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Abstract

Background: The remarkable success of clinical trials in mineralocorticoid receptor (MR)
inhibition in heart failure has driven research on the physiological and pathological role(s) of
nonepithelial MR expression. MR is widely expressed in the cardiovascular system and is a major
determinant of endothelial function, smooth muscle tone, vascular remodeling, fibrosis, and blood
pressure. An important new dimension is the appreciation of the role MR plays in immune cells
and target organ damage in the heart, kidney and vasculature, and in the development of insulin
resistance.

Summary: The mechanism for MR activation in tissue injury continues to evolve with the
evidence to date suggesting that activation of MR results in a complex repertoire of effects
involving both macrophages and T cells. MR is an important transcriptional regulator of
macrophage phenotype and function. Another important feature of MR activation is that it can
occur even with normal or low aldosterone levels in pathological conditions. Tissue-specific
conditional models of MR expression in myeloid cells, endothelial cells, smooth muscle cells and
cardiomyocytes have been very informative and have firmly demonstrated a critical role of MR as
a key pathophysiologic variable in cardiac hypertrophy, transition to heart failure, adipose
inflammation, and atherosclerosis. Finally, the central nervous system activation of MR in
permeable regions of the blood-brain barrier may play a role in peripheral inflammation.

Key Message: Ongoing clinical trials will help clarify the role of MR blockade in conditions,
such as atherosclerosis and chronic kidney disease.
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Introduction

In the 1950s, Selye et al. [1] presciently characterized the effects of aldosterone on
nonepithelial tissues and postulated that spironolactone is protective in conditions of
aldosterone excess. The cloning of the human miner-alocorticoid receptor (MR) by Arriza et
al. [2] exactly 30 years ago, spurred interest in the nonclassical aspects of aldosterone
including the role of aldosterone in cardiac remodeling and fibrosis [3]. MRs are members
of a superfamily of intracellular ligand-operated steroid receptors that regulate transcription
of multiple genes and other transcription factors resulting in a complex repertoire of effects.
The remarkable success of clinical trials in MR inhibition through their effects on the
cardiovascular system have driven research on the physiological and pathological role(s) of
nonepithelial MR expression [4—6]. An important new dimension is the evolving
appreciation of the role MR plays in immune cells as it relates to target organ damage (Fig.
1). In this review, we attempt to review the most significant developments related to MR
modulation of immune expression and new studies over the last decade that have paved the
way for renewed understanding of MR-mediated cardiorenal disease.

MR Structure and Expression

The MR receptor is a 984-amino acid intracytoplasmic receptor divided into 3 domains: the
N-terminal domain that regulates transcriptional activity of the receptor; the DNA-binding
domain involved in the binding of the specific response element found on the promoter of
MR target genes; and finally, a ligand-binding domain responsible for the selectivity of
hormone binding. MR also binds to a number of chaperones that play a pivotal role in
maintaining MR in an appropriate conformation for ligand binding. Upon hormone binding,
the MR dissociates from chaperone proteins, undergoes nuclear translocation, and interacts
with numerous molecular partners in a coordinated and sequential manner to ensure
appropriate transcriptional regulation. In the nucleus, MR recruits co-regulators (cofactors
and/or corepressors) to induce the transactivation and regulation of hundreds of target genes
[7]. These genes present a palindromic DNA sequence common for GR and MR called the
glucocorticoid response element within their promoter. Although MR is regulated
transcriptionally, posttranscriptional mechanisms of regulation are important and include
phosphorylation and sumoylation. Very recently, ubiquitination, another posttranslational
modification of MR, has been reported [8].

MR Activation/Antagonism and Specificity-Conferring Mechanisms

MR has been shown to bind to aldosterone at low concentrations (high picomolar) and with
high affinity. MR also binds with equally high affinity to cortisol, corticosterone,
deoxycorticosterone, and progesterone [9]. Since circulating physiologic glucocorticoid
levels are ~1,000-fold higher than those of aldosterone on a normal diet, the issue of MR
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selectivity to aldosterone has been a topic of contention for decades. Studies by Funder and
Minireview [9] suggested that 11p-HSD type 2 (11p-HSD2), a high-affinity (nanomolar
Kwm), low-capacity NAD-dependent dehydrogenase is expressed alongside MR, where its
activity reduces the availability of glucocorticoids, permitting aldosterone to bind to the MR
with relative exclusivity. However, the idea that the presence of 113-HSD2 is enough to
provide unfettered access to aldosterone, through “debulking” cortisol (conversion to
cortisone) would require a tremendously efficient system that converts vast excesses of
cortisol to cortisone in the area proximal to the MR. This mechanism is not supported by in
vivo evidence in the cardiovascular, immune, and central nervous systems. Indeed, the
preponderance of evidence suggests little or no 118-HSD2 activity in the heart,
inflammatory cells, and regions of the central nervous system; yet there is extensive
evidence to support MR binding in these organs [10]. In addition, in vivo competition
studies in adrenal-ectomized animals show high MR selectivity in these organs. For instance,
cortisol has ~30% of the apparent affinity of aldosterone in the heart. These studies firmly
suggest that specificity-conferring mechanisms, other than pure enzymatic mechanisms are
essential for selective aldosterone action. 11p-HSD1, the enzyme that converts inactive
cortisone to cortisol in humans, has low affinity for glucocorticoids (micromolar Ky;)
relative to 11p-HSD2, and functions both as an oxidoreductase (transfers electrons from one
molecule to another) and as a dehydrogenase. The latter activity is dependent on the supply
of NADPH through coupled expression of the enzyme hexose-6-phosphate dehydrogenase.
Although there is plentiful evidence that myocardial cells express 11p-HSD1, reactivation of
glucocorticoid is apparently limited under physiological conditions both in mice and
humans. In an in vivo study in humans, the stable isotope tracer 9, 11, 12, 12-[2H]4-cortisol
underwent little metabolism across the human heart [11]. Administration of the MR
antagonist canrenoate in the same patients resulted in the elevation of cortisol collected from
the coronary sinus, suggesting displacement of endogenous glucocorticoids. These data
support the view that the cardiac MR is normally occupied by glucocorticoids rather than by
aldosterone. A model that provides an explanation for glucocorticoid-mediated MR
signaling in the setting of a protected MR (presence of 11p-HSD?2) is the concept that the
activity of the enzyme 11B-HSD2 results in a decrease in the NAD/NADH ratio (owing to
generation of NADH) which alters the redox state, resulting in blocking activity of MR.
There is direct evidence for redox stress/state regulating the activation of other nuclear
transactivating factors, and it is likely that similar changes in redox state are operant for
cortisol [10]. There are undoubtedly other aspects such as conformation of the ligand-
binding interactions and co-regulator recruitment that may contribute to between-ligand
(cortisol vs. aldosterone) differentiation in signaling [7, 12].

MR Activation in Kidneys and Cardiovascular Tissues

The mechanism for MR activation in tissue injury continues to evolve and suggests a
complex repertoire of effects involving a multitude of mediators that are cell and context
dependent. While in both animal models and humans, there is evidence that both plasma and
urinary aldosterone concentrations are increased in a variety of cardiometabolic conditions,
MR activation may occur in the absence of elevated aldosterone levels [13]. Recently,
several studies have suggested that MR activity is also affected by factors other than its
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ligands including PKA, Rac-1, ubiquitin conjugating enzymes and other factors involved in
the regulation of diverse nuclear receptors [14-17]. MR is widely expressed in the
cardiovascular system such as in the endothelium, smooth muscle cells, and fibro-blasts, and
is a major determinant of endothelial function, smooth muscle tone, vascular remodeling,
fibrosis, and blood pressure (BP) [18-25]. Endothelial, vascular smooth muscle, and
cardiomyocyte-specific overexpression/deletion studies in animals and studies in humans,
support a role for MR activation in promoting vascular oxidative stress, inflammation,
proliferation, migration, vasoconstriction, vascular remodeling, and fibrosis [26—-34], (online
suppl. Table for all online suppl. material, see www.karger.com/doi/10.1159/000480652).

In the kidneys, the classical effects of MR activation are to increase epithelial sodium
channel (ENaC) density in the distal convoluted tubule via increased expression and
activation of serum and glucocorticoid regulated kinase-1 (SGK1). Phosphorylated SGK1 in
turn “inhibits an inhibitor” of ENaC, NEDDA4, a protein involved constitutively in the
ubiquitination of ENaC [35]. Chronically, SGK1 may also play a role by promoting ENaC
transcription through inhibition of H3K79 methyltransferase, which blocks transcription of
ENaC. Mineralocorticoid-sensitive inflammation and fibrosis involves the upregulation of
the inflammatory transcription factor NFxB, which in turn stimulates the expression of
diverse mediators including connective tissue growth factor. SGK1 also inhibits the
degradation of the transforming growth factor beta (TGFp)-dependent transcription factors
Smad2/3, further promoting a profibrotic signal [36].

Aldosterone promotes the proliferation of renal fibro-blasts and mesangial cells via
transactivation of epidermal growth factor receptor and platelet-derived growth factor
receptor, induces myofibroblastic transdifferentiation of mesangial and tubular epithelial
cells, and directly stimulates the synthesis of profibrotic cytokines and matrix proteins [37—
40]. The profibrotic response of aldosterone at least in animal models, clearly requires
sodium. Studies by Shibata et al. [15, 41] have shown that salt can lead to the activation of
MR, even in the absence of ligand resulting in a profibrotic response in the kidney and heart.
Recent studies have additionally implicated an important role for the immune system in
aldosterone-mediated fibrosis and tissue injury. As detailed below, the activation of the
immune system appears to be an important mediator of MR-mediated effects and is a
requisite for its profibrotic effects.

Role of the MR in Macrophage/Monocytes

MR appears to play a central role in regulating macrophage phenotype and function broadly
through transcriptional reprogramming of monocytes/macrophages. Many of the phenotypic
effects reported to be regulated by MR may reflect a broad repurposing of cellular function.
Thus, while the effects of MR activation/antagonism are reported discretely, they may reflect
related and connected effects. In this regard, deletion of MR in myeloid cells (MR knock out
or MRKO) has been very useful in ascribing MR-dependent mechanisms in macrophages.
Table 1 details the cell-specific and phenotypic effects of conditional tissue-specific deletion
of MR in cardiovascular cells, including in myeloid cells.
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Transcriptional Reprogramming of Macrophages

PPAR<y, PPARS, and KLF4 are major regulators of alternate activation and are required for
the maintenance of alternatively activated macrophages (Fig. 2) [42]. Macrophages in mice
can be rendered pro-inflammatory (M1) in the presence of aldosterone, an effect prevented
by MR antagonism which favors an anti-inflammatory, alternatively activated (M2)
phenotype [43]. Conversely, MRKO in myeloid cells recapitulated the effects of MR
antagonism, by shifting the phenotype to M2 (alternatively activated macrophage) and
downregulating proinflammatory and profibrotic genes (TGFB and PAI-1). In vivo, myeloid
MRKO reduced aortic and cardiac macrophage recruitment, cardiac hypertrophy, fibrosis,
and fetal gene reprogramming in response to Angll and L-NAME (model of MR activation)
suggesting that myeloid MR is crucial to adverse, fibrotic cardiovascular remodeling [43].
Gene expression analysis revealed significant similarity between MRKO and PPAR~y
activation. These findings were similar to another study investigating macrophages from the
heart in myeloid MRKO and wild-type (WT) animals treated with vehicle or DOCA/salt. A
pro-inflammatory and profibrotic profile in response to DOCA salt was prevented in the
heart of mice with myeloid MR-null macrophages [44]. Further, MRKO in macrophages
diminished the activation of both AP1 and NFxB in restenosis models with effects
dependent on SGK1, consistent with other studies [45, 46].

Regulation of Myeloid Inflammatory Numbers and Chemotaxis

MRKO macrophages demonstrate reduced migration de novo in response to a chemokine
gradient with restenotic injury, resulting in lower macrophage content in MRKO animals vs.
WT [47]. Corning Transwell® assays with conditioned media derived from LPS-stimulated
MRKO macrophages induced markedly less migration of vascular smooth muscle cells and
lower expression of pro-inflammatory cytokines, compared to conditional media from
control macrophages [47]. Several in vivo studies involving hypertension and stroke models
have demonstrated a reduction in macrophage content in mice transplanted with MRKO
myeloid cells [43, 48]. Similarly, in a study of cardiac hypertrophy (transaortic constriction),
a reduction in macrophages in the heart with myeloid MR deletion was noted [49]. However,
two studies using a severe hypertension model (unilateral nephrectomy with 0.9% salt and
L-NAME) and a uninephrectomized mouse model of DOCA salt excess, demonstrated no
change in the number of tissue macrophages in the heart [44, 50]. In many of these studies,
macrophage recruitment seems to play a critical role in BP response, with evidence
suggesting a CCL2-dependent movement of myeloid cells to the heart required for myeloid
MR-dependent effects [51]. However, all studies demonstrated rather consistent reduction in
tissue fibrosis and inflammation suggesting that MR deficiency critically regulates fibrosis
[43, 47, 48, 50].

Regulation of ROS and Inflammatory Kinases

Aldosterone has been shown to activate components of NAPDH oxidase in various cell types
[27, 28, 52-54], and reductions in NADPH oxidase have been noted in response to MR
blockade [54-56]. The degree to which these are direct, nongenomic effects is difficult to
understand and is currently uncertain [57]. Racl, a Rho family small GTPase, is a novel
modulator of MR activity and demonstrated the pathological role of Racl-mediated MR
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activation in the kidney and in salt-sensitive hyper-tension [58]. In prior studies,
overexpression of constitutively active mutant Racl in rat cardiomyocytes promoted nuclear
accumulation of MR and increased MR-dependent transcriptional activity regardless of the
ligand level implicating a potential contribution of Rac1-MR signaling in cardiac diseases
[16, 41]. Racl associates with Nox isoforms such as Nox4 (present in endothelial cells)
rather than Nox2 (present in macrophages and neutrophils), at least in the myocardium and
contributes to heart failure in response to pressure overload hypertrophy. Thus, the activation
of Racl and subsequent activation of MR in addition to ROS generation through Nox4 may
contribute to tissue injury and transition to heart failure [41]. cJun N-terminal kinases (JNK)
may also be a downstream target of MR, as bone marrow-derived macrophages exposed to
LPS (classic type 1 proinflammatory mediator) significantly increased the phosphorylation
of INK, while phosphorylation of JNK is attenuated in MR-null bone marrow-derived
macrophages. Analysis of other MAPK pathways such as p38 and ERK1/2 showed
equivalent phosphorylation. In this study there were no differences in phosphorylation of the
NF«xB pathway and 1xBa.

Evidence for Inflammasome Activation in Myeloid Cells in Response to Aldosterone and
MR Involvement

Chronic inflammation caused by inflammasome activation is involved in many diseases
including atherosclerosis, diabetes, and obesity (Fig. 3). Recently, a role for inflammasome
activation in kidney injury via MR activation has been proposed; aldosterone stimulates
various components of the inflammasome complex and products of inflammasome
activation (IL18) lead to podocyte injury while blockade of MR reverses these effects [59].
Mice deficient in apoptosis-associated speck-like protein (ASC) had reduced renal fibrosis
and inflammation without affecting macrophage numbers. Bone marrow transplantation
using ASC-deficient mice marrow reduced inflammasome activation, implicating myeloid
cell-derived ASC in tubulointerstitial damage and subsequent fibrotic changes in the kidney
[60]. The mechanism of activation was attributed to mitochondrial-driven ROS as
mitochondrial-directed antioxidant mito-TEMPO interrupted caspase activation in response
to aldosterone in cultured macrophages [60]. A model of anti-glomerular basement
membrane glomerulonephritis (anti-GBM GN) was used to interrogate the contribution of
podocyte versus myeloid MR. The absence of MR in podocytes did not reduce immune
injury in anti-GBM GN. In contrast, injury glomerular crescents, myofibroblast
accumulation, and gene expression of profibrotic molecules (COL1A1, FN1, PAI-1) were all
decreased in MyMRKO mice versus WT [61].

Role of Central Nervous System MR in Regulation of Peripheral Inflammation

MR activation in the brain has been linked to sympathetic hyperactivity and an increase in
peripheral tissue aldosterone levels, while central MR blockade attenuates sympathetic
hyperactivity [62, 63]. In an interesting study, the time course of macrophage infiltration and
apoptosis in the heart in response to central MR blockade (intracerebroventricular infusion
of eplerenone, 5 pg/day) was evaluated post-myocardial infarction. Central MR blockade
significantly decreased CD80-positive pro-inflammatory M1 macrophages and increased
CD163-positive anti-inflammatory M2 macrophages in the infarct. Central MR blockade
also reduced apoptosis of myocytes by 40-50% in the peri-infarct zone [64].
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Role of the MR in T Cells

T lymphocytes play an important role in target organ damage in hypertension and
atherosclerosis. Indeed, MR in T cells is critical in mediating fibrosis in the heart and

kidney. T cell deficient in MR reduces ventricular remodeling in hypertension caused by
trans-aortic constriction. This was associated with reduced T cell activation markers and
inflammation in heart. Activation of MR resulting in increased Th17 T cells could contribute
to cardiac fibrosis. Conversely, treatment with 1L-17 blocking antibodies prevented DOCA/
salt induced cardiac and renal fibrosis in rats [65]. Recently, it has also been shown that MR
may interact with a critical transcription factor in T cells, NFAT1, and activator protein-1 to
control interferon gamma in T cells and regulate BP and target organ damage in an AnglI-
infusion murine model [66]. MRA (mineralocorticoid receptor antagonism) by eplerenone
and T cell-specific MR ablation (TMRKO) in mice resulted in reduced abdominal aortic
constriction (AAC)-induced cardiac hypertrophy, with reduced measures of cardiac fibrosis
(% fibrotic area, BMHC, collagen I/111, connective tissue growth factor, and TGFp1; Table 1)
[67]. Measures of cardiac function (e.g., LV end-systolic volume) were partially preserved in
TMRKO-AAC versus WT-AAC and LV-dilation/LVVH was attenuated. Post-ACC cardiac
neutrophil and monocyte/macrophage (CD11b*Ly6G*; CD11b*Ly6CNi respectively) content
was dramatically lower in TMRKO mice.

Role of the MR and Effect of MR Antagonism in the Treatment of
Cardiovascular and Renal Diseases

Pharmacological and clinical studies over >20 years have defined the importance of the MR
in hypertension and heart failure which will not be discussed here. There are studies that
demonstrated an impact of MRA in patients with risk factors, with improvement in surrogate
outcomes related to LV mass and hypertrophy (Table 2).

Effect of MRA in Cardiac Hypertrophy, Fibrosis, and Diastolic Dysfunction

Online supplementary Table details studies involving MRA that have demonstrated efficacy
in reducing fibrosis and hypertrophy in a variety of animal models irrespective of
aldosterone levels. A consistent effect of MRA is its impact on fibrosis and reduction of left
ventricular hypertrophy. In humans, MRA reduced LVH in patients on top of ACE inhibition
[68]. While these effects may rely on BP reduction, data from animal models seem to
support an effect that may occur independently of BP. A small study in obese patients
demonstrated that MRA (spironolactone) for 6 months can improve diastolic dys-function,
subclinical markers of systolic dysfunction (global longitudinal strain), a surrogate marker of
myocardial fibrosis (integrated backscatter, echo) and circulating markers of fibrosis (PICP)
[69]. Although results from the Treatment of Preserved Cardiac Function Heart Failure with
an aldosterone antagonist trial were negative, subset analysis suggests benefits in patients
with evidence of definitive heart failure who were medication compliant [70-72].
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Effect of MRA in Atherosclerosis

Proof-of-concept experiments from our group using eplerenone in a rabbit model of
atherosclerosis provided one of the first lines of evidence that MRA may improve vascular
function and redox stress independent of aldosterone levels. New Zealand white male rabbits
were fed 1% cholesterol chow (HL) or normal chow for 6 weeks to induce endothelial
dysfunction and then randomized to receive eplerenone or placebo (100 mg/kg) for 6
additional weeks [56]. Eplerenone normalized peak endothelium-dependent relaxation and
reduced O, in the aorta of high cholesterol fed animals. A number of studies have
demonstrated an impact of MRA in reducing atherosclerosis in mouse models, including
reduction of inflammatory cell infiltration, increased M2 markers, smooth muscle
proliferation, and reduced pro-inflammatory cytokines in plaques (online suppl. Table).
Studies in monkeys have also demonstrated important effects of eplerenone in reducing
aortic intimal volume (intravascular ultrasound) and improving acetylcholine-induced
vasorelaxation [73]. In models of experimental thrombosis, aldosterone enhances thrombosis
while spironolactone reverses this effect [74]. In recent studies, LDLR™~ chimeric mice with
bone marrow cells from floxed (control) mice or from myeloid MR~ demonstrated reduced
atherogenesis, suggesting that MR in myeloid cells likely promotes atherogenesis. Further
chimeric ApoE~~ mice with myeloid MRKO also exhibited reduced atherogenesis in
response to Angll, an effect mediated in part by reduced foam cell formation and enhanced
cholesterol efflux [45].

While the role of MRA in secondary prevention in patients with post-myocardial infarction
and symptoms of heart failure is well known, there are data suggesting that use of MRA
early post-Ml in patients with STEMI and LV dysfunction may be beneficial [75]. In the
REMINDER study (n=1,012), in patients with STEMI without HF, eplerenone reduced the
composite end point of CV mortality, rehospitalization, extended hospital stay, due to HF,
sustained ventricular tachycardia or fibrillation, ejection fraction <40%, or elevated
BNP/NT-proBNP at 1 month. The end point was primarily driven by persistent elevation of
BNP/NT-ProBNP in the placebo group. In contrast to earlier studies such as EMPHASIS-
HF, this was a low risk population without HF or low EF with a low event rate (0.4%
morality rate through the trial). Further the drug was administered early on after
presentation, with the first dose of study drug administered within 24 h of the onset of
symptoms of acute MI and preferably within 12 h. There is limited data supporting a role for
aldosterone in the progression of atherosclerosis. In human studies, polymorphisms of the
aldosterone synthase gene (Cyp11p2) have been associated with plaque size on MRI.
Plasma aldosterone levels have been associated with nonfatal cardiovascular events and CV
death. In a study of 848 patients, plasma aldosterone was the only independent predictor of
plaque progression (carotid ultrasound) in the first 2 years of the study [76].

Effect of MRA on Proteinuria and Progression of Chronic Kidney Disease

The beneficial impact of renin-angiotensin-aldosterone system (RAS) blockade with ACE-I
and ARB in both diabetic and nondiabetic chronic kidney disease (CKD) has been
demonstrated in multiple animal models and human studies (online suppl. Table). Two
previously published meta-analysis studies published initially in 2009 and updated in 2014

Am J Nephrol. Author manuscript; available in PMC 2019 November 19.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Belden et al.

Page 9

demonstrated that the addition of MRA to RAS blockade reduced BP and proteinuria in
CKD [77, 78]. An updated meta-analysis that included previously unpublished data as well
as including data from 3 studies which were not considered in the previous meta-analysis
supported previous findings [79]. A total of 19 trials (1,646 patients) were included, of
which 8 were done in patients with diabetic nephropathy. Fourteen (889 patients) compared
spironolactone plus ACE-I or ARB with ACE-I or ARB alone, and 5 trials (757 patients)
compared eplerenone plus ACE-1 or ARB to ACE-I or ARB alone. The follow-up period of
included trials was <1 year and the mean baseline eGFR was >35 mL/min/1.73 m?, therefore
the impact of addition of MRA to RAS blockade on long-term renal outcomes or mortality
in the later stages of CKD cannot be evaluated. In random effects meta-analysis, addition of
MRA to RAS inhibitors resulted in a reduction in systolic BP from baseline of —5.7 and
diastolic BP of 1.7 mm Hg, respectively. The GFR fell by —=3.2 mL/min/1.73 m2. MR
antagonism reduced the weighted mean protein/albumin excretion by 38.7%. MRA was
associated with 3-fold increased risk of hyper-kalemia above the predefined trial limit.
Diabetic CKD patients, however, were not at a greater risk of developing hyperkalemia than
patients with CKD of alternative etiology (o = 0.38). Number needed to harm for 1 year of
treatment, calculated from trials reporting at least one case of hyperkalemia, was 10 (95% ClI
5-27). The addition of MRA to RAS blockers led to a moderate increase from baseline
potassium compared to ACE-I and/or ARB alone, both at end-of-trial visit (0.19 mmol/L
[95% CI 0.07-0.31]; 16 trials; 7= 1,356; /2 = 83.8%).

MRA and Insulin Resistance and Type 2 Diabetes

A number of reviews have already detailed in vitro, experimental and human evidence
linking aldosterone/MR activation with IR [80-82]. The visceral adipose RAS system
synthesizes aldosterone, expresses MR, and predicts IR in both humans and animal models
[82]. Adipocyte overexpression of MR results in metabolic syndrome and enhanced vascular
contractility, and suggests an independent contribution outside of MR in inflammatory cells
in adipose [83]. In patients with nondiabetic stages 2-5 CKD, treatment with spironolactone
ameliorated insulin resistance. In the same study, insulin resistance in nephrectomized rats
was improved with spironolactone presumably via adipose overexpression of the rate
limiting enzyme for aldosterone, CYP11p2 and the downstream effector of MR, SGK-1
[84]. Spironolactone has also been shown to prevent insulin resistance in response to
diuretics [85]. However, treatment of individuals with uncomplicated obesity over 6 weeks
with spironolactone 50 mg, did not appear to improve insulin sensitivity index assessed by
Matsuda method. It is possible that this study was performed in metabolically healthy
obesity, although the insulin sensitivity index was <5 indicating potential insulin resistance
[86]. MR activation may affect IR through multiple mechanisms that include attenuation of
insulin signaling in the heart, vasculature, and skeletal muscle. This may include impairment
of expression of insulin receptor and substrate, decreased GLUT4 expression, abnormal
phosphorylation of IRS, and activation of multiple stress kinases downstream of insulin
receptor/IRS leading to the attenuation of insulin signaling [87]. Recently, caveolin-1
appears to be an additional mediator of MR action. Caveolin-1 knockout mice exhibit
features of insulin resistance and oxidative stress with the effects being ameliorated by MR
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blockade. In humans, individuals with a specific mutation of caveolin-1 also appear to be
more insulin-resistant [88].

Conclusion

Based on the central role MR plays in the pathogenesis of target organ damage, there is
optimism that the use of MRA could benefit patients with a variety of cardiometabolic
diseases to prevent complications. The advantages of MRA use for a broad spectrum of
patients are far beyond theoretical and are supported by a vast body of data over the last 5
decades. However, there are challenges in the use of these agents. The identification of
patients who may truly benefit from MRA is an important issue, as demonstrated in
Treatment of Preserved Cardiac Function Heart Failure [71, 89]. Additionally, hyperkalemia
is a concern, particularly in patients with advanced CKD. Whether the use of nonsteroidal
MRA'’s can minimize hyperkalemia, while allowing continued benefit of MRA is an exciting
area of investigation. Quantitative whole-body labeling studies with [14C]-labeled
finerenone, a novel nonsteroidal MRA, show equal distribution in heart and kidney tissues in
contrast to disproportionate renal deposition for steroidal MRAs such as eplerenone or
spironolactone, an aspect believed to be important in the lower incidence of hyperkalemia
despite comparable ICsg (24 nM for spironolactone vs. 18 nM for finerenone) [90]. Different
dose strengths of finerenone have been investigated in 823 randomized patients with type 2
diabetes mellitus (T2DM) and diabetic kidney disease receiving standard of care (i.e.,
ACEIs/ARBs) and either once-daily finerenone or placebo [91]. FIGARO-DKD
(NCT2545049, n=6,400) and FIDELIO-DKD (NCT2540993, /7= 4,800) are 2 randomized,
double-blind, placebo-controlled, parallel-group, multicenter, phase 3 studies that investigate
the safety and efficacy of finerenone in the reduction of cardiovascular morbidity and
mortality, and progression of CKD in subjects with T2DM and diabetic kidney disease.
Apararenone, a novel nonsteroidal MRA (MT-3995), is being tested in nonalcoholic
steatohepatitis (NCT2923154) and in diabetic nephropathy (NCT2676401). The
Mineralocorticoid Receptor Antagonism in Diabetic Atherosclerosis study will test the
utility of MR antagonism in patients with T2DM with CKD, at high risk for cardiovascular
complications [92]. The co-primary efficacy end point will be percentage change in total
atheroma volume in thoracic aorta and left ventricular mass at 52 weeks in patients treated
with spironolactone versus placebo. Secondary outcomes include 24-h mean systolic BP,
central aortic BP, and insulin resistance at 6 weeks. A novel measure in the study will be
changes in candidate miRNAs that regulate expression of NR3C2 (MR gene) as well as
measuring monocyte/macrophage polarization in response to therapy with spironolactone.
These studies may extend the utility of MRA and make these agents attractive adjuncts to
statins in the prevention of cardiometabolic complications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Mineralocorticoid agonism or elevated aldosterone levels have a deleterious effect on organ

systems and cells relevant to cardiometabolic diseases.
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Fig. 2.
Mineralocorticoid receptor agonism (ligand binding, left side) increases the classical

activation of macrophages, while antagonism MRA promotes an alternative activation (right
side).
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Fig. 3.
Aldosterone stimulation of adipose tissue macrophages may potentiate local tissue

inflammation exacerbating insulin resistance, diabetes, and atherosclerotic processes.
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