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of Listeria monocytogenes isolated from chicken retail points
and poultry slaughterhouses in Turkey
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Abstract
Listeria monocytogenes is one of the most important foodborne pathogens and is a causal agent of listeriosis in humans and
animals. The aim of this study was to determine the prevalence, serogroups, antibiotic susceptibility, virulence factor genes, and
genetic relatedness of L. monocytogenes strains isolated from 500 poultry samples in Turkey. The isolation sources of 103
L. monocytogenes strains were retail markets (n = 100) and slaughterhouses (n = 3). L. monocytogenes strains were identified
as serogroups 1/2a-3a (75.7%, lineage I), 1/2c-3c (14.56%, lineage I), 1/2b-3b-7 (5.82%, lineage II), 4a-4c (2.91%, lineage III),
and 4b-4d-4e (0.97%, lineage III). Most of the L. monocytogenes strains (93.2%) were susceptible to the antibiotics tested. PCR
analysis indicated that the majority of the strains (95% to 100%) contained most of the virulence genes (hylA, plcA, plcB, prfA,
mpl, actA, dltA, fri, flaA inlA, inlC, and inlJ). Pulsed-field gel electrophoresis (PFGE) demonstrated that there were 18 pulsotypes
grouped at a similarity of > 90% among the strains. These results indicate that it is necessary to prevent the presence of
L. monocytogenes in the poultry-processing environments to help prevent outbreaks of listeriosis and protect public health.
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Introduction

Listeria monocytogenes is a major foodborne pathogen that
causes listeriosis in humans and animals. The clinical symp-
toms of this disease are serious and include meningitis, me-
ningoencephalitis, septicaemia, abortion, and death [1]. It
mainly affects pregnant women, infants, older adults, and im-
munocompromised individuals [2]. Interestingly, there has
been a statistically significant increase in prevalence of

confirmed listeriosis in the EU/EEA during last 5 years (pe-
riods 2013–2017) [3]. However, there is limited research on
cases of listeriosis in humans in Turkey. Listeriosis is diag-
nosed in 32 cases (11 healthy children and childhood ages 3
patients) which 66% have reported meningitis between 1987
and 2001 [4]. Since this bacterium may survive under different
environmental conditions, foods are highly susceptible to
L. monocytogenes contamination. In the USA, it is reported that
there are more than 2500 listeriosis cases per year, 99% of them
are from food source, and 500 people have died [5]. Listeriosis
is linked to the consumption of contaminated food such as
unpasteurized milk, ready-to-eat meat products, ice cream,
and seafood [6, 7]. Contamination may occur during different
food-processing stages such as packing, transportation, and
preparation. In fact, multiple factors are related with survival,
proliferation, and widespread contamination of food [8].

It is very important to monitor antibiotic resistance
especially Multi Drug Resistance (MDR) of pathogenic or-
ganisms for potential hazard assessment [9]. Although
L. monocytogenes is susceptible to many antibiotics, some-
times, multi-drug resistance can be observed among the iso-
lates [10]. Some factors may affect its antibiotic resistance
mechanisms. These are gene transfer resulting from stress in
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the food chain, biofilm formation, or antimicrobial use [11].
Resistance to antibiotics in L. monocytogenes strains from
different sources has also been previously documented [12].

A l t hough app r ox ima t e l y 5% p r e v a l e n c e o f
L. monocytogenes in food is observed, the overall rate of lis-
teriosis is low in the European Union [13]. This may be due to
variability in the virulence properties found among various
strains. Further typing and characterization steps are a require-
ment to precisely determine the virulence factors caused by
foodborne L. monocytogenes strains [9]. Serotyping is the
primary method used for typing of L. monocytogenes [14].
There are 15 recognized serotypes of L. monocytogenes.
These are mainly separated to four lineages such as division
I (1/2b, 3b, 4b, 4d, and 4e), division II (1/2a, 1/2c, 3a, and 3c),
division III (4a and 4c), and division IV serotypes (4a, 4c, and
atypical 4b). Among these serotypes, serotypes 1/2a, 1/2b, and
4b are responsible for most human listeriosis and isolated
from food and environmental samples. Serotypes 4a and 4c
are rarely related with epidemics [15–17]. Because of the lim-
itations of serotyping, modern molecular typing techniques
such as randomly amplified polymorphic DNA (RAPD),
pulsed-field gel electrophoresis (PFGE), and amplified frag-
ment length polymorphism (AFLP) have been developed for
characterization [18–20]. The use of whole genome sequenc-
ing is becoming more common as a sub-typing tool, although
other methods are still important.

Pathogenicity of L. monocytogenes depends on various viru-
lence factors [21]. There are many virulence genes identified in
L. monocytogenes. Among these genes, hlyA is one of the essen-
tial pathogenic factors and is responsible for the escape from the
phagosomes and invasion of host cells [22, 23]. The actA gene
encodes the surface protein ActA and is associated with cell-to-
cell spread [24]. The internalin genes are involved in internaliza-
tion and adhesion of L. monocytogenes [25]. The prfA gene
regulates and controls the expression of a number of virulence
genes [22, 26]. The pathogenicity of L. monocytogenes depends
mainly on the prfA virulence gene cluster [27].

The objectives of the present study were to characterize
L. monocytogenes isolates from different poultry samples
originated from retail points and slaughterhouses in Turkey
in terms of antibiotic susceptibility, serogroups, virulence
genes, and genetic relatedness.

Materials and methods

Sampling and isolation

A total of 500 poultry meat samples were collected; 443 fresh
poultry meat samples (wing, drumstick, and breast parts) were
collected between April of 2014 and June of 2015 from local
markets and butchers located in Istanbul, Turkey, and 57 poul-
try samples including whole chicken, wing, drumstick, and

breast were obtained from slaughterhouses located in two cit-
ies (Balıkesir and Bolu, Turkey). The collected samples (n =
500) were analyzed for the presence of L. monocytogenes.
Isolation and identification of L. monocytogeneswas conduct-
ed as described by ISO 11290-1 [28]. First, 25 g of samples
was diluted in half-fraser broth (Oxoid, UK) and incubated at
30 °C for 24 h for initial enrichment. After that, 0.1 ml of this
suspension was transferred into 10ml fraser broth (Oxoid) and
further incubated at 37 °C for 24–48 h. The suspensions were
plated onto Chromogenic Listeria Agar (Oxoid) after the sec-
ond enrichment and the plates were incubated at 37 °C for
48 h. Typical colonies (blue-green with an opaque halo) were
purified on selective agar plates (Chromogenic Listeria Agar,
Oxoid) incubated at 37 °C for 48 h. Next, a single colony was
streaked onto Tryptone Soya Agar (TSA, Oxoid) and incubat-
ed at 37 °C for 24 h. Isolated strains were frozen in 20% (v/v)
glycerol and then stored at − 80 °C for further analysis.

Confirmation of isolates as L. monocytogenes

The isolates were grown on TSA at 37 °C for 24 h. This
culture was used as inoculum for biochemical analysis (cata-
lase, Gram staining, oxidase production, and the CAMP test
on 5% (v/v) sheep blood agar). Following this, bacterial DNA
extraction was performed [29]. PCR targeting the monoA-B
gene was performed to confirm the presumptive
L. monocytogenes [30, 31].

Characterization of L. monocytogenes strains

Serogrouping

All L. monocytogenes strains were serogrouped by multiplex
PCR (m-PCR) as described by Doumith et al. [32].

Antibiotic susceptibility and MIC profiles

L. monocytogenes strains were tested for antibiotic suscepti-
bility by the agar disk diffusion method on Mueller-Hinton
agar (Oxoid). The plates were incubated at 37 °C for 24 h
using the EUCAST Disk Diffusion Method (EUCAST,
2016). Five different antibiotics were used: ampicillin (AMP,
Oxoid-CT0002B, 2 μg), penicillin G (P, Oxoid-CT0152B,
1 U), erythromycin (E, Oxoid-CT0020B, 15 μg), meropenem
(M, Oxoid-CT0774B, 10 μg), and trimethoprim-
sulfamethoxazole (co-trimoxazole) (STX, Oxoid-CT0052B,
25 μg). Streptococcus pneumoniae ATCC 46919 was used
as a quality control strain. Minimum inhibitory concentrations
(MIC) of the antibiotics were tested using E-Test (Abbiodisk,
Sweden) and the results were evaluated according to
EUCAST breakpoint tables [33].
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Detection of virulence genes

Virulence genes such as dltA, plcA, plcB, mpl, and actAwere
detected using the same PCR conditions described in Table 1
[36, 39–43]. The internalin genes (inlA, inlC, and inlJ) and
other virulence factor genes (hylA, prfA, fri, and flaA) were
determined using the modified PCR conditions shown in
Table 1. The PCR products were resolved on 1–1.5% (w/v)
agarose gels in 1× TAE buffer and then visualized using
SafeView™ Classic stain (Applied Biological Materials,
Canada) in Infinity Gel Imaging System (Vilber Lourmat,
France). All experiments were repeated at least three times.

Pulsed-field gel electrophoresis

PFGE was performed using the standardized PulseNet PFGE
protocol (http://www.cdc.gov/pulsenet/PDF/listeria-pfge-
protocol-508c.pdf) for L. monocytogenes digested with AscI
and ApaI. The PFGE patterns were analyzed using the
BioNumerics software package (Ver.7.5; Applied Maths,
Belgium). The TIFF images were normalized by aligning
the peaks with the size of a standard Salmonella enterica
serovar braenderup H9812 strain, which was loaded on
three lanes in each gel. Dendrogram and matching
unweighted pair group method with averages (UPGMA) anal-
ysis of the patterns were conducted using the Pearson or Dice
coefficient with a 1.0% tolerance.

Results and discussion

In the present study, a total of 500 poultry samples were col-
lected and analyzed for the presence of L. monocytogenes. All
of the presumptive L. monocytogenes isolates (n = 103) obtain-
ed by the Chromogenic Listeria Agar were Gram (+), catalase
(+), oxidase (−), and CAMP (+) motile rods. The results of
monoA-B PCR were also used in parallel with the biochemical

profiles to confirm the isolates as L. monocytogenes. One hun-
dred (22.6%) and 3 (5.3%) samples from retail markets and
slaughterhouses were positive for L. monocytogenes, respec-
tively (Table 2). The overall frequency of L. monocytogenes
strains in poultry samples was 21%. A higher occurrence of
L. monocytogenes was obtained from retail markets (100/
103). Based on the sample type, the majority were recovered
from drumstick samples (71/103). Chickenmeat is known to be
one of the mainly important food for the L. monocytogenes
contamination [44]. In the related literature, the reported prev-
alence rates of this bacterium in poultry meat products were
3.7% in Morocco [45], 8.9% in Algeria [46], 15.3% in
Romania [47], 17.9% in Brazil [44], 38% in Greece [12],
2.1% [48], 45% in Turkey [49], and 58% in Brazil [50]. The
differences in the prevalence may be due to the differences in
geographical characteristics, sampling strategies, hygienic con-
ditions, and microbiological analysis methods [51].
L. monocytogenes contamination of poultry meat may occur
during production, processing, and storage [44]. Therefore,
good thermal treatment, personnel hygiene, cleaning applica-
tions, processing, and storage conditions may prevent
L. monocytogenes contamination during food processing [9].

Serogrouping of L. monocytogenes is useful for the ini-
tial identification of potential health risks that may be linked
to food [52]. Therefore, the strains were serogrouped into
five groups using serogroup-specific primers by m-PCR.
The majority of the strains (75.7%) were characterized as
serogroup IIa (1/2a or 3a). Most of them were originated
from drumstick collected from retail markets (55%). Also,
15 (14.56%) and 6 strains (5.82%) were serogrouped as IIc
(1/2c or 3c) and IIb (1/2b, 3b or 7), respectively. Serogroup
IVa (4a or 4c) was observed in three strains (2.91%). In
addition, the serogroup IV (4b, 4d, or 4e) was observed at
a low prevalence (0.97%). Leong et al. [53] and Murugesan
et al. [54] have shown that 100% of serogroups 1/2a-3a and
1/2c-3c are actually serotypes 1/2a and 1/2c, respectively.
According to this data, it is assumed that many of the strains

Table 1 Modified PCR conditions used for the detection of virulence genes

Gene Amplicon (bp) PCR conditions Reference

hylA 234 Initial denaturation at 94 °C for 5 min, 40 cycles of
94 °C for 30 s, 55 °C for 30 s, and 72 °C for 45 s.

Furrer et al. [34] and Mengaud et al. [35]

prfA 571 Initial denaturation at 94 °C for 5 min, 35 cycles of 94 °
C for 1 min, 55 °C for 1 min, and 72 °C for 1 min.

Nishibori et al. [36]

inlA
inlC
inlJ

800
517
238

Initial denaturation at 94 °C for 5 min, 35 cycles of 94
°C for 30 s, 55 °C for 30 s, and 72 °C for 1 min.

Liu et al. [37]

fri 471 Initial denaturation at 94 °C for 5 min, 35 cycles of 94
°C for 45 s, 47 °C for 45 s, and 72 °C for 1 min and
the final cycle at 72 °C for 7 min.

Slama et al. [38]

flaA 864 Initial denaturation at 94 °C for 5 min, 35 cycles of 94
°C for 45 s, 47 °C for 45 s, and 72 °C for 1 min and
the final cycle at 72 °C for 7 min.

Slama et al. [38]
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obtained from the present study are serotypes 1/2a and 1/2c.
In fact, serotypes 1/2a, 1/2b, 1/2c, and 4b strains are known
to cause most human listeriosis [10]; moreover, these sero-
types can be recovered from food samples and patients [15].
Especially, serotype 1/2a strains account above 50% of the
food and environment isolates [16]. Based on the
serogrouping, all of the isolates obtained from poultry sam-
ples were in the serogroups that are associated with human
listeriosis which may suggest a potential public health risk.
Major epidemics of listeriosis occur because of serotype 4b
strains [21]; however, there was only one strain within this
serogroup in this study. In another study [51], 16
L. monocytogenes strains from food samples were found
to belong to serogroup IVb (87.5%) within phylogenetic
lineage I and serogroup IIa belonging to phylogenetic line-
age II (12.5%). Similar to the findings of this study, predom-
inant serogroup in their study was serogroup IIa. Cao et al.
[21] also reported that the isolates from black-headed gull
feces belonged to serotype 4a (44%), 1/2c (33%), and 1/2b
(22%). Maury et al. [55] reported that isolates belonging to
lineage I and lineage II are overrepresented among food and
human isolates, respectively.

The formation of biofilm in food-processing environments
constitutes serious safety problems in processed food and is
difficult to remove [56]. Huang et al. [16] demonstrated that
serotype 1/2a isolates formed biofilm with a higher intensity
than serotype 4b isolates in laboratory medium at 37 °C most
probably due to the production of higher amounts of extracel-
lular polymeric substances. This information suggests that
most of the strains (76%) in this study may have potential to
form higher amounts of biofilms in food-processing
environments.

Since the virulence properties of L. monocytogenes influ-
ence the development of listeriosis [23], the occurrence of 14

virulence genes was determined by monoplex or m-PCR.
Table 3 presents the distribution of the virulence genes in
103 L. monocytogenes strains divided into different
serogroups. All of the strains were found to contain hylA,
plcA, plcB, and actA virulence genes. Among them, hlyA
and actA genes are known to cause invasion of host cells
and stimulation of cell-to-cell spread, respectively [23].
Internalin genes (inlA, inlC, and inlJ) were detected in
95.1% of the strains. Strains that produce a truncated
internalinA are compromised in their virulence [57], implying
that the five strains mentioned above would be compromised
in virulence if they do not have the gene(s).

The remaining virulence genes were found in the range of
95 to 99%. The prfA gene which controls several virulence
genes was detected in 101 strains (98%). Also, prfA and flaA
are known as flagella-associated genes that are involved in
biofilm formation [56]. The flaA gene was found in the 95%
of the poultry strains. Most of the strains (97%) contained the
oxidative resistance gene, fri. The stress regulator and oxida-
tion resistance genes are needed for persistence and growth
under oxidative stress conditions [16]. High incidence of vir-
ulence factor genes has also been detected by other re-
searchers. Du et al. [9] demonstrated that food isolates
contained internalin genes (inlA, inlC, and inlJ, 100%), hylA
(100%), plcB (100%), actA (90.5%), and plcA genes (76.2%).
In another study, all isolates from bovine carcasses were found
to carry hylA, plcA, plcB, actA, inlA, inlC, and inlJ genes [58].
The actA gene is not a ubiquitous virulence factor of
L. monocytogenes and the prevalence of this gene is variable
[9]. It is important to highlight that the strains lacking inlC and
inlJ genes are non-pathogenic [37]. It is noteworthy that the
variations between the prevalence of virulence genes in dif-
ferent studies can be related to the use of several PCR target
fragments within the genes [9].

Table 2 Distribution of L. monocytogenes based on the sample type, sampling place, and date

Sampling place Sampling date Type and number of samples

Whole chicken Breast parts Wing Drumstick % (No.) of positive samples
for L. monocytogenes

Slaughterhouse A April 2014 8 1 1 1 9% (1/11)

May 2014 8 1 1 1 0% (0/11)

October 2014 8 1 1 1 0% (0/11)

Slaughterhouse B July 2014 9 1 1 1 16.7% (2/12)

August 2014 9 1 1 1 0% (0/12)

Retail markets May 2014 – 6 20 39 1.5% (1/65)

August 2014 – 13 7 59 7.6% (6/79)

March 2015 – 15 8 56 49% (39/79)

April 2015 – 8 29 48 40% (34/85)

June 2015 – 25 42 68 14.8% (20/135)

Total 42 72 111 275 21% (103/500)

1066 Braz J Microbiol (2019) 50:1063–1073



Since antibiotic resistance is a worldwide public health con-
cern [59], it is crucial to monitor the effect that antibiotic usage
has on foodborne pathogens in order to understand resistance
patterns. There is restricted information about the antibiotic
resistance of L. monocytogenes strains isolated from chicken
samples [44]. Ampicillin is generally combined with other an-
tibiotics for the treatment of listeriosis. Sulfamethoxazole/
trimethoprim has also been used as an alternative to ampicillin
in the case of allergy [60]. Therefore, ampicillin (2 μg), eryth-
romycin (15 μg), meropenem (10 μg), sulfamethoxazole/
trimethoprim (25 μg), and penicillin G (1 U) were tested to
detect antibiotic susceptibility of the isolates. Five tested antibi-
otics of L. monocytogenes isolates were susceptible (93.2%).
These results were in agreement with Amajoud et al. [51] re-
sults. The presence of antibiotic resistance in L. monocytogenes
isolates originated from food samples is low [58]. In fact, all
samples from slaughterhouses (n = 57) were susceptible to the
five antibiotics tested. Resistance was observed among strains
obtained only from wing and drumstick samples from retail
markets. Resistance to sulfamethoxazole/trimethoprim, penicil-
lin G, and erythromycin was found among 5%, 3%, and 2% of
these strains, respectively. Similarly, 2% of L. monocytogenes
strains were found resistant to trimethoprim or tetracycline/tri-
methoprim, tetracycline, and erythromycin [61]. Sugiri et al.
[62] also indicated that 17.2%, 6.9%, 6.9%, and 3.4% of the
strains isolated from chicken carcasses were resistant to peni-
cillin, ampicillin, erythromycin, and ampicillin/penicillin com-
bination, respectively.

Antimicrobial resistance is thought to be related to inappro-
priate and overdose use of antibiotics in animals and humans
[61, 63]. The widespread use of antibiotics has resulted in the
improvement of antibiotic-resistant bacteria. In most coun-
tries, antibiotic resistance of L. monocytogenes is not preva-
lent, although in some countries such as Iran and India, it is
seen relatively high [64–66]. Therefore, monitoring antibiotic

resistance in L. monocytogenes is important. The use of anti-
microbials as growth promoters in poultry farming is a reason
for the presence of resistant bacterial strains in chicken meat
[44]. According to the Organization for Economic Co-
operation and Development (OECD), antibiotic-resistant bac-
teria problem may also occur in Turkey, Korea, and Greece
due to the high antibiotic usage [67]. Also, it was concluded
that there was an increase in the prevalence of antibiotic-
resistant bacteria isolated between 2000 and 2017. However,
it is difficult to compare the results obtained in previous stud-
ies with the current study because of the use of different
methods, antibiotic types, and concentrations tested. In a re-
cent study, 21 food isolates were found resistant to cefoxitin
(100%), cefuroxime (85.7%), ampicillin (81%), clindamycin
(52.4%), and cefotaxime (47.7%) by agar disk diffusion [9].
They also observed MDR to 3–8 of the 11 analyzed antibi-
otics. Amajoud et al. [51] demonstrated that food strains were
resistant to sulfonamide, cefotaxime, fosfomycine, lincosamide,
and nalidixic acid but they were susceptible to other tested
antibiotics such as streptomycin, trimethoprim, penicillin G,
chloramphenicol, vancomycin, rifampicin, kanamycin, fusidic
acid, levofloxacin, ciprofloxacin, ampicillin, erythromycin,
moxifloxacin, amikacin, tobramycin amoxicillin, gentamicin,
and imipenem. In another study, only 0.6% of 351 food origi-
nated strains showed antibiotic resistance to eight tested antibi-
otics (erythromycin, ampicillin, chloramphenicol, tetracycline,
vancomycin, streptomycin, penicillin G, and gentamicin) [68].
MDR in L. monocytogenes isolates was not observed. Threlfall
et al. [69] indicated that 0.02% of L. monocytogenes strains
originated from humans and food were resistant to erythromy-
cin, trimethoprim, ciprofloxacin, and tetracycline. Gómez et al.
[70] found that 34.5% of the isolates frommeat-processing area
and meat products showed resistance to one or two antibiotics.
On the other hand, 2.9% of their isolates were classified as
MDR. Ayaz and Erol [71] isolated L. monocytogenes from

Table 3 Virulence gene contents
of isolated L. monocytogenes
strains

Virulence gene No of positives (%) Serogroup-positive sample no. (%)

1/2a-3a 1/2c-3c 4b-4d-4e 1/2b-3b-7 4a-4c

hylA 103 (100) 78 (100) 15 (100) 1 (100) 6 (100) 3 (100)

inlA 98(95.1) 76 (97.4) 12 (80) 1 (100) 6 (100) 3 (100)

inlC 98(95.1) 76 (97.4) 12 (80) 1 (100) 6 (100) 3 (100)

inlJ 98(95.1) 76 (97.4) 12 (80) 1 (100) 6 (100) 3 (100)

plcA 103(100) 78 (100) 15 (100) 1 (100) 6 (100) 3 (100)

plcB 103(100) 78 (100) 15 (100) 1 (100) 6 (100) 3 (100)

prfA 101 (98.0) 76 (97.4) 15 (100) 1 (100) 6 (100) 3 (100)

mpl 99 (96.1) 74 (94.8) 15 (100) 1 (100) 6 (100) 3 (100)

actA 103 (100) 78 (100) 15 (100) 1 (100) 6 (100) 3 (100)

dltA 102 (99.0) 77 (98.7) 15 (100) 1 (100) 6 (100) 3 (100)

fri 100 (97.0) 76 (97.4) 15 (100) 1 (100) 5 (83.3) 3 (100)

flaA 98 (95.1) 73 (93.5) 15 (100) 1 (100) 6 (100) 3 (100)
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ground turkey samples in Turkey, 63 (80.8%) strains were re-
sistant to penicillin G, and 53 (67.9%) strains were resistant to
ampicillin. Similar to the results of this study, they also found
that all the isolates tested were sensitive to the antimicrobials
used for the treatment of listeriosis.

Similar to another report [72], antibiotic resistance in
L. monocytogenes strains was found at low levels in this study.
MDR isolates were not found among L. monocytogenes strains.
The resistant strains (6.8%) were subjected to additional tests to
determine MIC values for these antibiotics. These strains
belonged to serogroup IIa (n = 2), IIb (n = 1), and IIc (n = 4).
Five strains belonging to serogroups of IIb, IIa, and IIc had a
higher MIC value for sulfamethoxazole/trimethoprim than the
critical value (MICs, 0.16 to 0.32 μg/ml). Three strains were
below the breakpoint level and classified as susceptible against
penicillin G. On the other hand, only two strains within
serogroups of IIa and IIb had a MIC of 0.12 μg/ml for
erythromycin.

PFGE, which has a high discriminatory power [2], has been
considered as a “gold standard” method, especially for track-
ing the source of contamination, although in some jurisdic-
tions, whole genome sequencing is replacing it as the gold
standard, particularly for disease epidemic investigation [73].
The strains were divided into 18 pulsotypes using AscI and
ApaI when grouped at a similarity of > 90% (Figs. 1 and 2).
The PFGE profiles showed a great variety among the isolates.
Based on the PFGE patterns, 57 pulsotypes were composed of
only one strain, while there was more than one strain in the
remaining 18 pulsotypes. Pulsotypes 1&1a, 4&4a, and
12&12a were found to contain mixed PCR serogroups (IIa/
IIc or IIa/IVa). The strains within pulsotypes 2, 3, and 5 were
in serogroup IIc (Fig. 1). The strains of the remaining
pulsotypes belonged to serogroup IIa. The presence of high
PFGE diversity among L. monocytogenes strains from chick-
en slaughterhouses has been investigated in a recent study
[44]. After restriction by ApaI, those authors obtained 12
pulsotypes from 38 L. monocytogenes strains isolated from
195 samples of chicken cuts and carcasses sampled from a
slaughterhouse in Bahia, Brazil. Based on their results, 11,
2, and 3 pulsotypes were in the serotype 1/2a, serotype 1/2b,
and serotype 1/2c, respectively. Amajoud et al. [51] also found
8 different PFGE profiles among 16 L. monocytogenes strains
obtained from 1096 food in Tetouan, Morocco, after restric-
tion by AscI and ApaI and then grouped them into three clus-
ters. The strains in cluster I belonged to PCR serogroup IVb
and were isolated from traditional whey, pastries, mortadella,
and mayonnaise. In cluster II, there were strains in the PCR
serogroup IIa isolated from raw milk. In the third cluster, the
strains isolated from pastries belonged to PCR serogroup IVb.

L. monocytogenes strains were considered as widespread
when repeated isolation of strains of the same pulsotype at
different geographic locations at the same time occurred and
persistent when repeated isolation of strains of the same

Fig. 1 Dendrogram showing PFGE band patterns of 103 L. monocytogenes
strains divided into 18 pulsotypes after AscI and ApaI digestion
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pulsotype at different sampling times occurs (Fig. 3). Some of
the pulsotypes contained strains that were obtained from 2 to 4

markets, while one of the pulsotypes contained strains obtained
at a slaughterhouse and 2 markets, representing widespread

Fig. 2 Minimum spanning tree
obtained from dendrogram
analysis of all the isolates
obtained from the survey. The
white circles represent pulsotypes
with no similarity at < 90%, while
the colors indicate pulsotypes
with > 90% similarity. Pulsotypes
1, 4, and 12 contain isolates with
mixed serogroups

Fig. 3 Comparison of some PFGE profiles of different isolates showing
the widespread nature of the isolates (a), the persistent nature of isolates
(b), and isolates of different serogroups in the same pulsotype (c).

Isolation sources: M1, Habibler (Istanbul); M2, Taksim (Istanbul); M3,
Avcilar (Istanbul); M4, Sehremini (Istanbul); M5, Fatih (Istanbul); S1,
Slaughterhouse A (Bolu)
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isolates. The presence of the same pulsotype among the strains
collected from markets may be an indication of cross-contam-
ination. On the other hand, some of the profiles obtained at the
markets were not observed among the strains from the slaugh-
terhouses suggesting that cross-contamination could also occur
due to the customers or owners of market stalls.

Contamination of the end product during processing
may be related to the presence of persistent strains in
the processing area [74]. Regarding the persistence, fif-
teen of the pulsotypes contained strains that were obtained
at different sampling times. Their sampling time ranged
from 1 to 7 months. After comparison of pulsotypes with
the database, all strains from this study were distinguish-
able from the previous studies conducted in Ireland (n =
553 ) , Roman i a (n = 55 ) , G r e e c e (n = 20 ) , t h e
Czech Republic (n = 8), the United Kingdom (n = 100),
Austria (n = 32), and Australia (n = 200). At > 90% simi-
larity, the isolates were similar to two strains characterized
in Ireland (Fig. 4). Madden et al. [75] also showed the
presence of 27 pulsotypes among isolates from food-
processing facilities in Ireland. Among them, 9 pulsotypes
were shared between different processing plants and 9 of
them were persistent.

Conclusions

L. monocytogenes was found in poultry samples collected
from three cities in Turkey. Most of the isolated strains
belonged to serogroup IIa (lineage II) that are associated with
major sporadic infection in humans. Also, the presence of
virulence factor genes that are the determinants for the patho-
genicity highlights the importance of this pathogen in food-
processing environments. According to the results of the
PFGE, poultry is a common source for widespread and per-
sistent L. monocytogenes strains. Therefore, it is necessary to
apply good hygiene conditions and food-processing technol-
ogies to prevent contamination of this foodborne pathogen for
public health.
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