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Abstract

Our understanding of cognition has been advanced by two traditionally nonoverlapping and non-

interacting groups. Mathematical psychologists rely on behavioral data to evaluate formal models 

of cognition, whereas cognitive neuroscientists rely on statistical models to understand patterns of 

neural activity, often without any attempt to make a connection to the mechanism supporting the 

computation. Both approaches suffer from critical limitations as a direct result of their focus on 

data at one level of analysis (cf. Marr, 1982), and these limitations have inspired researchers to 

attempt to combine both neural and behavioral measures in a cross-level integrative fashion. The 

importance of solving this problem has spawned several entirely new theoretical and statistical 

frameworks developed by both mathematical psychologists and cognitive neuroscientists. 

However, with each new approach comes a particular set of limitations and benefits. In this article, 

we survey and characterize several approaches for linking brain and behavioral data. We organize 

these approaches on the basis of particular cognitive modeling goals: (1) using the neural data to 

constrain a behavioral model, (2) using the behavioral model to predict neural data, and (3) fitting 

both neural and behavioral data simultaneously. Within each goal, we highlight a few particularly 

successful approaches for accomplishing that goal, and discuss some applications. Finally, we 

provide a conceptual guide to choosing among various analytic approaches in performing model-

based cognitive neuroscience.

Keywords

model-based cognitive neuroscience; linking; analysis methods

1. Introduction

Our understanding of cognition has been advanced by two nearly nonoverlapping and non-

interacting groups. The first group, mathematical psychologists, is strongly motived by 

theoretical accounts of cognitive processes, and instantiates these theories by developing 

formal models of cognition. The models often assume a system of computations and 
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mathematical equations intended to characterize a process that might actually take place in 

the brain. To formally test their theory, mathematical psychologists rely on their model’s 

ability to fit behavioral data. A good fit is thought to reflect an accurate theory, whereas a 

bad fit would refute it (Roberts and Pashler, 2000). The second group, cognitive 

neuroscientists, rely on statistical models to understand patterns of neural activity, often 

without any attempt to make a connection to the computations that might underlie some 

hypothesized mechanism. For example, some statistical approaches (e.g., multivariate 

pattern analysis) explicitly condition on the neural data to determine which aspects of the 

data produce better predictions for behavioral outcomes. Such an analysis can tell us which 
brain regions are predictive of a particular behavior and even by how much, but they say 

nothing about neither how nor why particular brain regions produce said behavior.

Although both groups are concerned with explaining behavior, they tend to approach the 

challenge from different vantage points. Thinking in terms of Marr (1982)’s levels of 

analysis, mathematical psychologists tend to focus on the computational and algorithmic 

levels, whereas cognitive neuroscientists focus more on the implementation level. Although 

progress can be made by maintaining a tight focus, certain opportunities are missed. As a 

result of their single-level focus, both approaches suffer from critical limitations (Love, 

2015). Without a cognitive model to guide the inferential process, cognitive neuroscientists 

are often (1) unable to interpret their results from a mechanistic point of view, (2) unable to 

address many phenomena when restricted to contrast analyses, and (3) unable to bring 

together results from different paradigms in a common theoretical framework. On the other 

hand, the cognitive models developed by mathematical psychologists are inherently abstract, 

and the importance of physiology and brain function is often unappreciated. After fitting a 

model to data, mathematical psychologists can describe an individual’s behavior, but they 

can say nothing about the behavior’s neural basis. More importantly, neural data can provide 

information that can help distinguish between competing cognitive models that cannot be 

uniquely identified based on fits to behavioral data alone (Ditterich, 2010; Mack et al., 2013; 

Purcell et al., 2012).

The many limitations of single-level analyses have inspired researchers to combine neural 

and behavioral measures in an integrative fashion. The importance of solving the integration 

problem has spawned several entirely new statistical modeling approaches developed 

through collaborations between mathematical psychologists and cognitive neuroscientists, 

collectively forming a new field often referred to as model-based cognitive neuroscience 

(e.g., Forstmann et al., 2011; van Maanen et al., 2011; Turner et al., 2013b; Mack et al., 

2013; Palmeri, 2014; Boehm et al., 2014; Love, 2015; Palmeri et al., 2015; Turner et al., 

2015b). We refer to these as “approaches”, because they are general strategies for integrating 

neural and behavioral measures via cognitive models, and are neither restricted to any 

particular kind of neural or behavioral measure, nor any particular cognitive model. 

However, with each new approach comes a unique set of limitations and benefits. The 

approaches that have emerged in the recent years fill an entire spectrum of information flow 

between neural and behavioral levels of analysis, and deciding between them can be 

difficult. Given the overwhelming demand for these integrative strategies, we believe that an 

article surveying the different types of analytic approaches could be an invaluable guide for 

any would-be model-based cognitive neuroscientist.
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Here we survey and characterize the many approaches for linking brain and behavioral data. 

We organize these different approaches into three general categories: (1) using the neural 

data to constrain a behavioral model, (2) using the behavioral model to predict neural data, 

and (3) modeling both neural and behavioral data simultaneously. For each specific approach 

within each category, we highlight a few particularly successful examples, and discuss some 

applications. In an attempt to draw a detailed comparison between the approaches, we then 

organize each of the approaches according to a variety of factors: the number of processing 

steps, the commitment to a particular theory, the type of information flow, the difficulty of 

implementation, and the type of exploration. In short, we discuss the ways in which current 

approaches bind data at multiple levels of analysis, and speculate about how these methods 

can productively constrain theory. We close with a discussion about additional 

considerations in model-based cognitive neuroscience, and provide an outlook toward future 

development.

2. Specific Analytic Approaches

For ease of categorization and subsequent comparison, we will hypothetically assume the 

presence of neural data, denoted N, and behavioral data, denoted B, which may or may not 

have been collected simultaneously. The neural data N could be neurophysiological 

recordings, functional magnetic resonance imaging (fMRI), electroencephalography (EEG), 

or other physiological measures. The behavioral data B could be response probabilities, 

response times, confidence ratings, or other typical behavioral data collected in a cognitive 

experiment. Cognitive modelers are interested in characterizing the mechanisms – specified 

in mathematical and computational terms – that lead to the behavior B observed in a given 

experimental condition. Commonly, this characterization is derived from fitting a cognitive 

model to behavioral data, interpreting the resulting parameter estimates, and comparing 

(qualitatively or quantitatively) the observed behavior and the behavior predicted by the 

model. Cognitive neuroscientists are interested in uncovering the neural mechanisms that 

lead to the behavior B observed in a given experimental condition. Commonly, this process 

involves a statistical analysis of neural data with respect to observed behaviors and 

experimental manipulations. However, model-based cognitive neuroscientists are interested 

in integrating neurophysiological information N and behavioral outcomes B by way of a 

cognitive model. The central assumption of these analyses is that information obtained from 

either source of data (N or B) can tell a similar story – albeit in different languages – about 

some aspect of cognition, and the integration of the these measures assimilates the 

differences in languages across data modalities.

As model-based cognitive neuroscientists, we have many choices in deciding which story we 

would like to tell, and these choices depend on our research goals. In practice, there seems to 

be at least three general categories of approaches in the emerging field of model-based 

cognitive neuroscience. These three categories are illustrated in the rows of Figure 1. The 

first set of approaches uses neural data as auxiliary information that guides or constrains a 

behavioral model. There are several ways in which the neural data can constrain modeling 

choices, and we will discuss three such approaches in the subsequent sections. The second 

set of approaches uses a behavioral model as a way to interpret or predict neural data. 

Behavioral models assume a set of mechanisms that theoretically mimic a cognitive process 

Turner et al. Page 3

J Math Psychol. Author manuscript; available in PMC 2019 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of interest, making them an interesting way to impose theory in data analyses. Moreover, 

while competing cognitive models might predict the same or similar patterns of behavioral 

data B, they might differ considerably in what they predict about neural data N, creating a 

powerful approach to model selection. We are faced with many choices in using these model 

mechanisms to guide our search for the interesting neural signatures. In the sections that 

follow, we will discuss two such approaches for accomplishing this goal. The third set of 

approaches builds a single model that jointly accounts for the random variation present in 

both the neural and behavioral data. With the proper model in place, one can simultaneously 

achieve constraint on the behavioral model while retaining the ability to interpret the neural 

data. In the sections that follow, we will discuss two approaches designed to accomplish this 

goal. We do not necessarily think this is a comprehensive list; in fact, we suspect that there is 

room for further development, and possibly the creation of entirely new analytic approaches.

Figure 1 represents the specific approaches as graphical diagrams where observable 

measures (i.e., data) are depicted as shaded square nodes, latent model parameters are 

depicted as empty circles, and arrows depict dependencies. Two of these approaches (i.e., 

Two-stage and Latent Input) require several processing stages, and we have represented the 

dependency structure of these stages as increasingly lighter shades of gray. Most of these 

approaches require a transformation from the data space to a (latent) parameter space, and 

this transformation can be unimodal (i.e., concerning only behavior data B or neural data N) 

or bimodal (i.e., concerning both B and N simultaneously). The parameters can define a 

mechanistic model, like those commonly used by cognitive modelers, or they can define a 

statistical model, like those commonly used by cognitive neuroscientists. When an unimodal 

transformation is required, we denote the parameters of the neural model which predict N as 

δ, and the parameters of the behavioral model which predict B as θ. The neural model 

parameters δ might be slopes or intercept terms from a general linear model, or something 

more sophisticated like those used in topographic latent source analysis (Gershman et al., 

2011). The behavioral model parameters θ represent things like discriminability in the signal 

detection theory model (Green and Swets, 1966), or the drift rate in the “diffusion decision 

model”2 (Ratcliff, 1978; Forstmann et al., 2015). When a bimodal transformation is 

required, we generically denote the parameters as θ (e.g., the Integrative Approach in the 

bottom-right panel of Figure 1). For example, in the ACT-R framework (Anderson, 2007), 

the set of parameters θ represents a sequence of module activations, and their values have 

bimodal effects in the prediction of both neural and behavioral measures. Some approaches 

in our set require a simulation process where the parameters are used to generate synthetic 

data, and we will denote these data with an asterisk (e.g., N∗ denotes predicted neural data in 

the Latent Input Approach). Other approaches assume a secondary projection from a set of 

several parameter spaces to a group-level parameter space, such as in hierarchical modeling. 

We denote these higher-level parameters as Ω (e.g., the Joint Modeling Approach in the 

bottom-left panel of Figure 1). As an example, the joint modeling framework (Turner et al., 

2013b) uses a hierarchical (Bayesian) structure for bridging the connection between neural 

2In this article, we refer to this model as the “diffusion decision model” following Forstmann et al. (2015). This same model has been 
called other names such as the “the diffusion model”, the “drift diffusion model”, and the “Wiener diffusion model.”
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and behavioral measures. With these general assumptions and notation in place, we can 

discuss how these various approaches achieve their intended analytic goal.

2.1. Neural Data Constrain Behavioral Model

We begin our discussion with approaches that constrain a behavioral model with neural data. 

In this endeavor, the neural data are considered important, but only in the sense that they 

inform the mechanisms in the behavioral model. We have identified three specific 

approaches (i.e., see Figure 1): the Theoretical Approach, the Two-stage Behavioral 

Approach, and the Direct Input Approach. We now discuss each of these in turn.

2.1.1. Theoretical Approach—In the Theoretical Approach, psychological theories are 

developed on the basis of considerations from both neuroscience and behavioral data. The 

top left panel of Figure 1 illustrates the Theoretical Approach as statistically independent 

models of the neural and behavioral data because the link between these measures is 

established only through the researcher themselves (i.e., represented by the dashed arrow). 

In this approach, the dominant procedure uses neural measures to inspire the development of 

psychological models. First, the researcher observes particular aspects of brain function, 

such as information about the structure (e.g., individual neurons or densely connected brain 

regions) or function (e.g., dorsal and ventral pathways of visual stimulus processing) of the 

brain. Next, the researcher develops a model of behavior that, at its core, abides by these 

neural observations. With an initial model structure imposed by N, the researcher is now 

able to evaluate the relative merits of nested theoretical assumptions, and make incremental 

adjustments in the model to provide better fits to behavioral data B. Unlike other approaches 

discussed in this article, the Theoretical Approach may draw inspiration from physiological 

or anatomical observations, but there is no mathematical or statistical link between the 

neural data N and either the model architecture or the model parameters that predict the 

behavioral data B.

Although the absence of an explicit link between neural and behavioral data may seem 

craven, the Theoretical Approach has proven to be a powerful framework for motivating 

psychological theory. Perhaps the most prominent example of a Theoretical Approach is the 

enormous class of neural network models. Neural network models have a long history, with 

one classic example being Rosenblatt’s Perceptron machine (Rosenblatt, 1961). In the 

development of the Perceptron, Rosenblatt made choices in his model that reflected 

operations observed in individual neurons, such as that the firing of individual neurons 

should be discrete (motivated by the McCullogh-Pitts neuron; McCullogh and Pitts, 1943). 

Although these original neural network models were heavily criticized (Minsky and Papert, 

1969), pioneering work allowing for continuous activations in neuron-like units (Grossberg, 

1978; Anderson, 1977; Rumelhart, 1977; McClelland and Rumelhart, 1981; Rumelhart and 

McClelland, 1982) evolved neural network models into more complex and successful 

theoretical approaches such as the parallel distributed processing (PDP; McClelland and 

Rumelhart, 1986) models. Superficially, these models allow for the presence of individual 

nodes embedded within layers of a network, and these nodes are massively interconnected 

across layers, resembling neural structures in the brain. Through a process known as 

backpropagation, PDP models can be trained on behavioral data to learn important aspects 
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of the decision rule, facilitating further systematic explorations of representation, learning, 

and selective influence (i.e., by a process referred to as “lesioning”).

As another example, consider the Leaky Competing Accumulator (LCA; Usher and 

McClelland, 2001) model. The LCA model was proposed as a neurally plausible model for 

choice response time in a k-alternative task. The model possesses mechanisms that extend 

other diffusion-type models (e.g., Ratcliff, 1978) by including leakage and competition by 

means of lateral inhibition. These additional mechanisms have proven effective in explaining 

how, for example, time sensitive stimulus information can give way to differences in 

individual subject performance. For example, Usher and McClelland (2001) and Tsetsos et 

al. (2011) have shown the effects of primacy and recency for some subjects in a time-varying 

stimulus information paradigm. In these multi-alternative choice experiments, one response 

option may receive the strongest “input” (e.g., the brightness level) for the first 500 ms, but 

then the stimuli transition such that a different response option receives the strongest input 

relative to the first. In both of these studies, different parameterizations of the LCA model 

were used to demonstrate how primacy effects could be appreciated by having a large value 

for lateral inhibition relative to the strength of the input (i.e., the drift rate), and recency 

effects could be captured through a large leakage term relative to the input (Usher and 

McClelland, 2001; Tsetsos et al., 2011).

As a specific example of how the neurosciences have guided the assumptions in the LCA 

model, it is well known that the firing rate of individual neurons can never be negative. 

However, these firing rates can be attenuated by way of inhibition – a process carried out by 

other neurons in the system. To instantiate these neuronal dynamics, the full LCA model 

enforces a constraint such that if the degree of evidence for any choice alternative becomes 

negative, the degree of evidence for that accumulator should be reset to zero (Usher and 

McClelland, 2001). The floor-on-activation constraint was later found to be critical in 

capturing patterns of individual differences in multi-alternative choice that could not be 

captured by other diffusion-type models (Tsetsos et al., 2011). It is worth noting that other 

neurological constraints allow the LCA model to provide a unique characterization of 

behavioral data that would not otherwise be realized; specifically, the role of lateral 

inhibition relative to leakage in the model plays an interesting role in characterizing subject-

specific patterns in behavioral data (Bogacz et al., 2006; van Ravenzwaaij et al., 2012; 

Tsetsos et al., 2011; Gao et al., 2011; Bogacz et al., 2007; Purcell et al., 2012; Teodorescu 

and Usher, 2013; Tsetsos et al., 2012; Ossmy et al., 2013; Turner and Sederberg, 2014; 

Turner et al., 2015a).

Given the highly subjective nature of the neural constraints imposed on a behavioral model, 

it should not be surprising that a great deal of controversy surrounds some applications of 

the Theoretical Approach. While neural network modelers have undoubtedly derived 

inspiration from the brain in building their models, the mechanistic implementation of these 

inspirations is often interpreted as a strong commitment, which opens the gates for scrutiny 

about plausibility and falsifiability (Minsky and Papert, 1969; Massaro, 1988; Roberts and 

Pashler, 2000). Furthermore, in some cases these additional neural mechanisms do not 

provide any advantage in terms of quantitative fit statistics to behavioral data over their 

simpler counterparts (e.g., see Ratcliff and Smith (2004), but also see Teodorescu and Usher 
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(2013) and Turner et al. (2015a) for a different perspective). In some cases, there are also 

concerns centered on the level of explanation that the model provides (cf. Marr, 1982). On 

the one hand, the study of individual neurons constitutes an exploration of Marr’s 

implementation level of analysis (Broadbent, 1985; Kemp and Tenenbaum, 2008; Pinker and 

Prince, 1988; Smolensky, 1988). On the other, the development of a cognitive model 

involves meandering through the computational level – Marr’s highest level of analysis 

(Shiffrin and Nobel, 1997). To what extent should the implementation level be reflected or 

imposed on the computational level (e.g., Love, 2015; Frank, 2015; Teller, 1984)? For 

example, if we believe that individual neurons have a floor on activation or are inherently 

“leaky” (i.e., meaning they lose information over time), should this restriction be imposed on 

the dynamics of racing accumulators in a cognitive model (Zandbelt et al., 2015)? These 

accumulators are intended to reflect the amount of sensory evidence for each alternative – 

evidence that is apparently observed in many brain areas (including the lateral intraparietal 

area, superior colliculus, frontal eye field, and dorsolateral prefrontal cortex; Horwitz and 

Newsome, 1999, 2001; Kim and Shadlen, 1999; Shadlen and Newsome, 2001, 1996; Purcell 

et al., 2010, 2012; Hanes and Schall, 1996; Hanks et al., 2015), and so it begs the question: 

Which – if any – levels of decision making models should reflect the function of individual 

neurons? If the accumulators are to reflect the behavior of individual neurons, how might 

this connection be formally established (Smith, 2010; Smith and McKenzie, 2011)? 

Questions like this have been considered by many other scientists (e.g., Marr, 1982; 

Broadbent, 1985; Love, 2015; Frank, 2015; Schall, 2004; Teller, 1984), and the next two 

sections discuss two different ideas about how this connection should be made.

2.1.2. Two-stage Behavioral Approach—The first formal linking approach uses 

neurophysiology to replace parameters of a behavioral model. For example, consider a 

model that explains some neural data N with parameters δ, and behavioral data B with 

parameters θ. The neural parameters δ could be divided into a set of parameters 

characterizing a key neural signal δ1, and a set of nuisance parameters δ2 so that δ = {δ1, 
δ2}. Now suppose the behavioral model parameters could be divided into a set of parameters 

that are reflective of the behavioral signal θ1, and a set of parameters θ2 that are not. The 

structure of the Two-stage Behavioral Approach is to simply replace the set of parameters θ1 

with the parameters of the neural signal δ1. We refer to this approach as the “Two-stage 

Behavioral” approach because the connection involves two stages, and that behavioral model 

parameters are replaced by neural parameters. This approach makes a strong commitment to 

how the neural signal is represented in the abstract mechanisms assumed by the behavioral 

model, and as a result, it is a stronger instantiation of neurophysiology than the Theoretical 

Approach discussed above.

The Two-stage Behavioral Approach is nicely illustrated by the work of Wang and 

colleagues (Wong and Wang, 2006), who developed a spiking neural network model of 

perceptual decision making. This model aims to account for the same kinds of behaviors as 

the DDM and the LCA model, but is far less abstract, with thousands of simulated spiking 

neurons, dense patterns of excitatory and inhibitory connections, pools of neurons associated 

with a single response, and the dynamics of individual neurons defined by several 

differential equations. While the model has dozens of potentially free parameters, most of 
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them are defined directly by neural data. For example, the time constants of integration of 

different inhibitory and excitatory receptor types are based directly on physiological 

measures. While low-level spiking neural network models of this sort capture well many of 

the details of neurons and neural circuits and provide reasonable first-order predictions of 

behavioral data, they are difficult to simulate and quantitative fits to behavioral data are 

simply impossible using even state-of-the-art computer hardware (see Umakantha et al., 

2015). Indeed, as a result of this additional complexity, very few efforts have been devoted 

to systematically studying the model’s predictions for choice response time data. However, a 

few approximations have been developed for fitting purposes, and these approximations 

behave similarly to popular models in cognitive science such as the LCA model (Wong and 

Wang, 2006; Bogacz et al., 2006; Roxin and Ledberg, 2008).

2.1.3. Direct Input Approach—The Two-stage Behavioral Approach represents one 

way in which the neural data can guide the behavioral model through neural model 

parameters, but it is easy to imagine other approaches that are more direct. For example, 

rather than translating the neural data N to the neural model parameters δ, and then using δ 
to constrain the behavioral model parameters θ, we could instead use the neural data to 

directly replace dynamics of the behavioral model. This alternative approach is nicely 

illustrated by the Vanderbilt group (e.g., Palmeri et al., 2015; Purcell et al., 2010, 2012). 

They examined perceptual decision making within the sequential sampling model 

architecture assumed by models like the DDM (DDM; Ratcliff, 1978), and the LCA model 

(Usher and McClelland, 2001), among others. They specifically tested the hypothesis that 

different types of neurons in the frontal eye field (FEF) carry out different computations 

specified in accumulator models, namely that visually-responsive neurons in FEF encode the 

drift rate driving the decision process and that movement-related neurons in FEF instantiate 

the accumulation process itself. To test this linking proposition most directly (cf. Teller, 

1984; Schall, 2004), they replaced the parameterized mechanisms thought to be embodied 

by the visually-responsive neurons, namely the time for perceptual processing and the drift 

rate, with the neurophysiological data recorded from visually-responsive neurons. Rather 

than having abstract mathematical and computational components specified by free 

parameters drive the decision process, the neural data (N) drove the decision process 

directly. To do this, the neural data were used to directly replace components of the model 

that would otherwise have been latent, and would need to be estimated from behavioral data. 

The only remaining free parameters were those that defined the decision making architecture 

(i.e., race, feedforward, lateral, or gated accumulation), and that defined speed-accuracy 

tradeoffs (i.e., threshold of accumulation). When constrained by neural inputs, they observed 

that only some of the various decision making architectures could fit the full set of 

behavioral data (correct and error response time distributions and response probabilities). 

They were then able to distinguish further between models based on how well the predicted 

accumulator model dynamics matched the observed neural dynamics in movement-related 

neurons, the neurons they hypothesized to carry out an accumulation of evidence (see Latent 

Input Approach below).

Although the Direct Input Approach is commonly used to feed neural data into a cognitive 

model, one could potentially invert the direction of influence in Figure 1 to analyze the 
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neural data as a function of some behavioral variable, such as accuracy (e.g., Eichele et al., 

2008) or response time (e.g., Weissman et al., 2006; Hanes and Schall, 1996). Once the 

neural data have been sorted as a function of the levels of the behavioral outcome, one might 

analyze the distribution of neural data between these levels (Woodman et al., 2008). Such a 

procedure has been the dominant analytic approach in neuroscience since its inception, but is 

not model-based, and so we will not consider it here. However, the model-based analogue of 

this analysis would be to use the model’s machinery to drive the analysis of neural data. We 

refer to this approach as the Latent Input Approach, and will discuss it further in the next 

section.

2.2. Behavioral Model Predicts Neural Data

Another set of analytic approaches involves searching the brain for areas that support 

mechanisms assumed in the behavioral model. Such a procedure allows one to interpret 

neural data through mechanisms in the model, which can potentially be more informative 

than behavioral data alone. We consider two approaches for accomplishing this goal: the 

Latent Input and the Two-stage Neural Approaches.

2.2.1. Latent Input Approach—The goal of the Latent Input Approach is a converse of 

sorts to the Direct Input Approach. In the Direct Input Approach, the goal is to use the 

neural data N to constrain model mechanisms and parameters θ that predict behavior. In the 

Latent Input Approach, the cognitive model is used to guide the inference of neural data N, 

or to make predictions about N. To perform an analysis within this approach, one typically 

carries out three stages, illustrated in the middle-left panel of Figure 1. First, the parameters 

of a cognitive model θ are estimated by fitting the model to behavioral data B alone. Second, 

the resulting parameter estimates are used to generate predictions about neural data N∗, 

which typically represents some “internal state” of the cognitive model in terms of the neural 

measure. Third, one searches for correlates of the model’s internal state N∗ with the 

observed neural data N.

One example of an Latent Input analysis using fMRI data would be a voxel-by-voxel 

application of the general linear model relating the model’s internal state N∗ to the neural 

data N (e.g., O’Doherty et al., 2007). The typical result is a pattern of voxels representing 

significant correlations with the cognitive model, and these voxels are taken as the region of 

the brain supporting the mechanism assumed by the model. This univariate approach is 

commonly referred to as “model-based fMRI”, but of course any neural measurement could 

be correlated with the model measure.

The Latent Input Approach is commonly used in reinforcement learning models to relate 

mechanisms of learning and prediction errors to the brain (e.g., O’Doherty et al., 2003, 

2007; Gläscher and O’Doherty, 2010; Hampton et al., 2006), and has been particularly 

powerful in the field of clinical neuroscience (e.g., Montague et al., 2012; Wiecki et al., 

2015). One simple example is the Rescorla-Wagner (RW) model that characterizes the 

process of learning a conditioned response through repeated presentations of a conditioned 

stimulus (Rescorla and Wagner, 1972). In the model, the value of the unconditioned stimulus 

is represented as u, and the value of the conditioned stimulus on Trial t is represented as vt. 
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To learn the stimulus environment, the model assumes that vt is updated sequentially 

according to a learning rate parameter α, and an evaluation of the prediction error ϵ. 

Specifically, after a decision is made and the unconditioned stimulus is presented, the 

model’s internal state of the value of the conditioned stimulus is updated according to the 

rule

vt = vt − 1 + αϵ . (1)

Eventually, the internal representation of the value v converges to u ϵ approaches zero, and 

the model “learns” the stimulus-to-response pairing. The value of vt can be directly observed 

by assessing the strength of the conditioned response, whereas other variables are estimated 

by fitting the model to behavioral data. Typically, α remains fixed across the trials in an 

experiment, allowing one to derive a trial-by-trial estimate of ϵ through Equation 1. Hence, 

the model produces trial-to-trial estimates of the value of the conditioned stimulus v and the 

prediction error ϵ. As outlined above, these values can be entered into an fMRI analysis as a 

time series by convolving them with a hemodynamic response function (HRF), and then 

regressing the result against the fMRI data through the general linear model. However, the 

estimates v and ϵ are not parameters; instead, they reflect the model’s internal state for value 

and prediction error, respectively. This distinction is important because it separates this 

analytic approach from other possible Two-stage approaches, such as in van Maanen et al. 

(2011), which we discuss below.

As the previous example makes clear, Latent Input Approaches can identify candidate neural 

substrates for theoretical concepts, such as prediction error, that are not directly observable 

but can be defined within a cognitive model. Entering latent model measures into the 

imaging analyses is relatively straightforward. Indeed, multiple model measures can be 

considered simultaneously. For example, Davis et al. (2012) simultaneously analyzed 

cognitive operations related to recognition and representational uncertainty by including two 

related measures in the imaging analysis from a cognitive model fit to trial-by-trial category 

learning data.

Extensions to Model Discrimination.: One issue with what is commonly referred to as 

model-based fMRI is that models tend to be preferred to the extent that they correlate with 

many voxels in the brain. However, it is not clear that this is an appropriate criterion. 

Because simple cognitive models do not attempt to model every process in the brain, they 

should not be expected to account for the variance of every voxel. Furthermore, cognitive 

states may be coded by brain states that are defined by the pattern of activation over voxels. 

This notion of brain state is multivariate as it depends on the pattern of activity, whereas 

most model-based analyses focus on univariate correlations between a model measure and 

an individual voxel.

One approach that attempts to address these deficiencies is model decoding (Mack et al., 

2013). Rather than assume a single cognitive model as the “correct” model, this 

generalization acknowledges that there may be competing cognitive models of the same 

phenomenon and uses the neural data to adjudicate between those competitors. It is well 

known in mathematical psychology that models assuming very different internal 

Turner et al. Page 10

J Math Psychol. Author manuscript; available in PMC 2019 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanisms can sometimes predict the same observed behavior. To the extent that different 

model mechanisms produce different internal model states, one way to discriminate between 

models predicting the same behavior is to compare those predicted internal model states to 

observed internal brain states. Models that predict observed behavior but cannot predict 

internal brain states are rejected.

Consider, for example, the work of the Vanderbilt group discussed earlier (Palmeri et al., 

2015; Purcell et al., 2010, 2012). After excluding neutrally-constrained models that could 

not fit the observed behavioral data, they were then able to distinguish further between 

models based on how well the predicted accumulator model dynamics matched the observed 

neural dynamics in movement-related neurons, the neurons they hypothesized to carry out an 

accumulation of evidence (see also Purcell and Palmeri, 2015, in this special issue). Only 

their gated accumulator model produced accumulator dynamics that matched the observed 

dynamics of movement-related neurons in FEF.

Consider next the recent work of Mack et al. (2013), who developed a strategy for evaluating 

different models of object categorization on the basis of their consistency with observed 

fMRI data. They specifically contrasted two well-known theories of category representation: 

exemplar and prototype models (see also Palmeri, 2014). Exemplar models assume that 

members of a category are explicitly stored in memory, and a categorical decision for a new 

stimulus is a function of its similarity to these remembered exemplars. Prototype models 

assume that category representations are abstract, averages of experienced category 

examples, and a categorical decision is a function of similarity to the stored category 

prototypes. In this sense, the prototype representation is abstract – a category could be 

represented in a location of feature space that is not representative of any particular known 

category member. These particular theories of category representation have been fiercely 

debated for decades (e.g., Medin and Schaffer, 1978; Minda and Smith, 2002; Zaki et al., 

2003). Indeed, in their first analysis, Mack et al. (2013) showed that both exemplar and 

prototype models provided nearly indistinguishable fits to the observed behavioral data.

Even though the exemplar and prototype models make similar predictions about behavior, 

they do so by assuming very different kinds of internal representations. Indeed, the degree to 

which different test items activate these internal representations – similarity to stored 

exemplars for the exemplar model versus similarity to category prototypes for the prototype 

model – differs considerably between the two models. Mack et al. (2013) asked whether the 

pattern of brain activity elicited by different test items would be more similar to the pattern 

of activation of internal representations for the exemplar model or the prototype model. They 

specifically evaluated the mutual information shared between brain and model state using 

machine learning techniques like multivariate pattern analysis (MVPA) and representational 

similarity analysis (RSA). The patterns of brain activity across trials showed better 

correspondence to the internal state of the exemplar representation than the prototype 

representation. These findings serve as a powerful example of how the neurosciences – 

combined with a Latent Input Approach – allow us to draw conclusions regarding competing 

cognitive models that we might not otherwise reach.
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These model decoding approaches represent an important departure from the Latent Input 

Approach discussed above. Namely, these methods do not assume that the model used to 

interpret the neural data is correct. Instead, they posit a set of competing models for the 

underlying cognitive process, and the best explanation is to be determined from each 

model’s correspondence to the neural data. Once a cognitive model is selected, it can then be 

used as a lens on the brain data, using any existing technique, such as the aforementioned 

univariate approaches or representation similarity analysis (RSA). This stage of the analysis 

can be seen as confirmatory – the winning model has been established and is used to help 

interpret the neural data. Pairing model decoding with a model-based analysis approach 

allows for information from brain and behavior to be mutually constraining through the 

bridge of the cognitive model. This extra step of selecting a model based on neural data is 

atypical of Latent Input Approaches, and this step is not illustrated in Figure 1.

2.2.2. Two-stage Neural Approach—The second approach we will discuss that uses 

behavior to predict neural data is related to the Two-stage Behavioral Approach discussed 

above, except that here, the parameters of the behavioral model θ are used to guide the 

analysis of the neural data N instead of vice versa. While a subset of neural model 

parameters δ could be replaced with a subset of behavioral model parameters θ akin to the 

Two-stage Behavioral Approach, in practice, this is rarely done. Instead, relationships 

between θ and δ are formed through correlational or regression analyses. The correlational 

approach has been especially successful in the field of perceptual decision making (Mulder 

et al., 2014). For example, Forstmann et al. (2008), Forstmann et al. (2010), and Mansfield 

et al. (2011) show in various experimental setups that accumulator model parameters that 

reflect response caution correlate with averaged BOLD responses in pre-supplementary 

motor area and striatum, two regions in the brain that are thought to be involved in 

mediating cognitive control. These studies illustrate that individual differences in behavior, 

captured by hypothesized processes, are driven by individual differences in how the brain 

works. This approach thus strengthens our understanding of the role of certain brain areas in 

cognition, but it also adds credence to the type of cognitive model that is adopted to describe 

behavior.

In the regression approach, parameters of a behavioral model are used as predictors in a 

regression model of the neural variables. In the context of fMRI, behavioral model 

parameters are often entered as regressors in a general linear model that quantifies the 

BOLD response in certain brain areas (e.g., Mulder et al., 2012; Summerfield and Koechlin, 

2010; White et al., 2014). Usually, this is done in addition to regressors that relate to the 

experimental manipulations, yielding statistical maps of brain activation that reflect the 

predicted change in neural activation (i.e., in δ) for a fixed change in behavioral model 

parameter (θ), in addition to the standard notion of a change in δ as a function of the 

experimental manipulation.

Some properties of behavior are difficult to cast in experimental conditions. For example, 

fluctuations that occur as part of a time series of observations are ideally analyzed as such 

(Wagenmakers et al., 2004). Moreover, these fluctuations may be related to incorrect (Dutilh 

et al., 2012; Eichele et al., 2008) or task-unrelated responses, for example due to attentional 
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lapses (Weissman et al., 2006; Mittner et al., 2014). For these situations it can be useful to 

study fluctuations in brain and behavior over time.

To understand how the variability in brain measures from trial to trial adds to the behavioral 

variability, some researchers have developed models in which parameters are estimated on a 

trial-by-trial basis (Behrens et al., 2007; Brunton et al., 2013; Erlich et al., 2015; Hanks et 

al., 2015; van Maanen et al., 2011). For example, Behrens et al. (2007) used an optimal 

model that updates the expected reward for one of two responses on a trial-by-trial basis. 

The parameters of this model were also updated on a trial-by-trial basis, based on the actual 

trial outcome (i.e., the choice of the participant) and the expected outcome (i.e., the model 

prediction). Behrens and colleagues found that the level at which participants were 

responsive to changes in the rewards was predictive of anterior cingulate cortex activation on 

a trial-by-trial basis, supporting the idea that anterior cingulate cortex activation reflects 

changes in the environment (e.g., Rushworth et al., 2009).

A slightly different approach was taken by Van Maanen and colleagues (van Maanen et al., 

2011; Ho et al., 2012; Boehm et al., 2014). Using the LBA model, these authors estimated 

the most likely combination of drift rate and starting point of evidence accumulation, given 

the distribution of these parameters across trials. The most likely combination of parameters 

is determined by the set of parameters that specify the response time. While powerful, this 

method is difficult because the most likely parameter estimates are highly uncertain, due to 

the large variability in the joint distribution of the model parameters, and due to the 

simplification of the model to include only two sources of variability. Nevertheless, van 

Maanen et al. (2011) showed that trial-to-trial fluctuations in BOLD in pre-supplementary 

motor area correlated with the trial-to-trial measure of threshold, but only for speed-stressed 

trials. This finding was corroborated by Boehm et al. (2014), who found a similar correlation 

between the trial-to-trial model parameter and a trial-to-trial estimate of the Contingent 

Negative Variation (CNV). The CNV is a slow rising potential, thought to represent neural 

activation in a cortico-basal ganglia loop including the supplementary/pre-supplementary 

motor areas (Nagai et al., 2004; Plichta et al., 2013).

Although the Two-stage Neural Approach has been instrumental in elucidating various 

mechanistic explanations of neural data, the framework neglects an important source of 

constraint. Namely, by analyzing the neural and behavioral data independently, the 

secondary analysis does not statistically guide our understanding of how these variables are 

related. In this way, Two-stage frameworks are not statistically reciprocal because the neural 

data cannot influence the parameter estimates of the behavioral model (cf. Forstmann et al., 

2011). To accomplish such a goal, a framework would need to automatically learn the 

covariation of the neural and behavioral parameters in harmony with the analysis of the 

neural and behavioral data. Such a framework is the topic discussed in the next section: 

Simultaneous Modeling.

2.3. Simultaneous Modeling

At this point, we have discussed two general analytic approaches that apply unidirectional 
statistical influence: modeling and analysis of one source of data guides the modeling and 

analysis of another source. The primary motivation of these approaches is that one measure 
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is particularly well suited for answering a key theoretical question. In this way, one measure 

carries more “theoretical importance” than the other. However, some modeling approaches 

are agnostic in specifying which measure is more important, and instead posit a bidirectional 
link between the two measures. Similar to the subdivisions in other research goals above, the 

level at which the link is established is an important distinction between the two approaches, 

which we will now discuss in turn.

2.3.1. Joint Modeling Approach—The next approach we discuss is the recently 

developed Joint Modeling framework (Turner et al., 2013b; Turner, 2015; Turner et al., 

2015b). The Joint Modeling Approach is conceptually similar to the Two-stage Neural 

Approach in that it attempts to relate the parameters of the behavioral model to the 

parameters of the neural model. However, statistically speaking, the Joint Modeling 

Approach is unique in the way it bridges this connection. Specifically, it assumes an 

overarching distribution that enforces an explicit connection between these parameters. The 

bottom-left panel of Figure 1 illustrates this connection via the parameters Ω that link θ to δ. 

In this illustration, the connection enforced by Ω is clearly abstract; one must make a 

specific assumption about how θ and δ should coexist in their explanation of the underlying 

cognitive process. As an example, one simple linking function used in practice has been the 

multivariate normal distribution where Ω consists of the hyper mean vector and the hyper 

variance-covariance matrix. This connection is important because it allows the information 

contained in the neural data N to affect the information we learn about the behavioral model 

parameters θ.

Perhaps the greatest benefit of the Joint Modeling Approach is its flexibility – it can be 

applied to different modalities (e.g., fMRI or EEG data), make different assumptions about 

the underlying cognitive process (i.e., changing the behavioral submodel), and establish a 

link at any number of levels in a hierarchical model. For example, Turner et al. (2013b) used 

structural diffusion weighted imagining data to explain differences in patterns of choice 

response time data across subjects. They showed how a joint model equipped with 

information about the interconnectivity of important brain areas could make accurate 

predictions about a subject’s behavioral performance in the absence of behavioral data. 

Turner et al. (2015b) extended this approach to build in brain state fluctuations measured 

with fMRI into the DDM. The problem Turner et al. (2015b) addressed centered on a lack of 

information about within-trial accumulation dynamics. In behavioral choice response time 

experiments, following the presentation of a stimulus, researchers can only observe the 

eventual choice and response time. These data are then used to estimate parameters of a 

cognitive model, following an assumption that the data observed on each of these trials 

arises from the same psychological process. However, this assumption – known as 

stationarity – is a strong one, and is seldom observed in empirical data (e.g., Peruggia et al., 

2002; Craigmile et al., 2010). Turner et al. (2015b) used a multivariate model to describe the 

joint activation of a set of brain regions of interest, and used this description to enhance the 

classic DDM. In a cross validation test, they showed that their extended model could 

generate better predictions about behavioral data than the DDM alone, demonstrating that 

neurophysiology can be used to improve explanations about trial-to-trial fluctuations in 

behavior.
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Effectively, the Joint Modeling Approach is a strategy for treating groups of parameters as 

covariates, and this covariation is learned through hierarchical modeling. However, one 

could imagine an approach for performing model-based cognitive neuroscience that is 

similar to the Two-stage Neural approach, but instead of correlating or regressing variables 

after independent analyses, the parameters of the regression equation are estimated. Such an 

approach can be thought of as a Joint Modeling Approach, except the linking parameters Ω 
are deterministic. Recently, this approach has been used in cognitive neuroscience to link 

decision models to neural fluctuations. For example, Nunez et al. (2015) used EEG data on a 

perceptual decision making experiment as a proxy for attention. They controlled the rate of 

flickering stimuli presented to subjects to match the sampling rate of their EEG data, a 

measure known as the steady-state visual evoked potential. Importantly, Nunez et al. (2015) 

showed that individual differences in attention or noise suppression was indicative of the 

choice behavior, specifically it resulted in faster responses with higher accuracy. In a 

particularly novel application, Frank et al. (2015) showed how models of reinforcement 

learning could be fused with the DDM to gain insight into activity in the subthalamic 

nucleus (STN). In their study, Frank et al. (2015) used simultaneous EEG and fMRI 

measures as a covariate in the estimation of single-trial parameters. Specifically, they used 

pre-defined regions of interest including the presupplementary motor area, STN, and a 

general measure of mid-frontal EEG theta power to constrain trial-to-trial fluctuations in 

response threshold, and BOLD activity in the caudate to constrain trial-to-trial fluctuations 

in evidence accumulation. Their work is important because it establishes concrete links 

between STN and pre-SMA communication as a function of varying reward structure, as 

well as a model that uses fluctuations in decision conflict (as measured by multimodal 

activity in the dorsomedial frontal cortex) to adjust response threshold from trial-to-trial.

The major limitation of the Joint Modeling Approach is its complexity, which hinders our 

ability to use the approach effectively in two ways. First, to estimate all of the model 

parameters, we must perform a sophisticated system of Markov chain Monte Carlo sampling 

with updates on separate blocks of model parameters (see Turner et al., 2013b; Turner, 2015; 

Turner et al., 2015b, 2013c, for details). This involves deriving the conditional distribution 

of blocks of parameters, and if desired, establishing conjugate relationships between the 

prior and posterior for effective estimation. One example of this has been the use of a 

multivariate normal assumption to link neural and behavioral submodel parameters (Turner 

et al., 2013b, 2015b). In this approach, an increase in any neural measure automatically 

scales the increase in the behavioral model parameters, and vice versa. Second, a great deal 

of data must be available to appreciate the magnitude of the effects of interest. This result is 

driven by a complexity/flexibility tradeoff we discuss below, but the basic idea is that as the 

number of parameters increases, the influence the data can have on the joint posterior 

distribution decreases. When a model is complex relative to the data, one simple approach to 

reduce the complexity is to reduce the number of model parameters (Myung and Pitt, 1997). 

In hierarchical models like the Joint Modeling Approach, one way to accomplish this is to 

reduce the number of levels in the hierarchy by removing its submodels (i.e., models within 

the Joint Model that explain one subset of the data). Such a strategy constitutes our final 

approach: the Integrative approach.
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2.3.2. Integrative Approach—In the Integrative approach, the goal is to develop a 

single cognitive model capable of predicting both neural and behavioral measures. This 

approach, illustrated in the bottom-right panel of Figure 1, uses one set of parameters θ to 

explain the neural N and behavioral B data jointly. Notice that the Integrative approach 

differs from the Joint Modeling Approach because the parameters θ are directly connected 

to the data – there is no overarching distribution Ω to intervene between the data sources. 

Integrative approaches allow the neural data N to have a greater influence on the behavioral 

data B, a statistical property that can be measured by mutual information.

Of the approaches we have discussed, the Integrative approach is arguably the most difficult 

to develop. Its use requires strong commitments to both the underlying cognitive process and 

where this process is executed in the brain. One technical hurdle in using an Integrative 

approach lies in the description of random variables with different temporal properties. For 

example, neurophysiological measures are typically observed on a moment-by-moment 

basis, detailing activation in the brain throughout the trial. By contrast, behavioral data are 

typically observed only at the end of a trial, such as in any number of perceptual decision 

making tasks. So, in the instantiation of a cognitive theory that uses the Integrative approach, 

we would need a moment-by-moment prediction of neural data, and a trial-by-trial 

prediction of the behavioral data, usually assumed to be the result of a series of unobservable 

(i.e., latent) processes. Given the unique structure of Integrative approaches, properly fitting 

them to data is a difficult task, often involving sophisticated techniques such as Hidden 

Markov Models (e.g., Anderson et al., 2010; Anderson, 2012), or Bayesian change point 

analyses (e.g., Mohammad-Djafari and Féron, 2006).

Some recent applications of ACT-R have aimed for this Integrative Approach. ACT-R 

assumes the presence of distinct cognitive modules that are recruited sequentially during a 

task. The recruitment of these modules across the time course of the task can be represented 

as a vector of binary outcomes, such that a 1 indicates that a module is being used, and a 0 

indicates it is not being used. This vector naturally lends itself to convolution with the 

canonical HRF in the same way as experimental design variables (i.e., called the design 

matrix). The result of the convolution is a model-generated BOLD signal that can be 

compared to empirical data. In this way, the ACT-R model can actually be used in both 

exploratory and confirmatory research. When used for exploration, the model-generated 

BOLD signal is regressed against the data in a voxel-by-voxel fashion through the general 

linear model (Borst et al., 2010b; Borst and Anderson, 2013). From this analysis, clusters of 

voxels typically emerge, and these clusters are taken to represent brain areas where the 

modules are physically executed. This explorative analysis more closely resembles the 

Latent Input Approach. However, the ACT-R model can also be used in a confirmatory 

fashion (Anderson, 2007; Anderson et al., 2008a,b; Borst et al., 2010a). To do this, 

Anderson and colleagues have identified which brain areas should become active during the 

recruitment of different modules (Anderson et al., 2008b; Borst et al., 2015). These brain 

areas were identified primarily from several exploratory analyses (Anderson, 2007), but 

recent work has taken these explorations to generate out-of-sample, confirmatory predictions 

for neural data. In these confirmatory studies, the specific pattern of module activations (i.e., 

the parameters θ) in the model simultaneously affects the model’s predictions for the BOLD 
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response and the behavioral outcome. Although global, whole-brain predictions could be 

made within this framework, the strict assumption of localized module activity in the brain 

constitutes a fully confirmatory Integrative approach, where predictions for neural activity – 

as well as behavioral data – can be quantitatively evaluated.

The ACT-R framework provides an unique perspective on performing the integration 

between neural and behavioral measures, but actually testing these models is nontrivial. The 

major limitation is that one must assume a set of specific modules, and the activation of 

these modules in the behavioral model is latent, which makes their activation difficult to 

identify in behavioral data. Although neural data facilitate this identification process, current 

solutions rely heavily on assumptions about how modules are represented in patterns of 

neural activity (Anderson, 2012). Furthermore, it is unclear how one would objectively 

decompose other cognitive models into a discrete set of modules while preserving their key 

theoretical and convenient properties (for examples of cognitive models in the style of ACT-

R, see van Maanen and Van Rijn, 2010; van Maanen et al., 2012, 2009). For example, the 

Linear Ballistic Accumulator (LBA; Brown and Heathcote, 2008) model has enjoyed 

widespread success due to its parsimony and remarkable mathematical tractability. Breaking 

the LBA model down into its constituent parts could compromise this tractability in such a 

way that estimation of the model’s parameters would be nontrivial. Hence, it is clear that not 

every cognitive model can easily be transformed and prepared for an analysis using the 

Integrative Approach. At this point, a natural question to ask is, under what conditions 

should an approach be used for an analysis?

3. Comparing the Approaches

It is important to supplement our discussion of approaches to model-based cognitive 

neuroscience with a guide to how these approaches compare. This comparison is difficult 

and likely to be highly subjective. How should the various approaches be evaluated? Along 

what dimensions should they be compared and contrasted? Do these approaches cover all 

possible types of linkage between neural and behavioral measures? Despite our fear of 

improperly considering these questions, we will persist and attempt to organize the six core 

approaches discussed in this article along dimensions that are relevant for practical 

implementation (note that we have grouped both types of Two-Stage approaches together for 

this discussion). Table 1 provides a list of key factors that can be used to compare the 

strengths and weaknesses of the approaches.

3.1. Number of Stages

The first factor we could compare the approaches on is the number of processing stages. The 

fewest number of stages occur when the approach considers both measures simultaneously. 

Because both the Joint Modeling Approach and the Integrative approach make formal 

assumptions about how both behavioral and neural measures arise, a full computational 

model is fit to the entire set of data in one stage. Another approach requiring only one stage 

is the Direct Input Approach, where the neural data replace dynamics of the behavioral 

model. Here, only the behavioral data are considered while fitting the model to data, but this 

process still only requires a single processing stage. The Latent Input and Two-stage 
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approaches typically require the greatest number of stages at two or sometimes three. If a 

separate simulation stage is required to generate neural predictions N∗, Latent Input 

Approaches have three stages, whereas if the internal state of a model can be directly 

inferred when the behavioral model is fit to behavioral data (e.g., as in the reinforcement 

models described above), then the Latent Input Approach only requires two stages. In the 

Two-stage approach, if the parameters of the behavioral model can be regressed (or 

correlated with) the raw neural data, then only two stages are required. However, if some 

preliminary analyses of the neural data are required, then the Two-stage approach will 

require three stages. Finally, the Theoretical Approach can require anywhere from two to an 

infinite number of stages. In the simplest scenario, the first stage consists of observing some 

pattern or phenomena of interest in the neural data, and the second stage consists of the 

development of a behavioral model. However, Theoretical Approaches can also be complex 

to implement because they can involve an extensive, iterative process of running new 

experiments and refining a developing model (Shiffrin and Nobel, 1997).

3.2. Commitment to a Particular Theory

The second factor involves the role of flexibility in applying new theories to the data. For 

example, we consider the Two-stage Approach to have weak commitment to any particular 

theory: one could freely use the same procedure to test any number of behavioral models on 

the same neural data. The commitment to a particular theory is similarly weak in the Latent 

Input and Joint Modeling Approaches, where behavioral models can easily be switched out 

and fits to data compared. We consider the Direct Input Approach to be more committed to a 

particular theory than these aforementioned approaches. For example, while Purcell et al. 

(2010) used neural data to test different assumptions about the accumulation process, they 

still maintained a commitment to the sequential sampling framework for these models. In 

this way, their analysis relies on some theoretical assumptions about the accumulation 

process, but not in a way that is inflexible. Going one step beyond this is the Integrative 

Approach, which requires strong commitments to a particular modeling framework such as 

in Anderson and colleagues’ work (e.g., Anderson et al., 2008b; Borst et al., 2015). In this 

approach, it is difficult to imagine testing different models that are not contained within a 

similar overarching theory. Finally, the Theoretical Approach makes no commitment to any 

particular theory, instead it uses the data to guide the development of the theory itself.

3.3. Type of Information Flow

Another factor to consider is the type of information flow. In Table 1, we consider three 

types: conceptual, one-way, and two-way. In the Theoretical Approach, the neural data can 

only guide the development of the behavioral model conceptually – there is no formal 

relationship between the behavioral and neural measures. At the other extreme, both the 

Joint Modeling and Integrative approaches use the information contained in either measure 

to directly constrain the estimates of the models’ parameters. Hence, we refer to this type of 

information flow as two-way because information flows in both directions. When one source 

of data enforces direct constraint on the other measure, we refer to this type of information 

flow as one-way. All of the remaining approaches use information flow that is one-way to 

maximize constraint in their models.
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While on the surface, a one-way information flow may seem a weakness, there are 

sometimes important theoretical reasons for enforcing this strict directionality. Consider, for 

example, the illustrated uses of the Latent Input Approach for model discrimination (Mack 

et al., 2013; Palmeri et al., 2015; Purcell et al., 2010, 2012; Palmeri, 2014). Here the goal 

was to use neural data to help discriminate between models of perceptual decision making or 

models of categorization that make the same behavioral predictions. The models were fit to 

the behavioral data in exactly the same way they might be fit if neural data were not even 

considered. No compromises were made in the behavioral fits to take into account the neural 

data, as might be the case for the Joint Modeling or Integrative Approaches. Only after the 

models were fit to the behavioral data were the predicted internal states of the model then 

compared to observed neural states in the brain. Finally, models were rejected if they could 

not adequately capture those observed neural states in the brain.

3.4. Difficulty of Implementation

From a pragmatic perspective, it is also important to consider the difficulty of performing 

analyses with these six approaches. Perhaps the easiest approach to implement for the 

readers of this special issue is the Two-stage Approach, where the parameters of a cognitive 

model are simply regressed against a neural signal of interest. Of medium difficulty are the 

Direct Input and Latent Input Approaches, because they often require model simulations or 

additional theoretical overhead to fit the models to data. The Joint Modeling and Integrative 

Approaches are considered difficult to implement because they either require sophisticated 

partitioning of the parameter space (e.g., Turner et al., 2015b), or estimation of hidden 

Markov model parameters (e.g., Anderson et al., 2010; Anderson, 2012). Perhaps the most 

difficult approach to implement is the Theoretical Approach, where models must be 

carefully constructed and iteratively fit to data as a test of specific assumptions. To make 

matters worse, there is no clear end point when developing a new cognitive model in the 

Theoretical Approach.

3.5. Type of Exploration

A final consideration is the type of exploration that can be used under a specific approach. 

Approaches can be used for exploratory or confirmatory purposes, or some mixture of the 

two. The Theoretical and Two-stage Approaches are considered exploratory because the 

general strategy involves a sequence of tests, iterating toward a solution or explanation of the 

data. The Direct Input Approach is considered a confirmatory approach because the neural 

data are used to directly replace certain mechanisms in the model, providing a test of the 

neural measure’s plausibility in predicting the behavioral response. The Integrative 

Approach is also confirmatory because it makes specific assumptions about how both 

measures arise, where good fits to data support the assumptions of the model, and poor fits 

refute them. We regard the Latent Input Approach as being exploratory when used in a 

typical “model-based” analysis, but confirmatory when used to compare models to one 

another as in Mack et al. (2013) and Purcell et al. (2012). In this way, the Latent Input 

Approach is listed as “either” because the specific usage depends on the situation. Finally, 

the Joint Modeling Approach is also considered both confirmatory and exploratory, because 

its usage depends on the how the linking function is specified. For example, one could use a 

general linear model as the linking function – a confirmatory approach – or one could use 
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ambiguous priors on hyperparameters that specify a multivariate Gaussian linking function – 

an exploratory approach. Furthermore, the specific prior used on the hyperparameters allows 

the Joint Modeling Approach to mix between confirmatory and exploratory roles in an 

analysis.

4. Choices and Limitations

In this article, our goal was to highlight and discuss the prominent approaches to analysis in 

the emerging subfield of model-based cognitive neuroscience. However, we have not yet 

provided a guideline for choosing between them, nor have we discussed in greater detail the 

limitations of choosing a particular approach. In this section, we will address both of these 

issues.

4.1. Choosing Between Approaches

Although we have described, compared, and contrasted six important approaches for 

analysis, we have not provided a guideline for how these approaches could be used to 

advance psychological theory. We believe that each of these approaches have their own 

utility in the pursuit and development of computational models, and the primary factor in 

choosing between them is the goal of the analysis. Furthermore, as a theory progresses, it is 

important to realize that the goals of an analysis should change. To this end, we advocate 

using all of these approaches to move from an exploratory analysis to a confirmatory one.

To see how this would work in practice, consider the following stages of model 

development. In the initial stages, one approach is to develop a cognitive theory by 

acknowledging patterns in the data from both the brain and the behavior. For example, 

knowing that the brain must first encode stimulus information in lower-level visual areas 

before a representation of the stimulus can be perceived and acted upon could be used to 

impose order in a behavioral model. Such knowledge might motivate the development of a 

visual encoding component of the model that precedes the development of an accurate 

stimulus representation. Instantiation of the encoding process in the behavioral model is an 

implementation of the Theoretical Approach, because the development is motivated by brain 

data. Here, our goal was to simply develop a model that abides by certain physiological 

timing restrictions as a way to establish a more constrained stimulus processing order.

After the development of the model, our goals have advanced – suppose we now wish to 

identify where this encoding component of our model is carried out, and specifically, which 

areas of the brain contribute to this process. To accomplish this goal, we would elect to use 

an exploratory analysis, such as the Two-stage or Latent Input Approach. In the Two-stage 

analysis, we would simply fit our behavioral model to the behavioral data, and correlate the 

parameters regulating the encoding process of our model to say, parameters of the HRF in 

our neural data. Similarly, in the Latent Input analysis, we would use the timing of the 

encoding component in our model to search for temporally-related activations in the brain. 

Both of these analyses constitute searches through our neural data as a way to better 

understand how the brain produces behavior from a mechanistic perspective. In this way, 

these analyses are unidirectional and do not validate or confirm our model, but this is 

perfectly acceptable because it is consistent with our current goals.
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Our exploratory analyses have paved the way for subsequent investigations, and now 

suppose we wish to use the neural data to better constrain our behavioral model. We now 

have well-defined hypotheses about which brain areas are involved in stimulus encoding, 

and we suspect that the systematic activations in these brain areas have a correspondence to 

the encoding phase of our model. At this point, we must reconsider our specific goals. If the 

goal of our analysis is to predict behavior, we might use the Direct Input Approach to map 

activations in the key brain areas directly to the encoding component of our model. By 

contrast, if our goal is to infer relationships between the neural and behavioral measures, we 

might use the Joint Modeling Approach to test specific impositions of brain activations to 

the parameters regulating the encoding process in our model. Both of these approaches are 

more confirmatory because they rely on specific hypotheses and assumptions that were 

derived from our exploratory analyses; however, they still only guide our inference. In the 

Direct Input analysis, because our goal was to predict the behavioral data, we have 

compromised our ability to evaluate the model’s suitability for the neural data. We cannot 

make predictions about neural data that we have conditioned on, as so we cannot evaluate 

how well the model captures these aspects of our (neural) data. On the other hand, the Joint 

Modeling Approach attempts to capture both aspects of the data simultaneously, and as a 

result, its predictions for the behavioral data are compromised by the model’s obligations to 

the neural data. Because the Joint Modeling Approach does not explicitly condition on either 

variable, it can reveal interesting generative properties of our model, but its discriminative 
(i.e., predictive) power is diminished (Bishop and Lasserre, 2007).

At this point, we have now developed our model and evaluated the relationships between 

brain and behavior in a variety of analytic approaches. We know better than anyone in the 

world where the encoding part of our model is carried out in the brain, and how differences 

in the pattern of activation in these brain areas contribute to behavioral differences. As a 

final test and validation of our model, we can now move to the most confirmatory analysis 

we have discussed here: the Integrative Approach. To establish an integrative model, we 

must first make some specific assumptions about how activations in key brain areas map to 

the encoding component of our model. This can be a difficult process, but suppose for now 

that we have formally articulated this mapping in our model, derived from our previous 

exploratory analyses. Our goal now is to show that this integrative version of our model can 

produce patterns of data that match all aspects of our data. That is, adjustments of one model 

parameter should make specific predictions about how the pattern of neural and behavioral 

measures changes, and ideally, how these changes could be selectively influenced 

experimentally (e.g., Heathcote et al., 2015). In our opinion, this integrative analysis 

represents the strongest test of psychological theory, but such a test would be misguided if 

not first informed by the less integrative approaches.

4.2. Limitations of Using These Approaches

In our working example above, we identified a few limitations of using various approaches. 

First, the balancing of fit between behavioral data, neural data, or both is a key consideration 

in model-based cognitive neuroscience. In general, to optimize predictions for say, behavior, 

it would be better to condition on neural data. However, if one is more interested in the joint 

distribution of both neural and behavioral measures, then the modeling goals are more 
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generative than discriminative, and conditioning on one variable would introduce 

limitations. The authors of the present manuscript have deliberated between these three 

modeling goals, and arrived at only an ambiguous solution: decisions must be made on a 

case-by-case basis, always with the researcher’s goals in mind.

Second, constraint is not always a good thing. If one does not have strong intuition about 

how components of a model are carried out in the brain, it would be unwise to impose strong 

constraints on a model. One way of autonomously carrying out justifiable constraint is to use 

the approaches discussed here along a continuum of increasingly more confirmatory 

research. As another tack, one could use some of the approaches discussed here to impose 

varying levels of constraint, moderating the levels of analyses between exploratory and 

confirmatory. For example, in the Joint Modeling Approach, one can impose a completely 

uninformative prior on the parameters of the linking function and specify that all parameters 

of the behavioral model be mapped to the neural data. Such an analysis is wildly explorative, 

would be difficult to implement, and would convey little information about the covariation 

between the measures. To move toward a more confirmatory regime, one could impose a 

stronger prior derived from say, previous research or investigation of the prior predictive 

distribution (Vanpaemel, 2010, 2011; Vanpaemel and Lee, 2012). Similarly, one could 

constrain the set of parameters that are related to the neural data by simply setting elements 

of the linking function to zero. Such an analysis would provide a greater test of the model, 

but would also force the model to rely more heavily on the joint distribution of the measures.

Third, in this article, we have emphasized structural connections that are largely at one level. 

This is a limitation because the behavioral data can be thought of as the end result of some 

brain process, again highlighting the mismatch between Marr’s (1982) implementation and 

computational levels of analyses we discussed earlier. Another approach would be to impose 

structural connections that are multi-level, where a model uses the implementation level to 

drive some mechanisms, and the computational level to drive others. As a hypothetical 

example, the implementation level could be used to drive an evidence accumulation process 

that remains unaffected by experimental instructions (i.e., computational goals), whereas 

other mechanisms such as boundary separation or bias could be carried out by other brain 

areas that are systematically adjusted in response to task demands. Such a model would 

bridge the levels of analysis in a way that might actually be reflected in the brain (Frank, 

2015).

Finally, the imposition of structure need not arise from a model of behavior. In this article, 

we have oriented the approaches to analysis around determining where mechanisms in the 

model are carried out in the brain. However, one can easily imagine reversing the orientation 

to determining how structural and functional differences in the brain manifest behaviorally. 

Such an endeavor begins with the development of a generative model of the neural data, 

usually formed by observing the interconnectedness of key brain regions (Ratcliff and Frank, 

2012; Frank, 2006; Wong and Wang, 2006; Cavanagh et al., 2011), and ends in mapping the 

systematic activations of these brain areas to a model of the behavioral data. These models 

can be difficult to implement and test in the traditional cognitive modeling way (e.g., Lee 

and Wagenmakers, 2013; Shiffrin et al., 2008; Heathcote et al., 2015; Busemeyer and 

Diederich, 2010), because they rely on many parameters and complex simulations to 
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validate them. However, new methods have been developed to better elucidate simulation-

based models (for applications in psychology, see Turner and Van Zandt, 2012; Turner and 

Sederberg, 2012; Turner et al., 2013a; Turner and Sederberg, 2014; Turner and Van Zandt, 

2014; Turner et al., 2015a), and as a result, we may gain new insight and interest in these 

network-style models in the coming years.

4.3. Other Approaches

Although the approaches we have presented here encompass the most prevalent approaches 

to model-based cognitive neuroscience, other approaches have been used to gain a better 

understanding of how the brain produces a behavior. One structural example is to use some 

experimental variable that hypothetically affects the neural data to split the behavioral data 

into different levels. Once the behavioral data is divided, the data can be fit and evaluated on 

the basis of differences in parameter values. One example of this is in Parkinson’s Disease, 

where drug therapy is commonly administered to compensate for decreased levels of 

dopamine. Frank (2006) make predictions for behavioral data for subjects on and off 

medication in a Go/NoGo task, and a probabilistic learning task. They used a computational 

neural network model to make concrete predictions for differences in task behavior based on 

activation of the subthalamic nucleus. Frank (2006) found that their model accurately 

captured the dynamics of activity in areas of the basal ganglia, and how this pattern of 

activity related to dynamic adjustments in response thresholds. A similar mechanism was 

later found in impulse control for Parkinson’s patients with deep brain stimulation using a 

similar analysis design (Cavanagh et al., 2011).

The examples above illustrate an analytic approach where experimental variables guide the 

analysis of the behavioral data on the basis of how those variables affect the neural data. 

Another type of analysis takes the effects of the neural data one step further (e.g., Ratcliff et 

al., 2003, 2007, 2009, 2011; Kiani et al., 2008; Mazurek et al., 2003). For example, Ratcliff 

et al. (2009) used single-trial amplitude measures of EEG activity in a perceptual decision 

making experiment to divide their behavioral data into separate groups. Next, Ratcliff et al. 

fit the DDM to the data from each of these separate groups and used estimates of the drift 

rate parameter to show early component EEG signals were not reflective of the decision 

process, whereas late component EEG signals showed a positive correlation to the stimulus 

evidence (i.e., the drift rate). This type of analysis is similar to the Latent Input Approach, 

but with the flow of information moving from the neural measures to the behavioral ones. 

By using the neural data to guide the search for differences in behavioral model parameters, 

we can better understand the mechanistic properties of these neural features by interpreting 

them in the native language of the decision model.

5. Conclusions

The field of cognitive science has only begun to realize the full potential of combining brain 

and behavior as a way to study the mind. However, the field relies on the various approaches 

developed by different groups of methodological experts. Due to the seemingly disjoint 

ways to study cognition, many neuroscientists and cognitive modelers are unaware of their 

modeling options, as well as the benefits and limitations of different approaches. In this 
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article, we have described the currently prominent general methods for integrating neural 

and behavioral measures, while providing some examples of their use in cognitive 

neuroscience. We then attempted to organize these approaches on the basis of a variety of 

factors: the number of stages, the commitment to a particular theory, the type of information 

flow, the difficulty of implementation, and the type of exploration. We concluded with a 

discussion of limitations and further considerations in approaching the integration problem. 

Our comparison of the approaches (see Figure 1, and Table 1) highlights that a broad 

spectrum of methods exist for performing model-based cognitive neuroscience, and there are 

important considerations and limitations of each approach. In the end, we conclude that 

model-based approaches in cognitive neuroscience are extremely important (cf. Schall, 

2004; Forstmann et al., 2011, 2015; Mulder et al., 2014; White and Poldrack, 2013), and the 

choice of analysis strongly depends on the research goal. It seems to us that having a clearly 

articulated analytic goal in mind serves as the impetus for successful integration between 

neuroscientific measures and cognitive theory.
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Figure 1: 
An illustration of several approaches used for linking neural and behavioral data, organized 

by specific modeling goals. N represents the neural data, B represents the behavioral data, 

N* represents simulated internal model states, and θ, δ, and Ω represent model parameters. 

When an approach is procedural, progression through processing stages is represented by 

arrows of decreasing darkness (e.g., the Latent Input Approach). Dashed lines indicate 

conceptual constraints (e.g., the Theoretical Approach), whereas solid lines indicate 

statistical constraints.
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