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Genome sequencing of Burkholderia contaminans LTEB11 reveals
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Abstract
Burkholderia contaminans LTEB11 is a Gram-negative betaproteobacterium isolated as a contaminant of a culture in mineral
medium supplemented with vegetable oil. Here, we report the genome sequence of B. contaminans LTEB11, identifying and
analyzing the genes involved in its lipolytic machinery and in the production of other biotechnological products.
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The genus Burkholderia is widely distributed in the environ-
ment [1]. It is divided into two well-established clusters: the
non-pathogenic cluster, which comprises beneficial plant
symbionts, and the pathogenic cluster, which comprises op-
portunistic human, animal, and plant pathogens [1]. The spe-
cies Burkholderia contaminans was described in 2009 and
received this name because it was isolated as a contaminant
of a Sargasso Sea DNA sample [2]. Currently, B. contaminans
is classified in the Burkholderia cepacia complex (BCC), a
group of at least 18 species that infect immunocompromised
individuals, especially sufferers of cystic fibrosis [3, 4].

Despite their role as disease agents, B. contaminans and
other BCC species have biotechnological applications. For
example, they have been applied as biocontrol and bioreme-
diation agents [5], for the production of biosurfactants [6] and
for the production of extracellular lipases [7].

B. con taminans LTEB11 i s a Gram-nega t ive
betaproteobacterium isolated in our laboratory as a contami-
nant of a fungal culture in mineral medium supplemented with
vegetable oil. It was previously classified, erroneously, as both
B. cepacia and B. lata. This strain produces an extracellular
lipase (LipBC) that is active and highly stable in media con-
taining organic solvents [8, 9]. Indeed, we have produced
LipBC by submerged fermentation and by solid-state fermen-
tation and applied it in esterification and transesterification
reactions for biodiesel synthesis [10–12] and resolution of
racemates [13]. Recently, genes encoding lipase LipBC
(lipA) and foldase LifBC (lipB) were identified and co-
expressed in Escherichia coli, with a recombinant Lip-
LifBC complex being purified and characterized [14].
However, little is known about the genome of this bacterium
andwhether it might have other biotechnological applications.
Here, we report the genome sequence of B. contaminans
LTEB11, identifying and analyzing the genes involved in its
lipolytic machinery.

Genomic DNA was isolated using phenol-chloroform ex-
traction [15]. The whole-genome sequencing was performed
on two different platforms:MiSeq Illumina (2,698,078 paired-
end reads, 250 bp) and Ion Proton System (5,661,193 frag-
ments, 125 bp long). The sequence data were de novo assem-
bled using CLC Genomics Workbench 6.5.1 [16], Velvet
1.2.07 [17] and Masurca 2.3.2 [18] and the final assembly
was optimized and finished using GFinisher [19]. The average
nucleotide identity (ANI) [20] was calculated by a script de-
veloped by Kostas’s lab (http://enve-omics.gatech.edu/).
BLASTn comparison of genomes was visualized by BRIG
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[21]. Coding sequences (CDS) and open reading frames
(ORFs) were predicted using the RAST server [22].
Phylogenetic analysis was carried out with the neighbor-
joining method and bootstrapping (1000 replicates) was used
to estimate the confidence levels of phylogenetic reconstruc-
tions [23].

The B. contaminans LTEB11 genome was assembled in 7
contigs organized in three replicons of 3,548,326 bp (chromo-
some 1), 3,254,142 bp (chromosome 2), and 1,196,160 bp
(chromosome 3) (Table 1). The estimated genome size is
7.9 Mb and the GC content is 66.5%. This genome size falls
within the range of 7.4 to 9.7 Mb described for the genus
Burkholderia [24]. Burkholderia contaminans LTEB11

showed ANI values greater than 97% when compared with
B. contaminans strains LMG 23361, FFI-28, FFH2055, and
MS14 (Table S1). Also, the highest nucleotide sequence iden-
tity of B. contaminans LTEB11 was for B. lata FL7530S1D0
(95%) and B. lata 383 (94%), values that indicate high ge-
nome relatedness (Fig.1).

In total, 7553 protein-coding genes were predicted
(Table 1). Sixty genes were annotated as coding for α/β hy-
drolases, with 17 of these being classified as esterases or li-
pases, organized in different superfamilies (Table 2). Among
these sequences, the lipAB operon, which codes for the lipase
LipA (LipBC) and the lipase-specific foldase LipB (LifBC),
was annotated in chromosome 2. In addition, we identified

Table 1. Features of the genome
of Burkholderia contaminans
LTEB11

Size (bp) Contigs Protein-coding genesa tRNAs G + C content (%)

Chromosome 1 3,548,326 4 3366 56 66.7

Chromosome 2 3,254,142 2 3074 6 66.6

Chromosome 3 1,196,160 1 1113 3 65.8

Total 7,998,628 7 7553 65 66.3

a Note that the number of genes presented in Table 1 is different from the number of genes annotated in the
genome in GenBank (accession number GCA_001865715.1). For the present paper, we annotated the genome
using the RASTannotator, which considers pseudogenes in the final gene count. The PGAP annotator applied by
GenBank disregards pseudogenes

Fig. 1 Circular representation of
the genome of B. contaminans
LTEB11 and comparison with the
whole-genome sequences of
seven Burkholderia strains. Rings
from the inside to outside: [1] GC
content (black), [2] GC skew
(purple and green), [3] BLASTn
comparison with B. contaminans
MS14, [4] BLASTn comparison
with B. contaminans LGM23361,
[5] BLASTn comparison with
B. contaminans FFH2055, [6]
BLASTn comparison with
B. contaminans FFI-28, [7]
BLASTn comparison with B. lata
FL7530S1D0, [8] BLASTn
comparison with B. lata 383, and
[9] BLASTn comparison with
B. cepacia ATCC 25416
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another operon, lipEF, in chromosome 1, with this operon
coding for a lipase (LipE) and a foldase (LipF) that have
65% and 53% of identity, respectively, with LipA and LipB.
Sequence analysis showed that LipA, LipE, and two more
lipases (LipC and LipD) have the typical N-terminal signal
sequence, suggesting that these lipases may be secreted by
B. contaminans LTEB11. The genes encoding a Sec-
translocase complex as well as a type II secretion system
(T2SS) were annotated in chromosome 1. These systems
are required for the secretion of lipases by Gram-negative
bacteria [25].

Comparative analysis showed that LipA, LipC, and LipD
are also present in genomes of other isolates of
B. contaminans (FFH2055, LMG 23361, MS14, FFI-28,
and FFH 2055) and B. lata (383 and FL7530S1D0).
However, in these genomes, the operon lipEF described here
was only identified in B. lata FL (Table 2). Phylogenetic

analysis classified LipA and LipE in the family I.2 of bacterial
lipases, next to lipases of B. glumae, B. lata, and C. viscosum,
whereas LipC and LipD were classified close to I.3 family
members (Fig. S1).

In order to evaluate the lipolytic activity of B. contaminans
LTEB11, a crude extract was obtained by submerged fermen-
tation using olive oil 1% (v/v) as an inducer for lipase expres-
sion [9]. In addition, recombinant LipA (LipBC) was
overexpressed in Escherichia coli and purified according to
Alnoch et al. [14]. The activities of both crude extract and
recombinant LipAwere determined by the titrimetric method
using a pHStat (as described in the Supplementary material).
The crude extract of B. contaminans LTEB11 showed higher
activity (90 U mg−1) against tributyrin than against olive oil
(44 U mg−1) (Table 3). The same profile was observed for the
recombinant LipA, with activities of 1330 U mg−1 against
tributyrin and 790 U mg−1 against olive oil (Table 3). These
results suggest that B. contaminans LTEB11 secretes LipA
into the medium; however, other lipases or esterases might
be produced and secreted during the cultivation. The high
activity presented in the crude extract of B. contaminans
LTEB11 and shown by recombinant LipA suggests that it
would be interesting to characterize further the lipases and
esterases produced by B. contaminans LTEB11.

The genome of B. contaminans LTEB11 also contains the
pha genes, phaC, phaA, phaB, coding for enzymes involved
in the biosynthesis of polyhydroxyalkanoates (PHA); phaR,
coding for the transcriptional regulator (PhaR) of the phasin
gene phaP; and phaZ, the gene encoding the PHA

Table 3. Lipolytic
activity of the crude
extracts obtained from
B. contaminans LTEB11
and recombinant LipA
(LipBC) against
triacylglycerols

Lipolytic activity (U mg−1)a

Substrate Crude extract LipA

Tributyrin 90 ± 14 1330 ± 86

Olive oil 44 ± 8 790 ± 29

a The activity was determined by the titri-
metric method using a pHStat, at pH 8.0
and 37 °C. Results are expressed as the
average of triplicate assays ± the standard
error of the mean

Fig. 2 [1]H-NMR spectrum of 3-hydroxybutyrate (P3HB) produced by
Burkholderia contaminans LTEB11. (1) The multiplet at 5.25 ppm cor-
responds to 1H (a) in the asymmetric carbon; (2) The doublet of the
quadruplet at 2.35 ppm corresponds to 2H (b) in the methylene group
adjacent to an asymmetric carbon atom. PHB samples (10 mg) were
dissolved in CDCl3 and subjected to analysis. 1H-NMR spectra were
acquired for each sample at 600MHz using an AscendTM 600 spectrom-
eter (Bruker) equipped with a 5-mmQXI inverse probe and a sample case

autosampler. PHB accumulation assays were performed according to
Matias et al. [28]. Flask cultures containing 500 mL of liquid ISP9 me-
dium (2% (w/v) of glucose) were incubated in a shaker at 30 °C for 72 h,
120 rpm. Culture samples were harvested by centrifugation, lyophilized,
and pretreated with two acetone baths and treated with chloroform at
60 °C for 48 h under agitation. After the treatment, the contents of flasks
were filtered through Whatman no. 1 filter paper and dried at room tem-
perature until PHB film formation

622 Braz J Microbiol (2019) 50:619–624



depolymerase involved in PHA mobilization (Table S2) [26].
PHAs are classified, according to the carbon chain length of
the monomers, as either short-chain or medium-chain, the best
known PHAs being polyhydroxybutyrate (PHB) and the co-
polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [27].
PHB accumulation assays were performed according to Matias
et al. [28], involving 72 h of cultivation in liquid ISP9 medium
containing 2% (w/v) of glucose. After chloroform extraction,
only poly-3-hydroxybutyrate (P3HB) was identified by [1]H-
nuclear magnetic resonance (NMR) (Fig. 2).

The genome of B. contaminans LTEB11 also contains
genes that code for enzymes required for the synthesis of
rhamnolipids (rhlA, rhlB, and rhlC), biosurfactants of partic-
ular interest for cosmetic, pharmaceutical, and detergent man-
ufacturers [29]. The genome also contains the ocf gene cluster
that has been previously described in B. contaminans MS14,
with an identity greater than 90% (Table 4). This cluster in-
cludes the ATP-binding cassette (ocfA) and the genes
encoding non-ribosomal peptide synthetases (ocfD, ocfE,
ocfF, ocfH, and ocfJ). These genes are required for the pro-
duction of the antifungal compound occidiofungin, which is
active against a broad range of plant and animal fungal path-
ogens [3].

The B. contaminans LTEB11 genome sequence reported
here can underpin further studies into the production of new
lipases and esterases and mechanisms involved in the

regulation of lipase expression, as well as the potential of this
bacterium to produce polyhydroxyalkanoates, rhamnolipids,
and antifungal compounds with biotechnological relevance.

Nucleotide sequence accession numbers ThisWhole Genome
Shotgun project has been deposited at DDBJ/ENA/GenBank
under the accession MLFG00000000 and BioSample:
SAMN04287748.
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