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Abstract

Immune cell infiltration of tumors and the tumor microenvironment can be an important com-

ponent for determining patient outcomes. For example, immune and stromal cell presence

inferred by deconvolving patient gene expression data may help identify high risk patients or

suggest a course of treatment. One particularly powerful family of deconvolution techniques

uses signature matrices of genes that uniquely identify each cell type as determined from

single cell type purified gene expression data. Many methods from this family have been

recently published, often including new signature matrices appropriate for a single purpose,

such as investigating a specific type of tumor. The package ADAPTS helps users make the

most of this expanding knowledge base by introducing a framework for cell type deconvolu-

tion. ADAPTS implements modular tools for customizing signature matrices for new tissue

types by adding custom cell types or building new matrices de novo, including from single

cell RNAseq data. It includes a common interface to several popular deconvolution algo-

rithms that use a signature matrix to estimate the proportion of cell types present in heterog-

enous samples. ADAPTS also implements a novel method for clustering cell types into

groups that are difficult to distinguish by deconvolution and then re-splitting those clusters

using hierarchical deconvolution. We demonstrate that the techniques implemented in

ADAPTS improve the ability to reconstruct the cell types present in a single cell RNAseq

data set in a blind predictive analysis. ADAPTS is currently available for use in R on CRAN

and GitHub.

Introduction

Determining cell type enrichment from gene expression data is a useful step towards deter-

mining tumor immune context [1, 2]. One family of techniques for doing this involves regres-

sion with a signature matrix, where each column represents a cell type and each row contains

the average gene expression for each cell types [3, 4]. These signature matrices are constructed
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using gene expression from samples of a purified cell type. Generally, the publicly available

versions of these gene expression signature matrices use immune cells purified from peripheral

blood. Genes are included in these matrices based on how well they distinguish the constituent

cell types. Although examples exist of both general purpose immune signature matrices, e.g.

LM22 [5] and Immunostates [6], and more tissue specific ones e.g. M17 [7], these publicly

available matrices are most likely not appropriate for all diseases and tissue types. One such

example would be multiple myeloma whole bone marrow samples, which pose multiple chal-

lenges: both tumor and immune cells are present, immune cells may have different states than

in peripheral blood, and non-immune stromal cells such as osteoblasts and adipocytes are

expected play an important role in patient outcomes [8].

One straightforward solution to this problem would be to augment a signature matrix by

adding cell types without adding any additional genes. For example, one might find purified

adipocyte samples in a public gene expression repository and add the average expression for

each gene in the matrix to create an adipocyte augmented signature matrix. While this might

work, one might reasonably expect adipocytes (for example) to best be identified by genes that

are different from those that best characterize leukocytes. Furthermore, it will be unclear

which deconvolution algorithm would be most appropriate for applying this new signature

matrix to samples. Once cell types have been deconvolved, it will also be unclear which cell

types are likely to be confused due to a common lineage or other factors and how to best

resolve this confusion. These problems are exacerbated by newly available single cell RNAseq

data, which promises to identify the cell types that are present in a particular sample and gene

expression for those cell types, but is hampered by clustering techniques that may incorrectly

identify groups of cells as distinct cell types.

We have developed the R package ADAPTS (Automated Deconvolution Augmentation of

Profiles for Tissue Specific cells) to help solve these problems as shown in Fig 1. ADAPTS is

currently available on CRAN (https://cran.r-project.org/web/packages/ADAPTS) and GitHub

(https://github.com/sdanzige/ADAPTS). As the package vignettes already provide step-by-

step instructions for applying ADAPTS to the aforementioned problems, this manuscript is

intended to complement the package by providing a theoretical understanding of the

ADAPTS methodology.

Materials and methods

ADAPTS aids deconvolution techniques that use a signature matrix, here denoted as S, where

each column represents a cell type and each row contains the average gene expression in that

cell type [3, 4]. These signature matrices are constructed using gene expression from samples

of purified cell types, P, and include genes that are good for identifying cells of type c where

c 2 C and C is a population of cell types to look for in a sample.

Deconvolution estimates the relative frequency of cell types in a matrix of new samples X
where each column is a sample and each row is a gene expression measurement according to

Eq 1.

E ¼ DðS;XÞ ð1Þ

Eq 1 results in a cell type estimate matrix E, where each column is a sample corresponding

to a column in X, and each row is a cell type corresponding to a column in S (potentially with

an extra row representing an ‘other’ cell type not in S).

One straightforward method to augment a signature matrix, S, would be to add new cell

types, NC, without adding any additional genes. For example, one might start with LM22 as an

initial signature matrix, S0, with |gS0| = 547 genes (rows) and |C = 22| cell types (columns) and
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augment with c 2 NC purified cell types. Let NC1 = adipocytes and P1 be an adipocyte samples

matrix with |G| = 20, 000 genes (rows) and |J1| = 9 samples (columns) taken from a public gene

expression repository such as ArrayExpress [9] or the Gene Expression Omnibus [10]. A new

column could be constructed from P1 using the average expression for each of the 547 genes

(g1. . .g547) in GS0. Extended to all c 2 NC, this would produce Eq 2.

S1 =

0
BBBBB@

S0g1;1 ¢ ¢ ¢ S0g1;22
1
jJ1j

P
j2J1

P 1g1;j ¢ ¢ ¢ 1
jJjNCj j

P
j2JjNCj

P
jNCj
g1;j

...
. . .

...
...

. . .
...

S0g547;1 ¢ ¢ ¢ S0g547;22
1
jJ1j

P
j2J1

P 1g547;j ¢ ¢ ¢ 1
jJjNCj j

P
j2JjNCj

P
jNCj
g547;j

1
CCCCCA

ð2Þ

Thus S1 is a signature matrix augmented with the cell types in NC. While this might work,

one might reasonably expect adipocytes to best be identified by genes that are different from

those that best characterize the 22 cell types in S0.

Signature matrix augmentation

ADAPTS provides functionality for augmenting an existing cell type signature matrix with

additional genes or even constructing a new signature matrix de novo. In addition to S0 and P1,

this requires SE0, an extended version S0 with all genes. From this data, ADAPTS selected N

Fig 1. Overview of ADAPTS modules. New gene expression data from cell types (e.g. from a tumor microenvironment) will be used to construct a

new signature matrix de novo or by augmenting an existing signature matrix. First ADAPTS will rank marker genes for the cell types using the function

rankByT described in Eq 4. Then ADAPTS adds marker genes in rank order using the function AugmentSigMatrix as described in Algorithm 1

resulting in a new signature matrix. This matrix may be tested for spillover between cell types using the function spillToConvergence described in

Algorithm 2. Finally, ADAPTS separates cell types with heavy spillover using the hierarchical deconvolution function hierarchicalSplit described in

Algorithm 3 to estimate the percentage of cell types present in bulk gene expression data.

https://doi.org/10.1371/journal.pone.0224693.g001
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additional genes gn1
. . . N to augment the signature matrix as shown in Eq 3.

Si =

0
BBBBBBBBBBBBBBBBB@
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ð3Þ

ADAPTS helps a user construct new signature matrices with modular R functions and

default parameters to:

1. Identify and rank significantly different genes for each cell type.

2. Evaluate the stability (condition number, κ(Sx)) of many signature matrices Sx 2 S.

3. Smooth and normalize to meet tolerances for a robust signature matrix.

These components are combined into a single function that produces a new deconvolution

matrix. First the algorithm ranks each the genes that best differentiate each cell types such that

there is a ranked set of genes gc for each c 2 C where C includes the cell types in the original

signature matrix, S0 as well as the new cell types NC. Genes, gc (where gc� G and G is the set of

all genes), are ranked in descending order according to scores calculated by Eq 4 and exclude

any that do not pass a t-test determined false discover rate cutoff (by default, 0.3).

scoreðgnÞ ¼ jjlog2

1

jJcj

X

j2Jc

Pc
gn ;j

1

jJC� fcgj

X

j2JC� fcg

PC� fcg
gn ;j

0

B
B
B
@

1

C
C
C
A
jj ð4Þ

Thus gc ¼ sortð8n 2 N : scoreðgc
nÞÞ and the function pop(gc) will return and remove the

gene with the largest absolute average log expression ratio between the cell type, c, and all

other cell types, C − {c}. As shown in Algorithm 1, the matrix augmentation algorithm itera-

tively adds the top gene that is not already in the signature matrix from each c 2 C and calcu-

lates the condition number for that matrix. The augmented signature matrix is then chosen

that minimizes the condition number, CN.

Algorithm 1 Augment signature matrix
Require: S0, SE0, and P {as defined for Eqs 2 and 3}

S1 ¼ ðS0jAðPg2GS0
ÞÞ {S1 is augmented as shown in Eq 2}

minCN = CN1 = κ(S1)
bestIndex = 1
for i = 2: nIter do
g1. . .N = 8c 2 C: pop(gc) {i.e. take the top gene for each cell type}
Si ¼ ððSi� 1Þ

⊺
jAðPg1:::N

Þ
⊺
Þ
⊺ {Si is augmented as shown in Eq 3}

CNi = κ(Si)
if CNi < minCN then
minCN = CNi
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bestIndex = i
end if

end for
{bestIndex is recalculated after smoothing CN and optionally apply-

ing a tolerance}
return SbestIndex

In Algorithm 1: nIter = 100 by default, and κ(s) returns the condition number. A(P) returns

the mean expression for each gene in each cell type, producing a matrix such as is shown on

the right side of Eq 2. If P has |C| cell types, |G| genes, and each cell type has some number of

samples, |Pi| where i = 1: |C|, then A(P) would result in a matrix with |C| columns and |G|

rows. When A(P) is called on a matrix with one cell type, Pi, then A(Pi) results in a matrix with

one column and |G|.

Fig 2 shows a plot of condition numbers when adding 5 cell types to a 22 cell type signature

matrix with smoothing and a 1% tolerance.

Fig 2. MGSM27 construction. Curve showing the selection of an optimal condition number for MGSM27.

https://doi.org/10.1371/journal.pone.0224693.g002
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Similarly, ADAPTS can be used to construct a de novo matrix from first principals rather

than starting with a pre-calculated S0. One technique is to build S0 out of the n (e.g. 100) genes

that vary the most between cell types and use ADAPTS to augment that seed matrix. The n ini-

tial genes can then be removed from the resulting signature matrix and that new signature

matrix can be re-augmented by ADAPTS.

Condition number minimization and smoothing

The condition number (CN) is calculated by the κ() function. In linear regression, CN is a met-

ric that increases with multicollinearity; in this case, how well can the signature of cell types be

linearly predicted from the other cell types in the signature matrix. To illustrate this, it is help-

ful restate Eq 1 using a signature matrix S that has the same number of genes as the data to

deconvolve X and use the trivial deconvolution function: D(S, X) = S−1 X. This recasts Eq 1

deconvolution as the matrix decomposition problem presented in Eq 5 [11].

X � SE ð5Þ

When the problem is stated in this manner, the CN approximately bounds the inaccuracy

E, the estimate of cellular composition [12], and it remains meaningful if the system becomes

underdetermined [13].

By definition, the condition number will increase as the system become more multicol-

linear. If a signature matrix is augmented with new cell types that express the genes in the

matrix in a pattern similar to other cell types in the matrix, then the condition number would

be expected to dramatically increase compared to the un-augmented matrix. This indicates a

signature matrix lacking genes informative for differentiating multicollinear gene signatures.

As Algorithm 1 iteratively adds the top gene for each cell type, the condition number would be

expected to decrease as the new genes are selected to differentiate that cell type from all other

cell types.

In practice, Algorithm 1 sometimes results in clearly unstable minima, where the CN
decreases dramatically for one iteration only to increase dramatically the next. To avoid this

instability, ADAPTS smooths the CN curve using Tukey’s Running Median Smoothing

(3RS3R) [14]. Often, the CNs will decrease in very small increments for many iterations before

beginning to rise, resulting thousands of genes in the signature matrix. A signature matrix (S)

with more genes (|gS|) than samples in the training data (∑j 2 J|Jj|) essentially represents the

solution to an underdetermined system that is likely to be overfit to the training data, resulting

in reduced deconvolution accuracy on new samples. To mitigate this, an optional tolerance

may be applied to find the minimum number of genes that has a CN within some % of the true

minimum. By default, ADAPTS uses a 1% tolerance.

Deconvolution framework

The ADAPTS package includes functionality to call several different deconvolution methods

using a common interface, thereby allowing a user to test new signature matrices with multiple

algorithms. These function calls fit the form D(S, X) presented in Eq 1.

The algorithms include:

1. DCQ [15]: An elastic net based deconvolution algorithm that consistently best identifies

cell proportions.

2. SVMDECON [5]: A support vector machine based deconvolution algorithm.

3. DeconRNASeq [16]: A non-negative decomposition based deconvolution algorithm.

ADAPTS: Automated deconvolution augmentation of profiles for tissue specific cells
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4. Proportions in Admixture [17]: A linear regression based deconvolution algorithm.

Spillover to convergence

In cell type deconvolution, spillover refers to the tendency of some cell types to be misclassified

as other cell types [18]. For example, when using LM22, deconvolving purified activated mast

cell samples results predicted cell compositions that are almost equally split between activated

and resting mast cells (Fig 3). One approach to exploring this problem might be to cluster the

signature matrix, and assume that highly correlated signatures would tend to spill over to each

other. However, ADAPTS instead directly calculates what cell types spill over to what other

cell types by deconvolving the purified samples, P, used to construct and augment the signa-

ture matrices, S. While the cell types that are likely to spill-over detected by both methods are

similar, directly calculating the spillover reveals some surprising patterns. For example, based

on signature matrix clustering of LM22, ‘Dendritic.cells.activated’ and ‘Dendritic.cells.resting’

tend to cluster together, however the spillover patterns (Fig 4) reveal that ‘Dendritic.cells.acti-

vated’ are most similar to ‘Macrophages.M1’ while ‘Dendritic.cells.resting’ are similar to ‘Mac-

rophages.M1’ and ‘Macrophages.M2’. Similarly, T cells are broken into three blocks, implying

that if T cells were classified by gene expression rather than surface markers, the broad T cell

families (i.e. CD4+ and CD8+) might be differently defined.

As shown in Algorithm 2, recursively (or iteratively) applying the spillover calculation

reveals clear clusters of cells. Eq 6 revisits Eq 1, obtaining an initial spillover matrix, E0, by

applying Eq 1 to a signature matrix, S0, and the source data used to construct it, P0.

E0 ¼ DðS0; P0Þ ð6Þ

Thus E0 would have |C| rows representing each cell type in S0 and one column for each of

the |P0| samples. Applying A(E0) to average the cell type estimates E across purified samples

makes the spillover matrix resemble a signature matrix, leading to Eq 7.

S1 ¼ AðE0Þ ð7Þ

This new spillover based deconvolution matrix S1 has |C| rows with the average percentage

that each of the |C| purified cell types has deconvolved into. S1 can be used to re-deconvolve

the initial spillover matrix, E0, effectively ‘sharpening’ the deconvolution matrix image as

shown in Eq 8.

E1 ¼ DðS1;E0Þ ð8Þ

Thus E1 will have |C| rows taken from the |C| columns in S1 and |P0| columns taken from

the columns in E0. Once these values are calculated, the following pseudocode (Algorithm 2)

shows how ADAPTS iteratively applies spillover re-deconvolution to cluster cell types likely to

be confused by deconvolution.

Algorithm 2 Cluster cell types by repeated deconvolution
i = 1
while Ei 6¼ Ei−1 do
i = i + 1
Si = A(Ei−1)
Ei = D(Si, Ei−1)

end while
If D(S, X) returns |C| + 1 rows, i.e. has an ‘others’ estimate for cell types not in the matrix,

then Eqs 6–8 and Algorithm 2 remain unchanged.
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As shown in Algorithm 2, the signature matrix may never converge, but instead can alter-

nate between several solutions such that Ei = Ei−1 is impossible. Therefore ADAPTS includes a

parameter forcing the algorithm to break and return an answer after i iterations. However, the

algorithm usually converges in less than 30 iterations, resulting in a clustered spillover matrix

(e.g. Fig 4).

Fig 3. LM22 spillover matrix. Spillover matrix showing mean misclassification of purified samples for LM22. Rows show purified cell types and

columns show what those samples deconvolve as. Cells are colored by percentage, such that each row adds up to 100%. For example, if the row is ‘B.cell.

memory’, the column is ‘Plasma.cells’, then the color is light blue indicating that purified ‘B.cell.memory’ samples deconvolve as containing (on

average) 18% ‘Plasma.cells’.

https://doi.org/10.1371/journal.pone.0224693.g003
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The resulting cell type clusters (CC) are extracted from Ei by grouping the cell types for any

rows that are identical. For example in Fig 4, ‘NK.cells.activated’ and ‘NK.cells.resting’ would

be grouped in one cluster (e.g. CC3), while ‘Neutrophils’ would exist in a cluster by themselves

(CC2), and |CC| = 10.

Cell types co-clustered by this method are cell types that have similar deconvolution pat-

terns from purified samples. Within cell type clusters a cell type will usually deconvolve most

frequently as itself and less frequently as other cell types within the cluster (e.g. NK.cells.acti-

vated and NK.cells.resting in Figs 3 and 4). Thus clusters are not necessarily a block within

Fig 4. LM22 converged spillover matrix. Iterative deconvolution shows how easily confused cell types conspicuously form clusters. Rows show

purified cell types and columns show what those samples deconvolve as. Cells are colored by percentage, such that each row adds up to 100%.

https://doi.org/10.1371/journal.pone.0224693.g004
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which cellular proportions are inaccurate. Rather, co-clustered cell types would benefit from

additional efforts to separate them, such as by finding genes that specifically differentiate those

cell types as is done in hierarchical deconvolution.

Hierarchical deconvolution

The clusters calculated by Algorithm 2 allow the hierarchical deconvolution implemented in

ADAPTS. ADAPTS includes a function to automatically train deconvolution matrices that

include only genes that differentiate cell types that cluster together in Algorithm 2. The first

round of deconvolution determines the total fraction of cells in the cluster. The next round of

deconvolution determines the relative proportion of all of the cell types in that cluster as

shown in Algorithm 3.

While this algorithm has not been implemented recursively in ADAPTS, if it was it would

resemble a discrete version of the continuous model implemented in MuSiC [19].

Algorithm 3 Hierarchical deconvolution
Require: CC, Pnew, S0, SE0, and P {Pnew has |G| genes × |J| new samples
to predict}
Sbase = Algorithm 1(S0, SE0, P) {|g| genes × |C| cell types}
Ebase = D(Sbase, Pnew) {|C| cell types × |J| samples from Pnew}
for cc 2 CC do

EB ¼
P

c02ccE
base
c0 ;

varscc ¼ 8g 2 G : varianceðPcc
g Þ

seedSize = dnrow(Sbase)/10e
gcc = seedSize genes with the top values in varscc

Scc = Algorithm 1ðAðPcc
gccÞ; Pcc;PccÞ

EC = D(Scc, Pnew)
for c 2 cc do

Ec ¼ EB� ECc;P
c02cc

ECc0 ;
{1 cell type × |J| samples in Pnew}

end for
end for
Enew ¼ ððEc1Þ

⊺
j:::jðEcjCj Þ

⊺
Þ
⊺ {|C| cell types × |J| samples from Pnew}

Evaluation metrics

To evaluate the efficacy of deconvolution, we use two common metrics: Pearson’s correlation

coefficient (ρ) and root mean squared error (RMSE). Correlation represents the quality of the

linear relationship between the predicted and actual cell type percentages. Root mean square

error (RMSE) directly measures the error between the actual and predicted values for a cell

type. A detailed discussion of these metrics and other alternatives are presented by Li and Wu

[20].

In Example 1: Detecting Tumor Cells, correlation and RMSE evaluate the accuracy of pre-

dicting a single cell type (i.e. myeloma tumor) across multiple samples. In this kind of analysis,

if a particular cell type has a high correlation, but also a high RMSE, that indicates that the esti-

mates are systematically underestimating (or overestimating) the actual percentage of that cell

type. In the case of underestimation, some percentage of that cell type is being misclassified as

another cell type or cell types (and vice versa for overestimation).

In Example 2: Deconvolving Single Cell Pancreas Samples, correlation and RMSE evaluate

predictions for all cell types in a single sample. In this case, the aforementioned bias is not pos-

sible since both the predicted and actual cell percentages must add up to 100%.
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Results

The following results section shows how the theory set out in Materials and Methods is applied

to detect tumor cells in multiple myeloma samples and to utilize single cell RNAseq data to

build a new signature matrix. It contains highlights from two vignettes distributed with the

CRAN package (S1 and S2 Vigs).

Example 1: Detecting tumor cells

To demonstrate utility of the ADAPTS package, we show how it can be used to augment the

LM22 from [5] to identify myelomatous plasma cells from gene expression profiles of 423 puri-

fied tumor (CD138+) samples and 440 whole bone marrow (WBM) samples taken from multi-

ple myeloma patients. The fraction of myeloma cells, which are tumorous plasma cells, were

identified in both sample types via quantification of the cell surface marker CD138. Root mean

squared error (RMSE) and Pearson’s correlation coefficient (ρ) were used to evaluate accuracy

of tumor cell fraction estimates. RMSE proved particularly relevant when deconvolving puri-

fied CD138+ sample profiles, because 356 of 423 samples are more than 90% pure tumor

resulting in clumping of samples with purity near 100%.

The following matrices were used or generated during the evaluation:

• LM22: As reported in [5]. The sum of the ‘memory B cells’ and ‘plasma cells’ deconvolved

estimates represent tumor percentage.

• LM22 + 5: Builds on LM22 by adding purified sample profiles for myeloma specific cell

types as shown in Eq 2: plasma memory cells [21], osteoblasts [9], osteoclasts, adipocytes,

and myeloma plasma cells [22]. The sum estimates for ‘memory B cells’, ‘myeloma plasma

cells’, ‘plasma cells’, and ‘plasma memory cells’ represent tumor percentage.

• MGSM27: Builds on LM22 by adding 5 myeloma specific cell types using ADAPTS to deter-

mine inclusion of additional genes as shown in Eq 3. Fig 2 shows ADAPTS evaluating

matrix stability after adding different numbers of genes, smoothing the condition numbers,

and selecting an optimal number of features.

• de novo MGSM27: Builds a de novo MGSM27 by seeding with the 100 most variable genes

from publicly available data similar to those mentioned in [5] and the 5 aforementioned

myeloma specific cell types.

Table 1 displays average RMSE and ρ for tumor fraction estimates obtained via application

of DCQ deconvolution using the four aforementioned matrices across both myeloma profiling

datasets.

While the exact genes chosen during each run varies slightly, Table 1 shows that consis-

tently the best accuracy is achieved by augmenting LM22 using ADAPTS. The reduced

Table 1. Deconvolved tumor accuracy in WBM samples.

Matrix WBM RMSE WBM ρ CD138+ RMSE CD138+ ρ
LM22 38.0 ± 0.0 0.59 ± 0.00 27.0 ± 0.0 0.26 ± 0.00

LM22 + 5 37.0 ± 0.0 0.53 ± 0.00 12.0 ± 0.0 0.26 ± 0.00

MGSM27 23.0 ± 0.0 0.60 ± 0.00 09.0 ± 0.2 0.33 ± 0.01

de novo MGSM27 24.0 ± 0.0 0.65 ± 0.00 36.0 ± 0.0 0.18 ± 0.00

Deconvolution reconstruction of tumor percentage in whole bone marrow (WBM) and samples sorted to consist of nearly pure CD138+ cells. Classifier accuracy is

measured by root mean square error (RMSE) and Pearson’s correlation coefficient (ρ). The best scores in each column are bolded.

https://doi.org/10.1371/journal.pone.0224693.t001
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performance of the de novo MGSM27 on the CD138+ samples is likely due to genes that were

present in LM22, but were missing in some of the source data and thus excluded from de novo
construction. More details are available in the vignette distributed with the R package.

Deconvolved cell types. Cell type estimates of non-CD138+ cells from immunostaining

are not available for the 423 CD138+ or 440 WBM samples. However, enumerating the cell

types detected by deconvolution in the CD138+ and WBM samples by the four signature

matrices illustrates the changes brought about by augmenting the signature matrix. Table 2

shows the mean percentage of each cell type across the 423 CD138+ samples and Table 3

shows the same for the 440 WBM samples.

In the CD138+ samples (Table 2), adding 5 cell types without adding any additional genes

has the immediate benefit of greatly reducing the percentage of cells classed as immune cells

that should not be in the sample (e.g. ‘T.cells.follicular.helper’, ‘Monocytes’). However, this is

balanced out by adding percentages of new cell types that should not be in the samples (e.g.

‘adipocyte’) and deconvolving only a relatively small percentage (4.62%) as the most obvious

tumor type: ‘MM.plasma.cell’. This is consistent with the hypothesis that the signature matrix

Table 2. Deconvolution of CD138+ purified samples.

Cell Type LM22 LM22p5 MGSM27 de novo MGSM27

B.cells.naive 1.76 0.92 0.2 0

B.cells.memory� 10.38 5.27 2 0.02

Plasma.cells� 59.59 45.49 31.77 7.58

T.cells.CD8 1.06 0.13 0 0

T.cells.CD4.naive 2.58 0.09 0.49 4.94

T.cells.CD4.memory.resting 1.33 0.13 0 0

T.cells.CD4.memory.activated 0.03 0.01 0 0.01

T.cells.follicular.helper 5.32 0.36 0.9 4.74

T.cells.regulatory..Tregs. 2.72 0.35 1.14 7.37

T.cells.gamma.delta 0.03 0.03 0.06 6.89

NK.cells.resting 0.11 0.09 0.03 0

NK.cells.activated 0.03 0.01 0 0

Monocytes 5.57 1.13 0.57 0.05

Macrophages.M0 1.36 0.11 0.03 0

Macrophages.M1 1.06 0.08 0.04 0.02

Macrophages.M2 4.14 0.49 0.52 0.13

Dendritic.cells.resting 0.95 0.11 0.05 0

Dendritic.cells.activated 0.57 0.08 0.06 0

Mast.cells.resting 0.3 0.14 0.01 0.09

Mast.cells.activated 0.06 0.03 0 0.01

Eosinophils 0.72 0.21 0.46 7.24

Neutrophils 0.32 0.29 0.11 0.01

others 0 0 0 0

PlasmaMemory� 0 32.56 24.07 21.76

MM.plasma.cell� 0 4.62 34.51 29.12

osteoclast 0 0.8 2.93 4.54

osteoblast 0 1.1 0.02 2.93

adipocyte 0 5.37 0.01 2.55

Average (mean) deconvolution reconstruction of all cell types in the 423 nearly pure CD138+ samples.

�Cell types are counted as CD138+ tumor

https://doi.org/10.1371/journal.pone.0224693.t002

ADAPTS: Automated deconvolution augmentation of profiles for tissue specific cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0224693 November 19, 2019 12 / 21

https://doi.org/10.1371/journal.pone.0224693.t002
https://doi.org/10.1371/journal.pone.0224693


lacks the correct genes to precisely identify these cell types. Adding in additional genes to

make MGSM27 moves cancer types ‘MM.plasma.cell’, ‘Plasma.cells’, and ‘PlasmaMemory’

cells to the most frequent cell types and reduces all other cell types to very low estimates. The

de novo MGSM27 shows an increase in many cell types that should not be in the samples. One

explanation for this might be that the genes common to ‘B.cells.memory’, ‘Plasma.cells’, ‘Plas-

maMemory’, and ‘MM.plasma.cell’ are scored inappropriately lowly by Eq 4.

In the WBM samples (Table 3), adding 5 cell types without adding any additional genes

results in little change to the average percentage of cell types excepting the reduction in

‘Plasma.cells’ percentage which apparently shift to ‘PlasmaMemory’. Adding in additional

genes to make MGSM27 greatly increases the estimates for the new stromal cell types (i.e.

‘osteoclasts’, ‘osteoblasts’, and adipocytes) as well as the tumor cell types largely at the expense

of innate immune cells (e.g. Monocytes, Mast.cells, Neutrophils, et al.). This removes a bias

where tumor cells were systematically under-represented (12.71% in LM22p5 versus 29.96% in

MGSM27). The de novo MGSM27 results are similar to MGSM27, except for an increase in

certain types of T cells and a shifting in innate populations.

Table 3. Deconvolution of WBM samples.

Cell Type LM22 LM22p5 MGSM27 de novo MGSM27

B.cells.naive 0.12 0.15 0.01 0

B.cells.memory� 0.84 0.55 0.09 0.01

Plasma.cells� 9.84 4.59 3.89 0.85

T.cells.CD8 1.81 1.15 0.05 0

T.cells.CD4.naive 0.59 0.14 0.12 3.99

T.cells.CD4.memory.resting 0.24 0.15 0 0

T.cells.CD4.memory.activated 0 0 0 0

T.cells.follicular.helper 0.18 0.02 0.02 3.65

T.cells.regulatory..Tregs. 0.16 0.06 0.06 3.33

T.cells.gamma.delta 3.53 4.22 3.25 7.14

NK.cells.resting 11 11.73 4.62 0.27

NK.cells.activated 1.48 1.54 0.1 0

Monocytes 14.37 12.94 8.12 4.09

Macrophages.M0 4.75 2.24 1.83 0.86

Macrophages.M1 2.09 1.07 1.11 1.15

Macrophages.M2 7.63 4.81 5 4.18

Dendritic.cells.resting 0.73 0.23 0.17 0.02

Dendritic.cells.activated 0.27 0.19 0.07 0.01

Mast.cells.resting 12.11 12.4 4.9 0

Mast.cells.activated 6.76 6.73 1.57 0

Eosinophils 7.23 7.44 7.08 13.23

Neutrophils 14.29 15.63 8.04 4.05

others 0 0 0 0

PlasmaMemory� 0 6.19 11.2 11.51

MM.plasma.cell� 0 1.38 14.78 16.82

osteoclast 0 2.27 14.37 13.95

osteoblast 0 0.32 5.92 4.54

adipocyte 0 1.86 3.62 6.34

Average (mean) deconvolution percentages of all cell types in the 440 WBM samples.

�Cell types are counted as CD138+ tumor

https://doi.org/10.1371/journal.pone.0224693.t003
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Spillover matrix. Successfully recapturing the known percentage of tumor cells in a

sample is a useful intermediate validation step, however, the true value of a deconvolution

algorithm lies in its ability to determine cell types in a sample that affect patient outcomes.

Statistical and machine learning techniques may be applied to identify relevant cell estimates.

From there, a correct understanding of the limitations of deconvolution is helpful to reveal

the underlying biology. One particularly relevant limitation of deconvolution is how the algo-

rithm may confuse different cell types. ADAPTS’s approach to resolving this problem is

detailed in the Materials and Methods subsection Spillover to Convergence producing spill-

over matrices such as Fig 3 that show what samples of a single purified cell type deconvolve

as.

Recursive application of the spillover concept leads to Algorithm 2 and cell type clusters

such as those shown in Fig 4. One way to interpret these results is that co-clustered cell types

are those cannot be reliably distinguished by deconvolution using a particular deconvolution

algorithm and signature matrix. In this example, ‘B.cells.naive’, ‘B.cells.memory’, and ‘Plasma.

cells’ are all clearly clustered together. These clusters may be particularly valuable for single cell

RNAseq analysis where clustering software such as Seurat [23] aid in annotating cell types, but

can introduce artificial distinctions due to limitations inherent in clustering.

Example 2: Deconvolving single cell pancreas samples

In this section we demonstrate how ADAPTS can be applied to build a deconvolution matrix

from single cell RNAseq data. This example has the additional benefit of illustrating the utility

of the algorithms outlined in Spillover to Convergence and Hierarchical Deconvolution to

find cell type clusters and distinguish between cell types in those clusters. In this example we

use the pancreas single cell RNAseq dataset available in Array Express [9] as E-MTAB-5061

[24]. All cells of single type were combined and averaged to build pseudo-pure samples of each

annotated cell types. A pseudo-bulk RNAseq sample was constructed by adding together all

cell types, with the pseudo-bulk cell type percentages assigned based on the proportion of

annotated single cells in the mix. The normal pancreas samples were used as the training set

and the diabetic pancreas samples as the test set.

To demonstrate the utility of augmenting a signature matrix with ADAPTS, we build a sig-

nature matrix from the top 100 most variant genes (i.e. Top100) and then augmented this sig-

nature (i.e Augmented) as shown in Fig 5. The first test is to predict the normal pseudo-bulk

data—essentially predicting the training set (Table 4). The second test is a blind estimation of

the diabetic pancreas sample (Table 5). As shown in Table 4 the Top100 genes set the baseline

correlation coefficient (i.e. ρ) at 0.05 and the root mean square error (RMSE) at 13.82. Aug-

menting the signature matrix with ADAPTS Algorithm 1 improved the rho to 0.26 and RMSE

to 10.72.

Clustering cell types improves deconvolution accuracy. The spillover clustering algo-

rithm outlined in section was applied to the Top100 and Augmented signature matrices. Fig 6

shows the cell type clusters for the Top100 signature matrix, and Fig 7 for the Augmented sig-

nature matrix. One way to interpret the results is to assume that the clustered cell types are

indistinguishable from each other, then the correct comparison method is to treat both as the

same cell type. Combining the clustered cell types for the Top100 estimates increased the ρ to

0.32 but also increased the RMSE to 17.15. Similarly, the Augmented cell estimates had ρ =

0.58 and RMSE = 16.58. Using Spearman’s rank-order correlation, we saw only modest

increases in the correlation coefficient: the Top100 Spearman’s ρ increased from 0.50 to 0.51

and the Augmented Spearman’s ρ increased 0.69 to 0.71. Thus the bulk of the improvement in
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Pearson’s correlation came from effectively removing from consideration low abundance cell

types that were estimated as 0% using the Top100 matrix or being over-estimated from the

spillover of other cell types using the Augmented matrix.

Hierarchical clustering improves deconvolution accuracy. ADAPTS Algorithm 3 (out-

lined in Hierarchical Deconvolution) was used to build custom signature matrices for breaking

apart the clusters shown in Figs 6 and 7. This improved deconvolution accuracies shown in the

‘hierarchical’ columns of Table 4. Applying the model built on the normal samples to the dia-

betic pancreas resulted in the even better blind predictive accuracies shown in Table 5 with the

overall best accuracy provided by the hierarchical deconvolution using the Augmented signa-

ture matrix: ρ = 0.46, RMSE = 8.91.

Fig 5. scRNAseq signature matrix construction. Curve showing the selection of an optimal condition number for the single cell

RNAseq augmented signature matrix data.

https://doi.org/10.1371/journal.pone.0224693.g005
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Discussion

In previous sections, we demonstrate that ADAPTS is a useful tool for automating the addi-

tion of additional cell types to a signature matrix and for performing hierarchical deconvolu-

tion to improve the accuracy of cell type deconvolution. Here we discuss extensions the

ADAPTS workflow (as presented in the Vignettes) to other deconvolution related problems as

Table 4. Deconvolution of pancreas training set.

Cell Type Top 100 Top 100 hierarchical Augmented Augmented hierarchical Reference

acinar.cell 11.38 7.88 11.56 10.49 10.36

ductal.cell 7.32 7.85 7.85 12.56 43.11

alpha.cell 7.46 7.92 8.34 9.51 12.11

gamma.cell 11.66 7.77 9.68 8.51 1.83

beta.cell 7.11 11.75 7.66 10.77 3.51

co.expression.cell 4.36 16.91 11.49 8.41 14.26

delta.cell 0.00 12.27 2.56 8.04 0.88

unclassified.endocrine.cell 7.02 20.63 6.11 12.29 0.40

endothelial.cell 8.37 0.00 7.63 0.00 8.53

PSC.cell 0.00 0.00 2.13 8.52 0.32

epsilon.cell 0.00 7.02 2.68 6.11 0.16

mast.cell 0.00 0.00 5.96 0.80 2.55

MHC.class.II.cell 35.33 0.00 16.37 4.01 1.99

others 0.00 0.00 0.00 0.00 0.00

RMSE 13.82 12.09 10.72 10.16 0.00

ρ 0.05 0.12 0.26 0.39 1.00

Deconvolution cell type estimates of the normal pancreas training set.

https://doi.org/10.1371/journal.pone.0224693.t004

Table 5. Deconvolution of pancreas test set.

Cell Type Top 100 Top 100 hierarchical Augmented Augmented hierarchical Reference

acinar.cell 7.40 4.32 10.82 8.89 5.78

alpha.cell 7.93 9.01 7.94 14.41 36.24

beta.cell 8.04 8.44 8.58 9.35 12.39

co.expression.cell 12.33 7.95 10.03 8.55 1.68

delta.cell 9.38 11.50 8.13 10.93 7.35

ductal.cell 5.93 17.06 12.49 8.90 21.74

endothelial.cell 0.00 13.80 2.58 7.91 0.53

epsilon.cell 6.56 21.36 5.83 12.12 0.21

gamma.cell 8.46 0.00 7.61 0.00 9.45

mast.cell 0.00 0.00 1.72 8.51 0.32

MHC.class.II.cell 0.00 6.56 2.88 5.83 0.32

PSC.cell 0.00 0.00 5.93 0.55 2.31

unclassified.endocrine.cell 33.97 0.00 15.47 4.05 1.68

others 0.00 0.00 0.00 0.00 0.00

RMSE 12.76 10.68 9.44 8.91 0.00

ρ 0.06 0.24 0.35 0.46 1.00

Blind deconvolution cell type estimates of the diabetic pancreas test set.

https://doi.org/10.1371/journal.pone.0224693.t005
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well as potential future modifications to the core package may improved ADAPTS-based

deconvolution.

Cancer suppressed immune and stromal cells

Most gene expression data generated from purified immune cells, and thus most publicly avail-

able signature matrices, are generated from peripheral blood. However, immune and stromal

cells in a tumor microenvironment are expected to differ in gene expression from those

Fig 6. Clustering of Top 100 gene signature matrix. The cell type clusters identified using the signature matrix constructed from the 100 genes with

the highest variance across cell types in the single cell data drawn from a normal pancreas sample. Rows show purified cell types and columns show

what those samples deconvolve as. Cells are colored by percentage, such that each row adds up to 100%.

https://doi.org/10.1371/journal.pone.0224693.g006
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purified from non-tumor sources [25]. If gene expression of cells purified from the relevant

tumor microenvironment is available, it would be straight-forward to use that data in

ADAPTS. Either the tumor-associated cell types could be used to augment an existing signa-

ture matrix, or the relevant cell type (and the top genes for that cell type) could be removed

from the signature matrix before ADAPTS augments the cell type back in to the signature

matrix using the new data.

Fig 7. Clustering of augmented gene signature matrix. The cell type clusters identified using the augmented signature matrix that was seeded with the

100 genes exhibiting the highest variance in the normal pancreas sample. Rows show purified cell types and columns show what those samples

deconvolve as. Cells are colored by percentage, such that each row adds up to 100%.

https://doi.org/10.1371/journal.pone.0224693.g007
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If a tumor microenvironment sample has been subjected to a scRNAseq experiment, then

this offers the potential to build a more accurate signature matrix than one from any purified

cell type data. Individual cells will be assigned to clusters which roughly correlate with purified

cell types. Theoretically, these cell type clusters would represent the immune, stromal, and

tumor cell gene expression in the microenvironment and enumerate exactly the cell types pres-

ent in the sample. See Example 2: Deconvolving Single Cell Pancreas Samples for an example

of how to construct a signature matrix de novo from single cell data using ADAPTS.

Co-linear cell types

In Example 1: Detecting Tumor Cells, tumor cells are represented by four cell types with very

similar gene expression patterns and this apparently creates problems, especially in de novo
signature matrix construction. Eq 4 scores rank genes for each cell type to be iteratively added

to the signature matrix by Algorithm 1. When Eq 4 scores a set of cell types where a subset of

the cell types have similar gene expression, it may underscore genes that are helpful for differ-

entiating that subset from all other cell types.

One might imagine algorithms that would potentially improve this situation by either

increasing the score of genes common to subsets of cell types, or make certain that these genes

appear in the seed matrix. For instance, cell types that are highly co-linear (as detected by the

spill-over clustering or other method) might be pooled together into a common cell type for

purposes of determining gene scores with the ADAPTS function rankByT. While high vari-

ance genes may already be present in the seed matrix, perhaps the gene scores should be up-

weighted for genes that have a globally high variance; this would improve the representation of

genes that are high in all tumor cell types (for example), but low in all others. Or perhaps genes

might be scored in rankByT by running pair-wise comparisons between all cell types, and the

genes score for a particular cell type might be its top ratio against any other cell type rather

than all other cell types.

Ultimately, solving this problem is beyond the scope of this publication, however the

ADAPTS framework can help to test potential solutions which may then be shared via GitHub

and potentially included in the official CRAN package.

Conclusion

Table 1 shows an example where using ADAPTS to include additional genes and tissue spe-

cific cell types improves the ability of a deconvolution algorithm to identify tumor fractions in

microarray-based purified and mixed multiple myeloma gene expression samples. Thus we

demonstrate that the techniques implemented in ADAPTS are potentially beneficial for many

situations. The functions implemented in ADAPTS enable researchers to build their own cus-

tom signature matrices and investigate biosamples consisting of multiple cell types. Tables 4

and 5 show that these methods can build new signature matrices from single cell RNAseq

(scRNAseq) data and effectively deconvolve the cell types determined by single cell analysis.

This is expected to be particularly useful as researchers use scRNAseq to determine cell types

that are present in tissue where large numbers of bulk gene expression samples are already

available.
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