conditions, microglia and astrocytes survey the environment for pathogens, 

including viruses and bacteria. Disturbances in homeostasis results in the rapid activation of 

glia, evidenced by a profound shift in morphology that can be easily visualized using 

immunohistochemistry for OX-42 and Ibal (microglia) and glial fibrillary acidic protein 

(GFAP; astrocytes)118. Glial activation also results in the increased production and release of 

pro-inflammatory cytokines (including IL-1β, IL-6, and TNF), chemokines, ATP, excitatory 

amino acids, and NO, all of which increase the excitability of nearby neurons86,93. Indeed, 

glially-derived cytokine release results in increases in the number and conductance of 

AMPA119,120 and NMDA121 receptors, decreases in astrocytic glutamate transporter 

proteins85, and down-regulation of GABA receptors120. Microglia derived IL-1β and TNF 

bind to receptors on astrocytes, resulting in the further release of IL-1β, IL-6, and TNF86. 

These cytokines actively oppose the analgesic actions of morphine71.

Acute and chronic morphine administration activates microglia and 

astrocytes28, 48, 49, 72,86,91–93,122, with the degree of glial activation increasing with duration 

of opioid treatment81. Increased opioid consumption and the ensuing glial activation 

ultimately results in the opposition of morphine analgesia and the development of morphine 

tolerance. Studies by Song and Zhou (2001), as well as others, have shown that inhibition of 

spinal glia activation with general glial metabolic inhibitors results in a partial attenuation in 

morphine tolerance71,73,84,86,87. Interestingly, spinal glia activation induced by other stimuli, 

such as neuropathic pain or lipopolysaccharide (LPS; a potent TLR4 agonist) administration, 

also reduces the analgesic efficacy of morphine88.

Complementing literature from the spinal cord and RVM, we have demonstrated that glial 

activation within the PAG is critical for the development of morphine tolerance. First, we 

found that administration of a single ED50 dose of morphine once a day for 3 days (but not 
administration of a single ED50 dose of morphine once a day for only 1 day) significantly 

activated both microglia and astrocytes in the PAG, as indicated by a 2-fold increase in 0X42 

and GFAP protein levels (when measured 24 hours later)83. 0X42 and GFAP expression 

within the PAG paralleled the development of morphine tolerance such that animals that 

were tolerant to the antinociceptive effects of morphine had the highest 0X42 and GFAP 

immunoreactivity82,83. Persistent peripheral hyperalgesia induced by intraplantar 

administration of complete Freund’s adjuvant (CFA), significantly attenuated the 

development of morphine tolerance, and no significant differences were noted in vIPAG glial 

cell activation for CFA + Saline and CFA + Morphine treated animals versus controls 

(Handled + Saline)83. These data mirror clinical data indicating that peripheral pain delays 

the development of tolerance123–126, and suggest that there is something unique about 

persistent pain that blocks morphine from activating glia. Morgan and colleagues reported 

that intraplantar CFA prevents tolerance to chronic intra-vIPAG microinjections of 

morphine127, and Tonsfeldt et al. recently demonstrated that morphine elicits increased 

antinociception in female rats following CFA treatment, and that this is dependent on 

modulation of PAG GABAA receptor activity128. These data corroborate our results, and 

suggest that pain-induced changes in the vIPAG are responsible for the preservation of 
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opioid analgesia during a persistent pain state. These results suggest that peripheral pain 

site-specifically prevents glial cell activation in the PAG, and are in contrast to several 

studies at the level of the spinal cord and medulla (i.e., RVM) demonstrating that peripheral 

pain, including CFA129–133, peripheral neuropathy71,90,94,118,132,134,135, formalin136, and 

spinal nerve ligation137 induce significant glia activation. However, given the unique roles of 

the PAG and spinal cord in pain modulation and pain facilitation, respectively, it is not 

entirely surprising that there would be differential pain-induced regulation of glial activation 

in these two sites.

vIPAG TLR4 and morphine tolerance

It is well established that morphine activates glia and that glia contribute to morphine 

tolerance. However, it was not until 2010 that the mechanism by which morphine activates 

glia was discovered. At that time, the innate immune receptor, TLR4, was shown to bind 

opioids like morphine and mediate glial cell activation78. TLR4 is found primarily on 

microglia, and to a lesser degree on astrocytes, but not neurons99,100. TLR4 recognizes the 

endotoxin lipopolysaccharide (LPS; the prototypical TLR4 agonist), endogenous danger 

signals including “alarmins” (e.g., fragments of self DNA in the extracellular space that 

indicate cell nucleus damage), and certain xenobiotics including both synthetic (e.g., 

morphine, naloxone, oxycodone, buprenorphine, fentanyl78) and endogenous (e.g., M3G79) 

opioids. Interestingly, MOR binds M6G, but not M3G 6. Conversely, TLR4 binds M3G but 

not M6G79,89,148. Unlike MOR, which only binds the (−)-stereoisomer of opioids, TLR4 

binds opioid agonists and antagonists in a non-stereoselective fashion that maintains their 

agonistic and antagonistic properties at TLR478. TLR4 agonists, including opioids and LPS, 

bind to the MD2 region of TLR4 resulting in activation of three separate signaling cascades: 

the PI3K/Akt, NFκB, and the MAPK pathway81. The former results in cell motility and 

apoptosis and the latter two pathways are responsible for the production of proinflammatory 

substances such as cytokines.

It is now clear that TLR4 signaling contributes to the development of morphine 

tolerance78,117. Recent in vivo and in vitro data demonstrate that the innate immune receptor 

TLR4, but not MOR81, mediates morphine-induced cytokine release (including 

TNF)78,79,81. Chronic morphine increases TLR4 mRNA expression 79,117,149 and 

downstream products of the TLR4 signaling cascade (e.g., IL-1β); similarly, systemic TLR4 

antagonists attenuate tolerance to systemic morphine78,82. These data further elucidate the 

mechanisms by which morphine alters glia activity, and suggest that vIPAG glia contribute 

to the development of morphine tolerance via TLR4 signaling.

We recently demonstrated, for the first time, the expression of the TLR4 co-receptor myeloid 

differentiation factor 2 (MD2) in the PAG, indicating the presence of TLR482. MD-2 

immunoreactivity was significantly denser in PAG regions important for morphine analgesia 

(lateral and ventrolateral PAG) as compared with other subnuclei (dorsal PAG), indicating a 

mechanism whereby morphine may preferentially activate glia in the vIPAG. Indeed 

morphine-induced OX-42, Ibal, and GFAP expression is most robust in ventral PAG 

regions83. Our recent data also indicate that vIPAG microinfusions of TLR4 antagonists, 

including (+)-naloxone, dose-dependently prevented tolerance to systemic morphine. In 
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parallel, we showed that vIPAG microinfusions of TLR4 agonists (in the absence of 

morphine) dose-dependently produced a naive tolerance to subsequent challenge doses of 

morphine (indicated by a significant 3-fold rightward shift in the morphine dose-response 

curve)82,117. Together these data are the first to identify a CNS locus through which TLR4 

signaling modulates opioid tolerance. It is important to note that studies demonstrating the 

necessity of MOR signaling in tolerance development using ‘opioid-specific’ ligands may 

need to be re-evaluated, as TLR4 binds several of these ligands, including naloxone, in a 

manner that maintains their agonistic and antagonistic properties78.

vIPAG TLR4 modulates morphine tolerance via soluble TNF signaling

Although TNF contributes to morphine-induced inflammation and the development of 

morphine tolerance at the level of the spinal cord72–74,76,84–87,93,111,112, remarkably, few 

studies have investigated the role of TNF signaling within the vIPAG, and very few studies 

have directly tested the role of TNF in isolation54,102,106. Additionally, the specific roles of 

the two natural forms of TNF (tmTNF and solTNF) have not been dissected. Glia activation 

by opioids induces the production of the cytokines IL-1β, IL-6, and TNF, as well as 

neuroexcitotoxic free radicals (NO, NOS, iNOS); these signaling factors have all been 

implicated in opioid tolerance71. IL-1β and TNF bind to their target receptors on astrocytes 

and microglia resulting in the further release of proinflammatory factors (e.g., IL-1β, IL-6, 

TNF, ATP, nitric oxide synthase; NOS, and brain derived neurotrophic factor; BDNF); this 

effectively induces a positive feedback loop of neuroinflammation71,85,88,89. BDNF binds to 

its neuronal receptor TrkB, which further contributes to neuronal excitability by initiating a 

depolarizing shift in anion reversal potential and increasing intracellular Cl− such that 

GABA binding becomes depolarizing150. BDNF also increases AMPA subunits and the 

NMDAR subunit NR2A151,152. These subunits have been referred to as ‘anti-opioid subunit’ 

due to the fact that NR2A knock-out mice do not develop morphine tolerance153. Together, 

these data indicate that morphine induced glial activation results in the release of an 

overwhelming number of factors that result in a ‘hyper-excitatory’ environment that 

contributes to morphine tolerance.

Corroborating a vast body of work in the spinal cord, we recently demonstrated that chronic 

morphine-induced tolerance significantly increased vIPAG TLR4 mRNA117 and increased 

proinflammatory cytokine expression (IL-1β, TNF, and IL-6) in the vIPAG. These results 

confirm previous studies suggesting that chronic morphine induces an increase in the 

immune receptor substrate to which it binds, thereby priming glia to over-respond to 

subsequent opioid exposures149. We also demonstrated that morphine tolerance was 

accompanied by a significant decrease in astrocytic glutamate transporter mRNA (GLT-1 

and GLAST) in the vIPAG117. Neuronal glutamate transporter mRNA (EAAC1) was not 

affected by chronic morphine administration, suggesting that opioids preferentially alter 

vIPAG astrocytic glutamate uptake to oppose the hyperpolarizing effects of morphine, and 

lead to tolerance. Chronic intra-vIPAG microinjections of the TLR4 agonist LPS (in the 

absence of morphine) mimicked the effects of morphine on GLT-1 and GLAST in the 

vIPAG117, suggesting that TLR4 mediates the inflammatory effects of chronic morphine. 

These results are consistent with previous studies demonstrating that cytokines increase 

neuronal excitability. Indeed, in vitro and in vivo54,119–121 studies have reported that 
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cytokines increase the number and conductance of AMPA and NMDA receptors, decrease 

astrocytic glutamate transporter proteins (GLT-1 and GLAST) 53,54,159, decrease GABA 

receptors and GABA currents 120, and increase presynaptic release of neurotransmitters71.

TNF is a major inflammatory signal released upon TLR4 activation. The inhibitor protein, 

dominant-negative TNF (DN-TNF), is a well-characterized variant of native human TNF 

that has been engineered to effectively sequester native solTNF and preclude it from 

initiating signaling through TNFRI by preventing receptor binding160. The use of DN-TNF 

to manipulate solTNF signaling is highly advantageous in that it spares the beneficial effects 

mediated by the transmembrane TNF (tmTNF) signal160,161. Using a lentiviral vector 

encoding dominant negative TNF (DN-TNF) or a brain-permeable DN-TNF peptide 

(XPro®1595), we have demonstrate that vIPAG sequestration of soluble TNF (solTNF) 

abolishes tolerance to systemic morphine as well as naive tolerance to morphine induced by 

intra-vIPAG injections of the TLR4 agonist LPS117. vIPAG injections of lenti-DN-TNF also 

prevented the morphine-induced decreases in GLT-1 and GLAST, and systemically injected 

XPro®1595 prevented the morphine-induced increase in IL-1β and TLR4 mRNA in the 

vIPAG, and eliminated the trending increase in TNF and IL-6 mRNA. These results 

complement work from Shen and colleagues demonstrating that chronic intrathecal 

morphine induces tolerance that is accompanied by decreases in spinal GLT-1 and GLAST, 

and increases in AMPA and NMDA receptor subunits. These authors further showed that 

one intrathecal injection of the general TNF decoy receptor Etanercept (that blocks solTNF 

and tmTNF signaling) was sufficient to rescue morphine analgesia in morphine tolerant 

mice, and prevent morphine-induced alterations in glutamatergic signaling54,102. Our results 

are consistent with this work, and indicate for the first time that solTNF (TNFRI), and not 

tmTNF (TNFRI and TNFRII) signaling, is important for morphine tolerance.

Our data are also novel in that we identify a neural locus through which TLR4 contributes to 

morphine tolerance, and indicate that TLR4-induced soluble TNF signaling (through 

TNFRI) is responsible for the anti-analgesic effects of morphine-TLR4 binding. Together, 

these data support our working hypothesis and indicate that morphine binds to TLR4 within 

the vIPAG, leading to the release of solTNF. Our results further suggest that solTNF 

mediates morphine tolerance in the PAG via TNFRI signaling and augmentation of 

glutamate homeostasis. Given that PAG-mediated analgesia depends largely on the ability of 

opioids to inhibit vIPAG MOR-expressing GABAergic neurons12,19,22,39,43,47,65,162–186, our 

data suggest that TLR4 signaling contributes to opioid tolerance by decreasing the ability of 

morphine to hyperpolarize vIPAG GABAergic neurons, thereby maintaining tonic inhibition 

of vIPAG-RVM projections neurons, and preventing opioid analgesia.

Summary

Glia modulation of opioid tolerance has been reported at every major level of the descending 

analgesic circuit: PAG, RVM, and spinal cord dorsal horn. Our recent results are the first to 

identify (1) a role for PAG glia in the development of morphine tolerance; (2) a neural locus 

through which TLR4 modulates morphine tolerance development; (3) solTNF as the 

important TNF form mediating opioid tolerance and alterations in glutamate homeostasis; 

and (4) release of PAG cytokines in the development of morphine tolerance (see Figure 1). 
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Additionally, our studies identify the anti-TNF biologic XPro®1595 as a potential tool to 

accompany opioid therapy in the clinic. XPro®1595 may be preferable over current FDA 

approved anti-TNF biologics (Etanercept, Infliximab, Adalimumab) as these drugs block 

both forms of TNF and are associated with encephalic lesions, neuritis, multiple sclerosis, 

and other demyelinating diseases187. Our studies have further demonstrated that exclusive 

sequestration of solTNF prevents opioid induced neuroinflammation and the ensuing 

changes in glutamate homeostasis and development of morphine tolerance. Importantly, 

these data indicate that tmTNF signaling (TNFRI and TNFRII) is not sufficient for opioid 

tolerance development. As TNFRII is protective against glutamate excitotoxicity188, these 

data indicate that TNFRII signaling may be a critical countermeasure to opioid-induced 

neuroexcitability.
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Highlights

• Our recent studies establish a role for PAG microglia, and in particular TLR4 

signaling, in the development of morphine tolerance.

• We present data indicating that soluble TNF (solTNF) is the important TNF 

isoform mediating opioid tolerance and alterations in glutamate homeostasis 

and that exclusive sequestration of solTNF in the vIPAG prevents opioid-

induced neuroinflammation and the ensuing changes in glutamate 

homeostasis and development of morphine tolerance.

– Our studies identify the anti-TNF biologic XPro®1595 as a potential 

tool to accompany opioid therapy in the clinic. XPro®1595 may be 

preferable over current FDA approved anti-TNF biologies 

(Etanercept, Infliximab, Adalimumab).
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Figure 1. A schematic diagram illustrating major conclusions and hypotheses.
Chronic morphine binds to vIPAG TLR4 and leads to solTNF signaling that increases 

proinflammatory gene expression (TLR4, IL-1β) and decreases astrocytic glutamate 

transporter mRNA (GLT-1 and GLAST) in the vIPAG. These changes effectively increase 

the availability of glutamate in the synapse, thereby decreasing the ability of morphine to 

hyperpolarize GABAergic neurons. These changes associated with morphine tolerance 

prevent morphine from initiating signaling through the descending analgesic circuit.
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