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Abstract

Background: The remarkable success of clinical trials in mineralocorticoid receptor (MR) 

inhibition in heart failure has driven research on the physiological and pathological role(s) of 

nonepithelial MR expression. MR is widely expressed in the cardiovascular system and is a major 

determinant of endothelial function, smooth muscle tone, vascular remodeling, fibrosis, and blood 

pressure. An important new dimension is the appreciation of the role MR plays in immune cells 

and target organ damage in the heart, kidney and vasculature, and in the development of insulin 

resistance.

Summary: The mechanism for MR activation in tissue injury continues to evolve with the 

evidence to date suggesting that activation of MR results in a complex repertoire of effects 

involving both macrophages and T cells. MR is an important transcriptional regulator of 

macrophage phenotype and function. Another important feature of MR activation is that it can 

occur even with normal or low aldosterone levels in pathological conditions. Tissue-specific 

conditional models of MR expression in myeloid cells, endothelial cells, smooth muscle cells and 

cardiomyocytes have been very informative and have firmly demonstrated a critical role of MR as 

a key pathophysiologic variable in cardiac hypertrophy, transition to heart failure, adipose 

inflammation, and atherosclerosis. Finally, the central nervous system activation of MR in 

permeable regions of the blood–brain barrier may play a role in peripheral inflammation.

Key Message: Ongoing clinical trials will help clarify the role of MR blockade in conditions, 

such as atherosclerosis and chronic kidney disease.
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Introduction

In the 1950s, Selye et al. [1] presciently characterized the effects of aldosterone on 

nonepithelial tissues and postulated that spironolactone is protective in conditions of 

aldosterone excess. The cloning of the human miner-alocorticoid receptor (MR) by Arriza et 

al. [2] exactly 30 years ago, spurred interest in the nonclassical aspects of aldosterone 

including the role of aldosterone in cardiac remodeling and fibrosis [3]. MRs are members 

of a superfamily of intracellular ligand-operated steroid receptors that regulate transcription 

of multiple genes and other transcription factors resulting in a complex repertoire of effects. 

The remarkable success of clinical trials in MR inhibition through their effects on the 

cardiovascular system have driven research on the physiological and pathological role(s) of 

nonepithelial MR expression [4–6]. An important new dimension is the evolving 

appreciation of the role MR plays in immune cells as it relates to target organ damage (Fig. 

1). In this review, we attempt to review the most significant developments related to MR 

modulation of immune expression and new studies over the last decade that have paved the 

way for renewed understanding of MR-mediated cardiorenal disease.

MR Structure and Expression

The MR receptor is a 984-amino acid intracytoplasmic receptor divided into 3 domains: the 

N-terminal domain that regulates transcriptional activity of the receptor; the DNA-binding 

domain involved in the binding of the specific response element found on the promoter of 

MR target genes; and finally, a ligand-binding domain responsible for the selectivity of 

hormone binding. MR also binds to a number of chaperones that play a pivotal role in 

maintaining MR in an appropriate conformation for ligand binding. Upon hormone binding, 

the MR dissociates from chaperone proteins, undergoes nuclear translocation, and interacts 

with numerous molecular partners in a coordinated and sequential manner to ensure 

appropriate transcriptional regulation. In the nucleus, MR recruits co-regulators (cofactors 

and/or corepressors) to induce the transactivation and regulation of hundreds of target genes 

[7]. These genes present a palindromic DNA sequence common for GR and MR called the 

glucocorticoid response element within their promoter. Although MR is regulated 

transcriptionally, posttranscriptional mechanisms of regulation are important and include 

phosphorylation and sumoylation. Very recently, ubiquitination, another posttranslational 

modification of MR, has been reported [8].

MR Activation/Antagonism and Specificity-Conferring Mechanisms

MR has been shown to bind to aldosterone at low concentrations (high picomolar) and with 

high affinity. MR also binds with equally high affinity to cortisol, corticosterone, 

deoxycorticosterone, and progesterone [9]. Since circulating physiologic glucocorticoid 

levels are ~1,000-fold higher than those of aldosterone on a normal diet, the issue of MR 
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selectivity to aldosterone has been a topic of contention for decades. Studies by Funder and 

Minireview [9] suggested that 11β-HSD type 2 (11β-HSD2), a high-affinity (nanomolar 

KM), low-capacity NAD-dependent dehydrogenase is expressed alongside MR, where its 

activity reduces the availability of glucocorticoids, permitting aldosterone to bind to the MR 

with relative exclusivity. However, the idea that the presence of 11β-HSD2 is enough to 

provide unfettered access to aldosterone, through “debulking” cortisol (conversion to 

cortisone) would require a tremendously efficient system that converts vast excesses of 

cortisol to cortisone in the area proximal to the MR. This mechanism is not supported by in 

vivo evidence in the cardiovascular, immune, and central nervous systems. Indeed, the 

preponderance of evidence suggests little or no 11β-HSD2 activity in the heart, 

inflammatory cells, and regions of the central nervous system; yet there is extensive 

evidence to support MR binding in these organs [10]. In addition, in vivo competition 

studies in adrenal-ectomized animals show high MR selectivity in these organs. For instance, 

cortisol has ~30% of the apparent affinity of aldosterone in the heart. These studies firmly 

suggest that specificity-conferring mechanisms, other than pure enzymatic mechanisms are 

essential for selective aldosterone action. 11β-HSD1, the enzyme that converts inactive 

cortisone to cortisol in humans, has low affinity for glucocorticoids (micromolar KM) 

relative to 11β-HSD2, and functions both as an oxidoreductase (transfers electrons from one 

molecule to another) and as a dehydrogenase. The latter activity is dependent on the supply 

of NADPH through coupled expression of the enzyme hexose-6-phosphate dehydrogenase. 

Although there is plentiful evidence that myocardial cells express 11β-HSD1, reactivation of 

glucocorticoid is apparently limited under physiological conditions both in mice and 

humans. In an in vivo study in humans, the stable isotope tracer 9, 11, 12, 12-[2H]4-cortisol 

underwent little metabolism across the human heart [11]. Administration of the MR 

antagonist canrenoate in the same patients resulted in the elevation of cortisol collected from 

the coronary sinus, suggesting displacement of endogenous glucocorticoids. These data 

support the view that the cardiac MR is normally occupied by glucocorticoids rather than by 

aldosterone. A model that provides an explanation for glucocorticoid-mediated MR 

signaling in the setting of a protected MR (presence of 11β-HSD2) is the concept that the 

activity of the enzyme 11β-HSD2 results in a decrease in the NAD/NADH ratio (owing to 

generation of NADH) which alters the redox state, resulting in blocking activity of MR. 

There is direct evidence for redox stress/state regulating the activation of other nuclear 

transactivating factors, and it is likely that similar changes in redox state are operant for 

cortisol [10]. There are undoubtedly other aspects such as conformation of the ligand-

binding interactions and co-regulator recruitment that may contribute to between-ligand 

(cortisol vs. aldosterone) differentiation in signaling [7, 12].

MR Activation in Kidneys and Cardiovascular Tissues

The mechanism for MR activation in tissue injury continues to evolve and suggests a 

complex repertoire of effects involving a multitude of mediators that are cell and context 

dependent. While in both animal models and humans, there is evidence that both plasma and 

urinary aldosterone concentrations are increased in a variety of cardiometabolic conditions, 

MR activation may occur in the absence of elevated aldosterone levels [13]. Recently, 

several studies have suggested that MR activity is also affected by factors other than its 
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ligands including PKA, Rac-1, ubiquitin conjugating enzymes and other factors involved in 

the regulation of diverse nuclear receptors [14–17]. MR is widely expressed in the 

cardiovascular system such as in the endothelium, smooth muscle cells, and fibro-blasts, and 

is a major determinant of endothelial function, smooth muscle tone, vascular remodeling, 

fibrosis, and blood pressure (BP) [18–25]. Endothelial, vascular smooth muscle, and 

cardiomyocyte-specific overexpression/deletion studies in animals and studies in humans, 

support a role for MR activation in promoting vascular oxidative stress, inflammation, 

proliferation, migration, vasoconstriction, vascular remodeling, and fibrosis [26–34], (online 

suppl. Table for all online suppl. material, see www.karger.com/doi/10.1159/000480652).

In the kidneys, the classical effects of MR activation are to increase epithelial sodium 

channel (ENaC) density in the distal convoluted tubule via increased expression and 

activation of serum and glucocorticoid regulated kinase-1 (SGK1). Phosphorylated SGK1 in 

turn “inhibits an inhibitor” of ENaC, NEDD4, a protein involved constitutively in the 

ubiquitination of ENaC [35]. Chronically, SGK1 may also play a role by promoting ENaC 

transcription through inhibition of H3K79 methyltransferase, which blocks transcription of 

ENaC. Mineralocorticoid-sensitive inflammation and fibrosis involves the upregulation of 

the inflammatory transcription factor NFκB, which in turn stimulates the expression of 

diverse mediators including connective tissue growth factor. SGK1 also inhibits the 

degradation of the transforming growth factor beta (TGFβ)-dependent transcription factors 

Smad2/3, further promoting a profibrotic signal [36].

Aldosterone promotes the proliferation of renal fibro-blasts and mesangial cells via 

transactivation of epidermal growth factor receptor and platelet-derived growth factor 

receptor, induces myofibroblastic transdifferentiation of mesangial and tubular epithelial 

cells, and directly stimulates the synthesis of profibrotic cytokines and matrix proteins [37–

40]. The profibrotic response of aldosterone at least in animal models, clearly requires 

sodium. Studies by Shibata et al. [15, 41] have shown that salt can lead to the activation of 

MR, even in the absence of ligand resulting in a profibrotic response in the kidney and heart. 

Recent studies have additionally implicated an important role for the immune system in 

aldosterone-mediated fibrosis and tissue injury. As detailed below, the activation of the 

immune system appears to be an important mediator of MR-mediated effects and is a 

requisite for its profibrotic effects.

Role of the MR in Macrophage/Monocytes

MR appears to play a central role in regulating macrophage phenotype and function broadly 

through transcriptional reprogramming of monocytes/macrophages. Many of the phenotypic 

effects reported to be regulated by MR may reflect a broad repurposing of cellular function. 

Thus, while the effects of MR activation/antagonism are reported discretely, they may reflect 

related and connected effects. In this regard, deletion of MR in myeloid cells (MR knock out 

or MRKO) has been very useful in ascribing MR-dependent mechanisms in macrophages. 

Table 1 details the cell-specific and phenotypic effects of conditional tissue-specific deletion 

of MR in cardiovascular cells, including in myeloid cells.
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Transcriptional Reprogramming of Macrophages

PPARγ, PPARδ, and KLF4 are major regulators of alternate activation and are required for 

the maintenance of alternatively activated macrophages (Fig. 2) [42]. Macrophages in mice 

can be rendered pro-inflammatory (M1) in the presence of aldosterone, an effect prevented 

by MR antagonism which favors an anti-inflammatory, alternatively activated (M2) 

phenotype [43]. Conversely, MRKO in myeloid cells recapitulated the effects of MR 

antagonism, by shifting the phenotype to M2 (alternatively activated macrophage) and 

downregulating proinflammatory and profibrotic genes (TGFβ and PAI-1). In vivo, myeloid 

MRKO reduced aortic and cardiac macrophage recruitment, cardiac hypertrophy, fibrosis, 

and fetal gene reprogramming in response to AngII and L-NAME (model of MR activation) 

suggesting that myeloid MR is crucial to adverse, fibrotic cardiovascular remodeling [43]. 

Gene expression analysis revealed significant similarity between MRKO and PPARγ 
activation. These findings were similar to another study investigating macrophages from the 

heart in myeloid MRKO and wild-type (WT) animals treated with vehicle or DOCA/salt. A 

pro-inflammatory and profibrotic profile in response to DOCA salt was prevented in the 

heart of mice with myeloid MR-null macrophages [44]. Further, MRKO in macrophages 

diminished the activation of both AP1 and NFκB in restenosis models with effects 

dependent on SGK1, consistent with other studies [45, 46].

Regulation of Myeloid Inflammatory Numbers and Chemotaxis

MRKO macrophages demonstrate reduced migration de novo in response to a chemokine 

gradient with restenotic injury, resulting in lower macrophage content in MRKO animals vs. 

WT [47]. Corning Transwell® assays with conditioned media derived from LPS-stimulated 

MRKO macrophages induced markedly less migration of vascular smooth muscle cells and 

lower expression of pro-inflammatory cytokines, compared to conditional media from 

control macrophages [47]. Several in vivo studies involving hypertension and stroke models 

have demonstrated a reduction in macrophage content in mice transplanted with MRKO 

myeloid cells [43, 48]. Similarly, in a study of cardiac hypertrophy (transaortic constriction), 

a reduction in macrophages in the heart with myeloid MR deletion was noted [49]. However, 

two studies using a severe hypertension model (unilateral nephrectomy with 0.9% salt and 

L-NAME) and a uninephrectomized mouse model of DOCA salt excess, demonstrated no 

change in the number of tissue macrophages in the heart [44, 50]. In many of these studies, 

macrophage recruitment seems to play a critical role in BP response, with evidence 

suggesting a CCL2-dependent movement of myeloid cells to the heart required for myeloid 

MR-dependent effects [51]. However, all studies demonstrated rather consistent reduction in 

tissue fibrosis and inflammation suggesting that MR deficiency critically regulates fibrosis 

[43, 47, 48, 50].

Regulation of ROS and Inflammatory Kinases

Aldosterone has been shown to activate components of NAPDH oxidase in various cell types 

[27, 28, 52–54], and reductions in NADPH oxidase have been noted in response to MR 

blockade [54–56]. The degree to which these are direct, nongenomic effects is difficult to 

understand and is currently uncertain [57]. Rac1, a Rho family small GTPase, is a novel 

modulator of MR activity and demonstrated the pathological role of Rac1-mediated MR 
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activation in the kidney and in salt-sensitive hyper-tension [58]. In prior studies, 

overexpression of constitutively active mutant Rac1 in rat cardiomyocytes promoted nuclear 

accumulation of MR and increased MR-dependent transcriptional activity regardless of the 

ligand level implicating a potential contribution of Rac1-MR signaling in cardiac diseases 

[16, 41]. Rac1 associates with Nox isoforms such as Nox4 (present in endothelial cells) 

rather than Nox2 (present in macrophages and neutrophils), at least in the myocardium and 

contributes to heart failure in response to pressure overload hypertrophy. Thus, the activation 

of Rac1 and subsequent activation of MR in addition to ROS generation through Nox4 may 

contribute to tissue injury and transition to heart failure [41]. cJun N-terminal kinases (JNK) 

may also be a downstream target of MR, as bone marrow-derived macrophages exposed to 

LPS (classic type 1 proinflammatory mediator) significantly increased the phosphorylation 

of JNK, while phosphorylation of JNK is attenuated in MR-null bone marrow-derived 

macrophages. Analysis of other MAPK pathways such as p38 and ERK1/2 showed 

equivalent phosphorylation. In this study there were no differences in phosphorylation of the 

NFκB pathway and IκBα.

Evidence for Inflammasome Activation in Myeloid Cells in Response to Aldosterone and 
MR Involvement

Chronic inflammation caused by inflammasome activation is involved in many diseases 

including atherosclerosis, diabetes, and obesity (Fig. 3). Recently, a role for inflammasome 

activation in kidney injury via MR activation has been proposed; aldosterone stimulates 

various components of the inflammasome complex and products of inflammasome 

activation (IL18) lead to podocyte injury while blockade of MR reverses these effects [59]. 

Mice deficient in apoptosis-associated speck-like protein (ASC) had reduced renal fibrosis 

and inflammation without affecting macrophage numbers. Bone marrow transplantation 

using ASC-deficient mice marrow reduced inflammasome activation, implicating myeloid 

cell-derived ASC in tubulointerstitial damage and subsequent fibrotic changes in the kidney 

[60]. The mechanism of activation was attributed to mitochondrial-driven ROS as 

mitochondrial-directed antioxidant mito-TEMPO interrupted caspase activation in response 

to aldosterone in cultured macrophages [60]. A model of anti-glomerular basement 

membrane glomerulonephritis (anti-GBM GN) was used to interrogate the contribution of 

podocyte versus myeloid MR. The absence of MR in podocytes did not reduce immune 

injury in anti-GBM GN. In contrast, injury glomerular crescents, myofibroblast 

accumulation, and gene expression of profibrotic molecules (COL1A1, FN1, PAI-1) were all 

decreased in MyMRKO mice versus WT [61].

Role of Central Nervous System MR in Regulation of Peripheral Inflammation

MR activation in the brain has been linked to sympathetic hyperactivity and an increase in 

peripheral tissue aldosterone levels, while central MR blockade attenuates sympathetic 

hyperactivity [62, 63]. In an interesting study, the time course of macrophage infiltration and 

apoptosis in the heart in response to central MR blockade (intracerebroventricular infusion 

of eplerenone, 5 μg/day) was evaluated post-myocardial infarction. Central MR blockade 

significantly decreased CD80-positive pro-inflammatory M1 macrophages and increased 

CD163-positive anti-inflammatory M2 macrophages in the infarct. Central MR blockade 

also reduced apoptosis of myocytes by 40–50% in the peri-infarct zone [64].
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Role of the MR in T Cells

T lymphocytes play an important role in target organ damage in hypertension and 

atherosclerosis. Indeed, MR in T cells is critical in mediating fibrosis in the heart and 

kidney. T cell deficient in MR reduces ventricular remodeling in hypertension caused by 

trans-aortic constriction. This was associated with reduced T cell activation markers and 

inflammation in heart. Activation of MR resulting in increased Th17 T cells could contribute 

to cardiac fibrosis. Conversely, treatment with IL-17 blocking antibodies prevented DOCA/

salt induced cardiac and renal fibrosis in rats [65]. Recently, it has also been shown that MR 

may interact with a critical transcription factor in T cells, NFAT1, and activator protein-1 to 

control interferon gamma in T cells and regulate BP and target organ damage in an AngII-

infusion murine model [66]. MRA (mineralocorticoid receptor antagonism) by eplerenone 

and T cell-specific MR ablation (TMRKO) in mice resulted in reduced abdominal aortic 

constriction (AAC)-induced cardiac hypertrophy, with reduced measures of cardiac fibrosis 

(% fibrotic area, βMHC, collagen I/III, connective tissue growth factor, and TGFβ1; Table 1) 

[67]. Measures of cardiac function (e.g., LV end-systolic volume) were partially preserved in 

TMRKO-AAC versus WT-AAC and LV-dilation/LVH was attenuated. Post-ACC cardiac 

neutrophil and monocyte/macrophage (CD11b+Ly6G+; CD11b+Ly6Chi respectively) content 

was dramatically lower in TMRKO mice.

Role of the MR and Effect of MR Antagonism in the Treatment of 

Cardiovascular and Renal Diseases

Pharmacological and clinical studies over >20 years have defined the importance of the MR 

in hypertension and heart failure which will not be discussed here. There are studies that 

demonstrated an impact of MRA in patients with risk factors, with improvement in surrogate 

outcomes related to LV mass and hypertrophy (Table 2).

Effect of MRA in Cardiac Hypertrophy, Fibrosis, and Diastolic Dysfunction

Online supplementary Table details studies involving MRA that have demonstrated efficacy 

in reducing fibrosis and hypertrophy in a variety of animal models irrespective of 

aldosterone levels. A consistent effect of MRA is its impact on fibrosis and reduction of left 

ventricular hypertrophy. In humans, MRA reduced LVH in patients on top of ACE inhibition 

[68]. While these effects may rely on BP reduction, data from animal models seem to 

support an effect that may occur independently of BP. A small study in obese patients 

demonstrated that MRA (spironolactone) for 6 months can improve diastolic dys-function, 

subclinical markers of systolic dysfunction (global longitudinal strain), a surrogate marker of 

myocardial fibrosis (integrated backscatter, echo) and circulating markers of fibrosis (PICP) 

[69]. Although results from the Treatment of Preserved Cardiac Function Heart Failure with 

an aldosterone antagonist trial were negative, subset analysis suggests benefits in patients 

with evidence of definitive heart failure who were medication compliant [70–72].
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Effect of MRA in Atherosclerosis

Proof-of-concept experiments from our group using eplerenone in a rabbit model of 

atherosclerosis provided one of the first lines of evidence that MRA may improve vascular 

function and redox stress independent of aldosterone levels. New Zealand white male rabbits 

were fed 1% cholesterol chow (HL) or normal chow for 6 weeks to induce endothelial 

dysfunction and then randomized to receive eplerenone or placebo (100 mg/kg) for 6 

additional weeks [56]. Eplerenone normalized peak endothelium-dependent relaxation and 

reduced O2
– in the aorta of high cholesterol fed animals. A number of studies have 

demonstrated an impact of MRA in reducing atherosclerosis in mouse models, including 

reduction of inflammatory cell infiltration, increased M2 markers, smooth muscle 

proliferation, and reduced pro-inflammatory cytokines in plaques (online suppl. Table). 

Studies in monkeys have also demonstrated important effects of eplerenone in reducing 

aortic intimal volume (intravascular ultrasound) and improving acetylcholine-induced 

vasorelaxation [73]. In models of experimental thrombosis, aldosterone enhances thrombosis 

while spironolactone reverses this effect [74]. In recent studies, LDLR–/– chimeric mice with 

bone marrow cells from floxed (control) mice or from myeloid MR–/– demonstrated reduced 

atherogenesis, suggesting that MR in myeloid cells likely promotes atherogenesis. Further 

chimeric ApoE–/– mice with myeloid MRKO also exhibited reduced atherogenesis in 

response to AngII, an effect mediated in part by reduced foam cell formation and enhanced 

cholesterol efflux [45].

While the role of MRA in secondary prevention in patients with post-myocardial infarction 

and symptoms of heart failure is well known, there are data suggesting that use of MRA 

early post-MI in patients with STEMI and LV dysfunction may be beneficial [75]. In the 

REMINDER study (n = 1,012), in patients with STEMI without HF, eplerenone reduced the 

composite end point of CV mortality, rehospitalization, extended hospital stay, due to HF, 

sustained ventricular tachycardia or fibrillation, ejection fraction ≤40%, or elevated 

BNP/NT-proBNP at 1 month. The end point was primarily driven by persistent elevation of 

BNP/NT-ProBNP in the placebo group. In contrast to earlier studies such as EMPHASIS-

HF, this was a low risk population without HF or low EF with a low event rate (0.4% 

morality rate through the trial). Further the drug was administered early on after 

presentation, with the first dose of study drug administered within 24 h of the onset of 

symptoms of acute MI and preferably within 12 h. There is limited data supporting a role for 

aldosterone in the progression of atherosclerosis. In human studies, polymorphisms of the 

aldosterone synthase gene (Cyp11β2) have been associated with plaque size on MRI. 

Plasma aldosterone levels have been associated with nonfatal cardiovascular events and CV 

death. In a study of 848 patients, plasma aldosterone was the only independent predictor of 

plaque progression (carotid ultrasound) in the first 2 years of the study [76].

Effect of MRA on Proteinuria and Progression of Chronic Kidney Disease

The beneficial impact of renin-angiotensin-aldosterone system (RAS) blockade with ACE-I 

and ARB in both diabetic and nondiabetic chronic kidney disease (CKD) has been 

demonstrated in multiple animal models and human studies (online suppl. Table). Two 

previously published meta-analysis studies published initially in 2009 and updated in 2014 
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demonstrated that the addition of MRA to RAS blockade reduced BP and proteinuria in 

CKD [77, 78]. An updated meta-analysis that included previously unpublished data as well 

as including data from 3 studies which were not considered in the previous meta-analysis 

supported previous findings [79]. A total of 19 trials (1,646 patients) were included, of 

which 8 were done in patients with diabetic nephropathy. Fourteen (889 patients) compared 

spironolactone plus ACE-I or ARB with ACE-I or ARB alone, and 5 trials (757 patients) 

compared eplerenone plus ACE-I or ARB to ACE-I or ARB alone. The follow-up period of 

included trials was <1 year and the mean baseline eGFR was >35 mL/min/1.73 m2, therefore 

the impact of addition of MRA to RAS blockade on long-term renal outcomes or mortality 

in the later stages of CKD cannot be evaluated. In random effects meta-analysis, addition of 

MRA to RAS inhibitors resulted in a reduction in systolic BP from baseline of −5.7 and 

diastolic BP of −1.7 mm Hg, respectively. The GFR fell by −3.2 mL/min/1.73 m2. MR 

antagonism reduced the weighted mean protein/albumin excretion by 38.7%. MRA was 

associated with 3-fold increased risk of hyper-kalemia above the predefined trial limit. 

Diabetic CKD patients, however, were not at a greater risk of developing hyperkalemia than 

patients with CKD of alternative etiology (p = 0.38). Number needed to harm for 1 year of 

treatment, calculated from trials reporting at least one case of hyperkalemia, was 10 (95% CI 

5–27). The addition of MRA to RAS blockers led to a moderate increase from baseline 

potassium compared to ACE-I and/or ARB alone, both at end-of-trial visit (0.19 mmol/L 

[95% CI 0.07–0.31]; 16 trials; n = 1,356; I2 = 83.8%).

MRA and Insulin Resistance and Type 2 Diabetes

A number of reviews have already detailed in vitro, experimental and human evidence 

linking aldosterone/MR activation with IR [80–82]. The visceral adipose RAS system 

synthesizes aldosterone, expresses MR, and predicts IR in both humans and animal models 

[82]. Adipocyte overexpression of MR results in metabolic syndrome and enhanced vascular 

contractility, and suggests an independent contribution outside of MR in inflammatory cells 

in adipose [83]. In patients with nondiabetic stages 2–5 CKD, treatment with spironolactone 

ameliorated insulin resistance. In the same study, insulin resistance in nephrectomized rats 

was improved with spironolactone presumably via adipose overexpression of the rate 

limiting enzyme for aldosterone, CYP11β2 and the downstream effector of MR, SGK-1 

[84]. Spironolactone has also been shown to prevent insulin resistance in response to 

diuretics [85]. However, treatment of individuals with uncomplicated obesity over 6 weeks 

with spironolactone 50 mg, did not appear to improve insulin sensitivity index assessed by 

Matsuda method. It is possible that this study was performed in metabolically healthy 

obesity, although the insulin sensitivity index was <5 indicating potential insulin resistance 

[86]. MR activation may affect IR through multiple mechanisms that include attenuation of 

insulin signaling in the heart, vasculature, and skeletal muscle. This may include impairment 

of expression of insulin receptor and substrate, decreased GLUT4 expression, abnormal 

phosphorylation of IRS, and activation of multiple stress kinases downstream of insulin 

receptor/IRS leading to the attenuation of insulin signaling [87]. Recently, caveolin-1 

appears to be an additional mediator of MR action. Caveolin-1 knockout mice exhibit 

features of insulin resistance and oxidative stress with the effects being ameliorated by MR 
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blockade. In humans, individuals with a specific mutation of caveolin-1 also appear to be 

more insulin-resistant [88].

Conclusion

Based on the central role MR plays in the pathogenesis of target organ damage, there is 

optimism that the use of MRA could benefit patients with a variety of cardiometabolic 

diseases to prevent complications. The advantages of MRA use for a broad spectrum of 

patients are far beyond theoretical and are supported by a vast body of data over the last 5 

decades. However, there are challenges in the use of these agents. The identification of 

patients who may truly benefit from MRA is an important issue, as demonstrated in 

Treatment of Preserved Cardiac Function Heart Failure [71, 89]. Additionally, hyperkalemia 

is a concern, particularly in patients with advanced CKD. Whether the use of nonsteroidal 

MRA’s can minimize hyperkalemia, while allowing continued benefit of MRA is an exciting 

area of investigation. Quantitative whole-body labeling studies with [14C]-labeled 

finerenone, a novel nonsteroidal MRA, show equal distribution in heart and kidney tissues in 

contrast to disproportionate renal deposition for steroidal MRAs such as eplerenone or 

spironolactone, an aspect believed to be important in the lower incidence of hyperkalemia 

despite comparable IC50 (24 nM for spironolactone vs. 18 nM for finerenone) [90]. Different 

dose strengths of finerenone have been investigated in 823 randomized patients with type 2 

diabetes mellitus (T2DM) and diabetic kidney disease receiving standard of care (i.e., 

ACEIs/ARBs) and either once-daily finerenone or placebo [91]. FIGARO-DKD 

(NCT2545049, n = 6,400) and FIDELIO-DKD (NCT2540993, n = 4,800) are 2 randomized, 

double-blind, placebo-controlled, parallel-group, multicenter, phase 3 studies that investigate 

the safety and efficacy of finerenone in the reduction of cardiovascular morbidity and 

mortality, and progression of CKD in subjects with T2DM and diabetic kidney disease. 

Apararenone, a novel nonsteroidal MRA (MT-3995), is being tested in nonalcoholic 

steatohepatitis (NCT2923154) and in diabetic nephropathy (NCT2676401). The 

Mineralocorticoid Receptor Antagonism in Diabetic Atherosclerosis study will test the 

utility of MR antagonism in patients with T2DM with CKD, at high risk for cardiovascular 

complications [92]. The co-primary efficacy end point will be percentage change in total 

atheroma volume in thoracic aorta and left ventricular mass at 52 weeks in patients treated 

with spironolactone versus placebo. Secondary outcomes include 24-h mean systolic BP, 

central aortic BP, and insulin resistance at 6 weeks. A novel measure in the study will be 

changes in candidate miRNAs that regulate expression of NR3C2 (MR gene) as well as 

measuring monocyte/macrophage polarization in response to therapy with spironolactone. 

These studies may extend the utility of MRA and make these agents attractive adjuncts to 

statins in the prevention of cardiometabolic complications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Mineralocorticoid agonism or elevated aldosterone levels have a deleterious effect on organ 

systems and cells relevant to cardiometabolic diseases.
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Fig. 2. 
Mineralocorticoid receptor agonism (ligand binding, left side) increases the classical 

activation of macrophages, while antagonism MRA promotes an alternative activation (right 

side).
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Fig. 3. 
Aldosterone stimulation of adipose tissue macrophages may potentiate local tissue 

inflammation exacerbating insulin resistance, diabetes, and atherosclerotic processes.
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