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Abstract

Undoubtedly, plastics have changed human existence. These pervasive products are used in nearly 

every field to include technological, biomedical, and domestic applications. Post-consumer plastic 

waste disposal leading to plastic pollution in landfills, waterways, and oceans represents a 

worldwide environmental challenge. Accumulation and continued material fragmentation from 

micro- to nanoplastics has identified concerns pertaining to environmental and human exposures 

and toxicity. While many studies have focused on particle fate and identification, the toxicological 

considerations must focus on the biological relevance of particle deposition within a particular 

organism, compartment, organ, and tissue. Further, concerns exist regarding the physical and 

chemical properties of the plastic particles during their production and/or degradation. In this 

mini-review we will discuss (1) particle characterization and assessment, (2) environmental 

concerns, and (3) human toxicity.
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1. Introduction

Plastics are produced through the chemical and physical processing of naturally occurring 

constituents. Through polymerization and polycondensation, base constituents react together 

to form polymer chains, a process that can rarely be reversed. Therefore, once the reaction 

has occurred, these molecules cannot return to their previous basic form only be further 

processed or recycled to differing polymeric forms. Industrial chemicals may be added to the 

reaction to develop harder or more malleable results. Due to chemical stability, the 

environmental accumulation of plastics is on the rise and the research documenting these 

increases is receiving mainstream interest. Unfortunately, as identified in a recent editorial in 
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Nature Nanotechnology, the laboratory and environmental toxicological assessments have 

not been completed, and overall, we simply do not know the outcomes [1].

2. Microplastic verses nanoplastic

The term “nanoplastic” is relatively novel. The first utilization of the term in a Web of 

Science search was within a 2004 abstract describing computational methods pertaining to 

material deformation [2]. As such, there has been some discussion in the literature regarding 

the definition of a ‘nanoplastic’. However, this is an important characterization for clarity as 

the field moves forward.

By definition, microplastics are plastic pieces that are less 5 millimeters (mm) in one 

dimension; therefore, nanoplastics would be considered ultrafine plastics that fall under this 

umbrella term. The discrepancy of terminology lies with how the nanoplastic produced. 

Nanoplastics in ecotoxicological settings are primarily formed by bulk degredation and have 

been defined as plastic materials less than 1000 nanometers (nm) [3]. There are secondarily 

derived through physical and mechanical breakdown, photodegradation, thermodegradation, 

and biodegradation of larger microplastics [4]. The size definition of nanomaterials is not 

isolated to plastics, but a symptom of a greater debate between scientists and regulators [5].

Nanomaterials traditionally describe particles that are intentionally produced at the nano-

scale to take advantage of the physico-chemical properties available only at that size range 

[6]. Engineered or primary nanoplastics identified in personal care products, biomedical 

applications, and laboratory use are defined as less than 100 nanometers (nm) in a single 

dimension. For the purposes of this manuscript, we will define nanoplastics as particles that 

are less than 100 nm.

Unfortunately, due to their small size range, the quantity of nanoplastics in the environment 

currently cannot be measured. This is because the technologies to identify these small 

particles on a large scale have not yet been formulated. The traditional methodology of 

filtration cannot be used as the pores in most traditional containment centers are large 

enough to allow nanoplastics to pass through. Within the laboratory, nanotechnology 

techniques are in place to assess the small, known quantities to be characterized. These 

include dynamic light scattering, Raman spectroscopy, transmission electron microscopy, 

hyperspectral microscopy, and mass or size-based particle counters [7]. Further, laboratory 

assessments can modify nanoplastics to allow for their identification or quantification. This 

may be with the addition of a metallic core, or surface modifications including radioactive or 

fluorescent labelling [8–10]. Therefore, we await the analytic chemistry technologies. 

Further reading on the challenges of micro-, and subsequently nanoplastic, analyses are 

discussed here [11,12].

3. Particle characterizations and exposure

Nanoparticle potentials and toxicities are associated with the physico-chemical properties of 

the particles. This concept also holds true for nanoplastics. These particle characterizations 

include shape, size, chemical construct, and surface charge, each playing a key role in 

industrial and biocompatibility [13].
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3.1. Shape, size, and surface area-to-mass ratios

Nanoplastics may be a variety of shapes. These include intentionally produced spheres for 

personal care products, angular particles generated from bulk fragmentation, or long and thin 

synthetic fibers. As mentioned above, nanomaterials are defined as having one dimension 

that measures less than 100 nm; therefore, nanoplastics can range greatly in size [3]. The 

size of the particle directly relates to nanoplastic surface area-to-mass ratios. The surface 

area-to-mass corresponds to the amount of surface are of an object (particle) within a given 

volume or collection of particles. For example: 100,10 nm sized particles can line up along 

the surface of a single 1 micron particle. Therefore, the large surface area-to-mass of the 

nanoparticles provide a greater surface for biological contact or chemical adsorption [1].

3.2. Chemical construct

Plastic polymers are generally formed using industrial chemicals to promote specific 

material characteristics (e.g., color, flexibility, hardness). According to the Society of the 

Plastics Industry (SPI) and as it pertains to plastic waste management guideline, there are 7 

different types of plastics classified by their recycling code:(1)Polyethylene Terephthalate 

[PET(E)], (2) High-Density Polyethylene (HDPE), (3) Polyvinyl Chloride (PVC), (4) Low-

Density Polyethylene (LDPE), (5) Polypropylene (PP), (6) Polystyrene, and (7) Other as not 

identified above, including Polycarbonate and polylactide (nylon) [14]. Each of these is 

made with differing general properties and commonly used in household products. While 

other modifications are available on the market due to material advances since the SPI 

guidelines were established (e.g., acrylics, acrylonitrile butadiene styrene, and 

polybrominated compounds), the toxicological assessments at the nanoscale have not been 

assessed. Exposure may not be limited to the baseline product or chemical modifications 

during degradation, but also chemical leaching of the additives may provide additional 

sources of contamination or toxicity [15].

3.3. Surface charge, functionalization, and chemical adsorption

Not only do nanoplastics have a polarization associated with their chemicals construct that 

may influence the hydrophilicity and hydrophobicity of the particle; but they can also adsorb 

chemical contaminants to their surface, transporting them within the environment or through 

a biological system [16–18]. Of the particles analyzed thus far, polyethylene has the greatest 

chemical sorption rates [19]. These chemical additions may act as a secondary toxicant or as 

a functionalized group on the surface of the particle, encouraging or discouraging biological 

interaction. These differential surface modifications and particle transformations will impact 

nanoplastic fate and toxicity [9,16,18,20].

3.4. Exposure

Given their size characteristics, nanoplastics easily escape traditional containment structures 

and solutions. Through disposal and degradation, nanoplastic particles can easily bypass 

landfill and wastewater containment, entering marine systems or becoming airborne; once in 

these forms, nanoplastics have the propensity for biological interactions associated with 

environmental and human exposure. As ongoing research continues to encourage the 
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development of technologies and methodologies to aid in nanoplastic evaluation, it reveals 

the far-reaching scope of these particles.

4. Toxicity

Toxicology encompasses the biological relevance and adverse effects associated with 

exposure. As described above, nanoplastics have the propensity to be taken up by and enter 

animal and human systems. Studies are underway to establish the biological consequences 

associated with these exposures.

4.1. Bioaccumulation

Due to their small size, nanoplastics are widely distributed in the aquatic environment and 

can be easily ingested and taken up by a wide range of aquatic biota. Ingestion of 

microplastics represents an environmental concern for the health of the individual as well as 

for the trophic transfer of plastic contaminants to larger predators as in the case of transfer 

from algae, to zooplankton, and fish [21,22]. Small nanoplastics were found to directly 

absorb through the intestinal wall of mussels [20] and bioaccumulate in barnacles [23]. 

Evidence of plastic particles in the terrestrial environment confirm nanoplastic uptake by 

plants, earthworms, and in air pollution or aerosolized particulate matter [24].

As it pertains to biological activity, the nanoplastic chemical construct and surface charge 

influences cellular uptake rates in mussels and sea urchins [25,26]. Further, exposures to 

nanopolystyrene particles impair insulin and lipid peroxidation signaling cascades [27,28]. 

Interestingly, nanoplastic toxicity is differential as it relates to the health and anaerobic 

digestion activity of microbial communities [29]. Genotoxicity and modified genetic 

expression patterns has been identified after exposure in brine shrimp and zooplankton, 

leading to the hypothesis that nanoplastics may be mutagenic in high doses [28,30]. Co-

incubation of polystyrene and polycarbonate nanoparticles promoted upregulation of stress 

responses within the innate immune system of fish [31]. The majority of work done in the 

field has been conducted in environmental models and this body of work has recently been 

reviewed [32].

4.2. Environmental outcomes and human health concerns

With respect to human health, nanoplastic exposure may be through gastric ingestion, 

pulmonary inhalation, dermal application, and intentional injection (Figure 1). Exposure to 

nanoplastics may also be described as: (1) intentional means, as with the use of personal 

care products or biomedical applications [33], (2) unintentional exposure through intentional 

plastic use, as with consumption of bottled water [34], or (3) unintentional exposure, as with 

nanoplastic inhalation as a part of air pollution or digestion through food production [13,35–

37]. Given the proliferation of nanoplastics within the food and water sources, gastric 

exposure is likely. However, as it pertains to the human environment, higher concentrations 

of airborne microplastics and extrapolated nanoplastics have been measured indoors [36].

While it is easiest or most comfortable to look at downstream contamination, separate from 

our homes and daily use activities, synthetic clothing is a primary source of airborne micro- 

and subsequent nanoplastics in the indoor and outdoor environments [35]. With regard to the 
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widespread use of synthetic clothing and the amount of time that people spend indoors in 

domestic and occupational settings, this type and route of exposure need to be taken into 

consideration in future studies.

Recently, the potential human consumption of microplastics was assessed via meta-analysis 

[38]. Through these analyses, the authors calculated adults would be exposed to an average 

of 258 to 312 microplastic particles daily. The authors further determined that exposure 

would differential between the adults/children, sexes, and oral consumption or inhalation 

exposure [38]. Given the size disparity between micro- and nanoplastic particles, the 

estimate of nanoparticle exposure would be exponential.

4.2.1. Gastric exposure—Current theories of human exposure and toxicity to 

nanoplastics identify ingestion as the primary exposure route [39]. While no direct 

toxicological assessments associated with the human ingestion of nanoplastics have been 

conducted, studies have identified that humans are consuming microplastics via their 

drinking water [34]. Further preliminary prospective analyses of human stool provide 

evidence of excretion of these particles, indicating exposure through food consumption [40]. 

When combined with studies of ingestion uptake in environmental models, it is evident that 

systemic up of nanoplastics in humans is likely. However, while concerns regarding human 

exposure via agroecosystems persist, analytical studies focused on known quantities of 

ingestion, paired with intestinal uptake, excretion, and particle fate have not been conducted 

[22].

4.2.2. Pulmonary exposure—Second to nanoplastic ingestion is inhalation as a 

plausible route of human exposure. This may occur through indoor activities as identified 

above, or through the drying of contaminated waterways or wastewater [39]. Inhalation of 

nanosized particles or ultrafine air pollution (PM0.1) is associated with many health effects 

[41,42]. Particles within this size range deposit deep within the lung and remain in the 

alveolar space or translocate to other regions of the body [43–45]. As it pertains to plastics, 

through case study analyses [46], airborne microplastics exposures are known to cause 

disease (i.e., inflammation and cancer) after occupational exposure [36]. Further, animal 

studies suggest an increase in pulmonary inflammation associated with occupational 

exposures [47].

4.2.3. Injection exposure—Studies have been conducted using nanoplastic injection as 

an exposure route. These studies primarily evaluate material translocation and excretion. 

Interestingly, using ex vivo assessment, our laboratory has determined that fluorescently 

labeled 20 nm polystyrene nanoparticles particles can cross the placental barrier and enter 

the fetal compartment via the umbilical vein within 90 minutes of infusion into the maternal 

uterine artery [48].

4.2.4. Dermal exposure—Nanoplastics have been identified in personal care products, 

specifically facial scrubs [33], leading to the direct application of these materials onto the 

surface of the skin. While no studies to date have evaluated whether nanoplastics can cross 

the skin barrier, a single study evaluated engineered nanomaterials applied to textiles and 

identified that uptake of particles within this size range crossing intact skin is very low [49].
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4.2.5. In vitro studies—In vitro assessments investigate the local toxicities of particle-

cellular interactions, making the assumption of systemic uptake, nanoplastic translocation, 

and deposition from the original site of exposure. The systemic outcomes associated with 

nanoparticle exposure are being elucidated; however, in each laboratory application of 

nanoplastic to the biological environment, toxicity has been identified.

Few cellular studies have been conducted to identify the cytotoxic effects of nanoplastic 

exposure and biological interactions. Co-incubation of nano-sized polystyrene and 

polyethylene particles have culminated in impaired the cellular metabolism of human lung 

cells [50] and increased oxidative stress [51] in epithelial and cerebral cell cultures. Further, 

the nanoplastic physoicochemical properties including size and surface modifications will 

directly affect cellular uptake and function in the forms of membrane disturbances, energy 

production, and oxidative stress [20,52].

4.2.6. Particle translocation and secondary impacts—While many models 

consider the direct exposure of nanoplastics, future considerations must be made as it 

pertains to secondary toxicity associated with particle translocation and deposition (Figure 

1). Often, the organs and systems considered as it pertains to nanomaterial transport and 

systemic toxicity are the vasculature, lymphatics, and filter organs (e.g. liver, kidney, spleen) 

[43]. Unfortunately, the majority of this work has yet to be conducted.

However, maternal-fetal models of exposure provide crucial data regarding translocation, 

deposition, and physiological barrier function. Within these assessments, nanoplastics have 

been identified within the embryonic tissues of zebrafish [53]. Recent evidence from our 

laboratory identifies the translocation of nano-sized polystyrene particle from the maternal 

to the fetal compartment, across the placental barrier within 70 minutes of injection into the 

uterine artery [48]. This perturbation of the placental barrier was echoed in a size-dependent 

manner wherein, nanopolystyrene particles were taken up by placental cells and translocated 

between fetal and maternal compartments in human placenta [54,55].

Taking into account particle translocation within the maternal system, recent preliminary 

evidence from our laboratory indicates the propensity of nanoplastic to migrate out of the 

maternal lungs within 24-hours after pulmonary exposure, depositing within the liver, 

spleen, and kidney [8]. Further, within our maternal-fetal model, we were able to detect 20 

nm fluorescently-labelled polystyrene particles within the fetus, depositing within the 

placenta, heart, liver, and brain [8]. However, the local effects within fetal tissues or the 

lifelong outcome of this nanoplastic deposition is currently unknown.

5. Challenges and conclusions

At the present time, it is established that nanoplastic particles can cross biological 

membranes and influence cellular signaling; however, the cellular and systemic toxicities 

associated with these exposures have yet to be revealed. Future studies also must identify 

environmentally-relevant concentrations and take into account the nanoplastic 

physicochemical properties of each analyzed.
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Plastics and their constituents are produced at a faster rate than their toxicities can be 

evaluated. For example, Bisphenol A (BPA) found industrial use in the mid-1950’s in the 

production of polycarbonate plastic and after initial assessments, was deemed safe for food 

packaging [56]. Low dose exposure to BPA was later identified as an endocrine disrupting 

compound with possible carcinogenic properties and subsequently banned for food product 

use in Canada, the EU, and the US between 2008 and 2012 [57]. In its place, BPA analogs 

Bisphenol S and F (BPS and BPF, respectively) are incorporated in consumer products to 

provide the same merchandise quality [58,59]. Unfortunately, given the novelty of these 

compounds, full toxicological assessments have not been completed and early results are 

conflicting [60–62]. In this example, the fields of engineering and chemistry have acted at a 

faster rate than the toxicological assessments of the new compounds can be properly 

conducted.

Further, with respect to the management of discarded plastics, the use of reverse 

polymerization is well documented. Concerning to toxicologists is the occupational and 

environmental exposures associated with reforming the chemical identity of these 

manipulated compounds and the intermediary gaseous components released during the 

process. However, there are few management strategies currently available to control plastic 

waste.

Understanding material fate and the toxicological effects of nanoplastics requires a 

collaborative effort from a wide variety of professionals including environmentalists, waste 

management specialists, chemists, engineers, and toxicologists. Recently, Rutgers University 

hosted a conference focused on the Impacts of Microplastics in the Urban Environment. At 

this meeting, the organizers had the foresight to invite experts in each of these fields to 

present their current work and encourage an open dialogue. Continued communication and 

engagement between these groups will allow collaborative efforts to identify a better 

understanding of particle properties, waste management strategies, changes to the properties 

over the plastic lifecycle, and the biological relevance of these differing properties.
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Figure 1. 
Diagram depicting the routes of nanoplastic exposure (i.e., ingestion, inhalation, dermal, and 

injection), potential primary systems of impact, and potential secondary toxicity associated 

with particle deposition.
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