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Synopsis Swine are important in the ecology of influenza A virus (IAV) globally. Understanding the ecological role of

wild pigs in IAV ecology has been limited because surveillance in wild pigs is often for antibodies (serosurveillance)

rather than IAVs, as in humans and domestic swine. As IAV antibodies can persist long after an infection, serosurveil-

lance data are not necessarily indicative of current infection risk. However, antibody responses to IAV infections cause a

predictable antibody response, thus time of infection can be inferred from antibody levels in serological samples,

enabling identification of risk factors of infection at estimated times of infection. Recent work demonstrates that these

quantitative antibody methods (QAMs) can accurately recover infection dates, even when individual-level variation in

antibody curves is moderately high. Also, the methodology can be implemented in a survival analysis (SA) framework to

reduce bias from opportunistic sampling. Here we integrated QAMs and SA and applied this novel QAM–SA framework

to understand the dynamics of IAV infection risk in wild pigs seasonally and spatially, and identify risk factors. We used

national-scale IAV serosurveillance data from 15 US states. We found that infection risk was highest during January–

March (54% of 61 estimated peaks), with 24% of estimated peaks occurring from May to July, and some low-level of

infection risk occurring year-round. Time-varying IAV infection risk in wild pigs was positively correlated with humidity

and IAV infection trends in domestic swine and humans, and did not show wave-like spatial spread of infection among

states, nor more similar levels of infection risk among states with more similar meteorological conditions. Effects of host

sex on IAV infection risk in wild pigs were generally not significant. Because most of the variation in infection risk was

explained by state-level factors or infection risk at long-distances, our results suggested that predicting IAV infection risk

in wild pigs is complicated by local ecological factors and potentially long-distance translocation of infection. In addition

to revealing factors of IAV infection risk in wild pigs, our framework is broadly applicable for quantifying risk factors of

disease transmission using opportunistic serosurveillance sampling, a common methodology in wildlife disease surveil-

lance. Future research on the factors that determine individual-level antibody kinetics will facilitate the design of

serosurveillance systems that can extract more accurate estimates of time-varying disease risk from quantitative antibody

data.
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Introduction

Respiratory disease due to influenza A virus (IAV)
results in 290,000–650,000 human deaths worldwide
annually (WHO 2019). Understanding seasonal
changes in incidence of IAV in humans has helped
to optimize vaccination programs (Cox 2014) and
understand the mechanistic underpinnings of IAV
transmission risk (Alonso et al. 2007).
Temperature, precipitation, and humidity appear to
be significant drivers of IAV dynamics in humans,
and these meteorological factors affect transmission
risk differently depending on regional meteorological
conditions (Tamerius et al. 2013). For example, in
temperate zones, IAV peaks occur during cold–dry
conditions, whereas in tropical regions they occur
during humid–rainy conditions (Tamerius et al.
2013). Also, in temperate regions, IAV incidence
occurs in distinct seasonal peaks (Viboud et al.
2004), whereas in the tropics, cases occur more con-
sistently throughout the year with elevated transmis-
sion during the rainy season (Moura 2010). In
addition to local meteorological conditions, seasonal
variation in host contact rate, virus survival outside
the host, and host immunity are thought to contrib-
ute to seasonal dynamics of IAVs in humans
(Tamerius et al. 2011). However, the mechanistic
underpinnings of IAV seasonality in humans remain
unresolved and differ by region (Tamerius et al.
2011).

The human pandemic of 2009–2010 that originated

from a reassortment event in swine emphasized that

swine can play a major role in the global dynamics of

human IAVs (Dawood et al. 2009; Vijaykrishna et al.

2010). Transmission of IAVs between swine and

humans occurs in both directions, and reassortment

of swine strains with avian and human strains has

been documented multiple times (Zhou et al. 1999;

Brown 2000; Nelson et al. 2014; Martin et al. 2017). A

high frequency of mutations that confer resistance to

amantadine (Wan et al. 2013; Diaz et al. 2017), an

antiviral used to treat human infections, was detected

by longitudinal sampling of domestic swine in mid-

western United States (Diaz et al. 2017). This suggests

that there have been multiple introductions from

humans to domestic swine (Feng et al. 2013; Sun

et al. 2013; Nelson et al. 2014). Growing evidence

for the important role of swine in the evolutionary

ecology of IAV at the human–swine interface (Nelson

et al. 2015), has underscored the need to understand

patterns and drivers of IAV transmission in swine

populations.

Building on knowledge of IAV transmission risk

factors in humans, surveillance of IAV in commercial

swine (Sus scrofa) has facilitated identification of

drivers of transmission risk and evolutionary dynam-

ics of IAVs in domestic swine—especially in the

United States, one of the largest commercial swine

producers in the world (Anderson et al. 2013; Corzo

et al. 2013; Kaplan et al. 2015). Active surveillance of

swine production systems demonstrated that IAV is

present throughout the year with higher prevalence

in winter through early summer (Corzo et al. 2013;

Kaplan et al. 2015), similar to patterns observed

from passive surveillance in Ontario, Canada

(Poljak et al. 2014). Corzo et al. (2013) suggested

that prevalence was higher in spring and summer

because piglets of new gilts enter the population at

higher frequency during this time period, and they

are expected to have lower maternal antibodies.

Arrival of new gilts also seems to be the most im-

portant driver of new genetic diversity of swine IAVs

(Diaz et al. 2017). Similarly, Kaplan et al. (2015)

found that development farms with piglets and com-

mercial gilts had the highest risk of IAV, and that

risk varied regionally. In contrast to the seasonal

patterns identified during active surveillance, time

series analysis of positive isolates from passive sur-

veillance revealed bi-phasic seasonal dynamics with a

major peak in October–November and a secondary

peak in March–April (Anderson et al. 2013; Walia

et al. 2019). In summary, there is ample evidence

that transmission risk in domestic swine is elevated

during January–June in North America, but that

transmission occurs year-round and clinical signs

are most apparent in October–November.

Demographic dynamics and age–structure appear

to be significant risk factors in domestic swine. The

role of meteorology remains unknown, but meteo-

rology as well as management practices have been

suggested as explanations for the increased reporting

of clinical disease in passive surveillance systems dur-

ing times that active surveillance indicates lowered

transmission risk (Anderson et al. 2013; Corzo

et al. 2013).

One factor that has not been examined is the po-

tential role of wild pigs (Sus scrofa; Keiter et al. 2016)

in the overall transmission dynamics of IAVs. There

are an estimated 4.4–11.3 million wild pigs in the

United States (Mayer 2014), with the majority in

the southern region of the country (Corn et al.

2009). Pandemic H1N1 (2009) has been isolated

from wild pigs (Clavijo et al. 2013), indicating their

potential importance in the transmission of IAV be-

tween wild pigs and domestic swine or humans.

Swine strains of IAVs (mostly H1N1, H1N2, H3N2

strains) are most commonly detected in wild pigs,

but they are also exposed to avian (Martin et al.

2017) and human IAVs (Feng et al. 2014). The
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overall seroprevalence rate of IAVs in wild pigs in

the United States was �4.9% from 2010 to 2013

(Martin et al. 2017); however, the seroprevalence

rate varied across regions (Martin et al. 2017). In

another study, antibodies to IAVs were detected in

14.1% of wild pigs in abattoirs in Texas (Pedersen

et al. 2017). Similar to domestic swine, seropositive

wild pigs can be found throughout the year (Martin

et al. 2017). A primary concern is that wild pigs

exchange IAVs with domestic swine through fence-

line contact with backyard domestic swine and even

enter holding pens (Gipson et al. 1999). Wild pig

populations also exist in close proximity with com-

mercial operations (Martin et al. 2017), which may

allow for indirect transmission through aerosols,

other wildlife vector species, or fomites. Wild pigs

are also popular to hunt and process for consump-

tion in many states, presenting a potential contact

mechanism between humans and infectious animals.

It has been challenging to understand the poten-

tial role of wild pigs in the dynamics of IAVs in

domestic swine and humans because the virus has

been rarely isolated from wild pigs such that com-

prehensive genetic analyses have not been possible.

Thus, understanding risk patterns in wild pigs has

been limited to serological data. However, although

they are useful for understanding the spatial extent

of IAV, serological data are not a measure of infec-

tion risk because antibodies can persist long after

IAV exposure. Thus, serological data limit our un-

derstanding of IAV infection risk in wild pigs using

conventional risk models (Sun et al. 2015). A novel

and robust computational method to determine risk

factors solely using antibody levels in wild pigs is

lacking. In previous work, we and others have devel-

oped methods for inferring population-level inci-

dence patterns using individual-level antibody

status collected during serosurveillance programs

(Borremans et al. 2016; Pepin et al. 2017; Wilber

M, unpublished results). Here we apply these new

methods to identify potential drivers of IAV dynam-

ics in wild pigs in 15 states across the United States.

Building on knowledge of risk factors of IAV infec-

tion in humans and domestic swine, we determined

the relative role of meteorological factors (e.g., tem-

perature, precipitation, and absolute humidity), host

factors (e.g., sex), IAV activity in local populations of

domestic swine and humans, and IAV infection risk

in wild pigs in other states, on determining risk of

IAV in wild pigs. Our analyses demonstrate how

individual-level variation in immunity can be lever-

aged to understand the population-level risk factors

of transmission in a reservoir host species for a dis-

ease of global importance.

Methods

Study system

Wild pigs are hosts to many zoonotic and animal

diseases (Meng et al. 2009), and have the potential

to contribute to IAV spillover events in livestock and

humans (Miller et al. 2017). Wild pigs also threaten

food security, natural resources, and endangered spe-

cies through their foraging (especially rooting) and

predation behaviors (Bevins et al. 2014). The US

Department of Agriculture, Wildlife Services’

National Wildlife Disease Program collects serologi-

cal samples from wild pigs that are removed during

management activities, and screens the samples for a

variety of important human and livestock pathogens,

including IAV. We used IAV serosurveillance sam-

ples from wild pigs sampled across the USA from

2010 to 2017 (Supplementary Fig. S1). Two goals

of the National Wildlife Disease Program are disease

monitoring and surveillance across large temporal

and spatial scales to aid in “managing wildlife disease

threats to agriculture, human health, and safety.”

The program collaborates with state agencies and

necessarily uses opportunistic samples across space

and time to achieve the monitoring and surveillance

goals.

To infer time of infection for seropositive individ-

uals and censor seronegative individuals, we used

experimental, longitudinal data on IAV infections

in wild pigs to estimate within-host antibody dy-

namics (Sun et al. 2015). In the experiment, 10

wild pigs were infected with an influenza A/swine/

Texas/A01104013/2012(H3N2) strain of wild-pig or-

igin and infections were monitored for 113 days (Sun

et al. 2015). Enzyme-linked immunosorbent assay

(ELISA) IAV antibody assays were performed on

21 serum samples per wild pig over the 113 days

using the IDEXX Influenza A Ab Test (IDEXX,

Westbrook, ME, USA). On Day 103, all experimental

wild pigs were re-challenged with IAV. We excluded

experimental data after re-challenge in parameteriza-

tion of the within-host antibody curve (Sun et al.

2015). The primary infection experiment ended be-

fore the antibody curve completed its decay. We as-

sumed that antibody quantities would continue to

decline at approximately the same rate as observed

in the empirical data and would level-off above the

seroconversion threshold of 0:167 ¼ �logð1=0:681Þ
(used by Sun et al. [2015])—slightly less stringent

than the recommended seropositivity threshold

(Tse et al. 2012). The within-host antibody dynamics

(Supplementary Fig. S2) are qualitatively similar to

those in waterfowl (Pepin et al. 2017). In previous

work, we showed that true incidence dynamics can
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be captured well by the model using experimental

measures of antibody dynamics in waterfowl (Pepin

et al. 2017).

Framework to estimate IAV infection risk

In previous work, we developed a method for esti-

mating incidence over time from cross-sectional se-

rological samples collected opportunistically across a

broad geographic area (Wilber M, unpublished

results). Briefly, data from within-host antibody ki-

netics with a known time of infection were used to

back-infer time of infection for antibody levels in

serology samples (Simonsen et al. 2009; Borremans

et al. 2016; Pepin et al. 2017). We also coupled time

of infection inference for individuals with survival

analysis to account for the uneven sampling design

from the opportunistic surveillance system, as in pre-

vious work (Wilber M, unpublished results).

Seronegative samples were right-censored based on

the time of year the sample was collected and the

age class of the host sampled. The rationale is that

the cumulative probability of remaining seronegative

as the year progresses (or as individuals’ age)

declines over time, or conversely, the cumulative

risk of becoming infected increases over time (or

as individuals age). Age provided additional infor-

mation because a seronegative individual that is

younger than the width of the antibody kinetic curve

(Fig. S2) is too young to have been infected and

recovered. Previous work shows that maternally de-

rived antibodies may affect IAV transmission dy-

namics, but transmission from individuals with

maternal antibodies still occurs (i.e., reproduction

number is substantially greater than 1 for individuals

with maternally derived antibodies; (Cador et al.

2016). Thus, for simplicity we assumed that maternal

antibodies did not affect immunity. Similarly, sero-

positive hosts were left-censored to account for ex-

tended periods of seropositivity following exposure

and decline to baseline levels. We assumed extended

periods of seropositivity because the infection exper-

iment ended before the measured antibody curve

completed its decay. In previous work, we used sim-

ulations to show that censoring the serosurveillance

data to account for the sampling distribution pro-

duced unbiased inference of incidence (Wilber M,

unpublished results). The full likelihood accounting

for the censoring is described in the Supplementary

material (Methods S1).

Each seropositive host in the dataset had a quan-

titative measure of antibody level based on an ELISA

assay. By coupling the observed quantitative anti-

body level with the experimentally estimated

antibody curve, we back-inferred the time of infec-

tion for each seropositive host, with some level of

uncertainty (Pepin et al. 2017), using the experimen-

tal antibody curve described in ‘Study System’ and

the methods developed in Pepin et al. (2017). We

used the median estimated time of infections in the

analyses described below. All seropositive hosts with

time of infection greater than send ¼ 200 days were

considered left-censored, where send was derived

from the experimental curve.

Host-level characteristics affecting IAV infection risk

Wild pigs were classified into three age classes: juve-

niles (< 2 months; 1288 samples), sub-adults

(2 months–1 year; 3272 samples), adults (>1 year;

11,944 samples), and sex was recorded (7902 males,

8618 females). We accounted for host age in the

infection likelihood function (Supplementary

Methods S1). This inherently accounts for the fact

that we would expect increased cumulative risk for

older pigs as they have been at risk for longer. We

assumed that antibody dynamics were similar across

age classes as we did not have data to suggest oth-

erwise. We examined the effect of sex on infection

risk.

To test the effect of sex on infection risk, we used

a proportional hazard survival model with Equation

(1) as our likelihood. Specifically, we modeled the

log-hazard rate (log(h(t)), that is, the instantaneous

IAV infection risk for a susceptible host at time t,

hereafter referred to as ‘IAV infection risk’) as

log h tð Þð Þ ¼ K0 tð Þ þ xb (1)

where K0 tð Þ is a flexible baseline log-hazard function

computed with B-splines (Hens et al. 2012;

Rutherford et al. 2015), x is a vector of host-level

characteristics, and b are coefficients describing how

these host-level characteristics shift the baseline IAV

infection risk for a host. We ran a separate propor-

tional hazard analysis for each state to allow the

baseline K0 tð Þ function to be state-specific (Fig. 1).

The proportional hazard model included the effect of

sex on log IAV infection risk.

Meteorological and influenza related predictors of

IAV infection risk

In a survival analysis framework with right-censored

data, time-varying covariates can be easily incorporated

into a standard Cox model (Cox 1975). While there

has been substantial theoretical development for using

parametric survival approaches with time-varying

covariates (Petersen 1986; Sparling et al. 2006),

linking flexible, spline-based parametric survival

1234 K. M. Pepin et al.
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models with time-varying covariates can be compu-

tationally challenging. Instead, we took the follow-

ing approach to understand how time-varying

covariates affected IAV infection hazard in wild

pigs.

We estimated log-hazard IAV infection risk in

wild pigs through time for each of the 15 states in-

cluded in the analysis using the likelihood function

in the Supplementary Methods S1. Figure 1 shows

the estimated IAV infection risk, specifically the log-

hazard rate that gives the IAV infection risk through

time. From these trajectories we calculated the aver-

age monthly estimates of log IAV infection risk for

each state with associated uncertainty (namely, the

width of the inter-quartile range about the monthly

log-IAV infection risk estimate). Then we modeled

the effects of meteorological conditions and IAV in-

fection risk in other populations on log-IAV infec-

tion risk in wild pigs.

Meteorological covariates

Precipitation, maximum temperature, minimum

temperature, and specific humidity were included

as meteorological covariates in this study. We

extracted all meteorological variables from gridMET

(Abatzolglou 2013). Meteorological variables were

available on the daily temporal scale and on the

4 km2 spatial scale. We averaged all variables to the

Fig. 1 The estimated IAV infection risk for 15 states. Each line shows the seasonal pattern for a different year (2010–2017). Year 2010

is in black and subsequent years are indicated in progressively lighter shades of gray. Lines that are cut off indicated missing data (i.e.,

the start and endpoints of the time series). X-axes indicate months in the calendar year (January to December). The number of hosts

sampled (n) and the number of seropositive samples (þ) are shown for each state. The distribution of sampling and uncertainty are

shown in Supplementary Fig. S3.
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monthly temporal scale across the counties in which

pigs were sampled in a given state. We excluded

Hawaii from this analysis as gridMET only provided

meteorological covariates for the contiguous United

States, and because of its distance from the spatial

covariates.

Covariates describing proxies for IAV activity in

domestic swine and humans

We used data from a national-scale passive surveillance

system of domestic swine (USDA-APHIS 2018) as a

proxy for IAV activity in domestic swine. Samples were

submitted from anywhere in the country and classified

into one of five regions as defined in (USDA-APHIS

2018). Sample submission is voluntary and based on

animals that display influenza-like illness. Thus, the

surveillance system represents IAV reporting trends

rather than prevalence according to a random sample.

We standardized the number of IAV-positive samples

to the number of samples submitted per region and

month (i.e., number of positive samples submitted/

number of negative samples submitted) in order to

account for variation in the total number of samples

submitted in our analyses. IAV positivity is determined

by screening matrix genes by real-time reverse tran-

scriptase polymerase chain reaction. Similarly, the

Centers for Disease Control and Prevention maintains

a publicly available database of weekly IAV activity

across the United States at the state level (https://

www.cdc.gov/flu/weekly/fluviewinteractive.htm). The

human IAV surveillance data (positive test result for

IAV) is a qualitative measure with five increasing levels

of geographic spread of IAV across a state (No activity,

Sporadic, Local activity, Regional, Widespread). We

used this latter covariate as a quantitative variable

(with units 0, 1, 2, 3, 4) assuming that each incremen-

tal category was an equal amount of increased geo-

graphic spread over the last category. As IAV activity

in domestic swine and humans are proxies for the

presence of IAVs, they represent actual IAV activity

at the time of sampling (rather than just seropositiv-

ity). Thus, we would expect that our estimate of IAV

infection risk in wild pigs (a back-inference of infection

time) should correlate with IAV activity in domestic

swine and humans with minimal, if any, time lag, if

these variables significantly predict IAV infection risk

in wild pigs.

Spatial covariates

We also examined how infection risk in the previous

month in other states affected infection risk in the

current month for focal states to investigate whether

there were patterns in spatial spread among states

(methods and results described in Supplementary

Results S2). This analysis was conducted on each

state separately due to rank deficiencies from exclud-

ing state effects on themselves.

We fit linear mixed effects models to explore how

the time-varying covariates correlated with IAV in-

fection risk in wild pigs. The response variable was

the monthly IAV infection risk that was weighted by

its associated uncertainty by including the inverse of

the 95% confidence interval for log-IAV infection risk

as the ‘Weights’ variable in the fitlme function in

Matlab’s Statistics Toolbox (Version R2018a,

Mathworks). Details of the model selection procedure,

model specification, and additional results are de-

scribed in the Supplemental Information (Results S1).

Results

Seasonal dynamics

After accounting for the antibody dynamics of sero-

positive wild pigs, we detected clear patterns of sea-

sonality in IAV infection risk in the 15 states

included in our analysis (Fig. 1, Supplementary Fig.

S3). Across all 15 states, peaks in IAV infection risk

occurred most frequently between January and

March (54% of 61 estimated peaks) with 24% of

estimated peaks occurring from May to July. In

all but one state (Oklahoma), we detected no signif-

icant effects of sex on infection risk (Fig. 2).

Time-varying covariate effects

The time-varying covariates for human and domestic

swine flu trends and weather only explained 5.5% of

the variability in IAV infection, whereas including

state-level random effects in the model described

77% of the variation in IAV infection risk

(Supplementary Results S1). We also performed a

county-level analysis in which we estimated IAV in-

cidence for wild pigs in 30 counties in the dataset

(with at least 10 positive samples; sampled over at

least two consecutive years). The county-level analy-

sis found nearly identical results as the state-level

analysis, further suggesting that local conditions

Fig. 2 The effects of sex on log IAV infection risk in wild pigs. All

coefficients were regularized about zero to avoid the detection

of false positives over multiple comparisons.
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determine how covariate data affect estimated sea-

sonal IAV infection risk in wild pigs (results not

shown).

Although effects of covariates were weak, humidity

and IAV trends in domestic swine and humans were

significantly positively correlated with estimated IAV

infection risk in wild pigs (Fig. 3), despite these

covariates being uncorrelated themselves

(Supplementary Table S1). The slope of the relation-

ship between IAV infection risk and these covariates

varied by state, being generally null or positive ex-

cept in Alabama and Texas where the relationship

between IAV infection risk in wild pigs and IAV

infection trends in domestic swine was significantly

negative (Fig. 3, Supplementary Fig. S5).

Spatial patterns

If state-to-state spread was primarily local, we would

expect neighboring states to predict infection risk in

focal states in the next month. However, there were

no clear patterns for lagged infection risk in other

states predicting current infection risk in focal states

(Supplementary Figs. S5 and S6, Supplementary

Table S5). For example, infection risk in

Mississippi was significantly positively related to in-

fection risk in California, Florida, and Kansas (dis-

tant states), but was unrelated to infection risk in

Louisiana, Arkansas, and Tennesee (neighboring

states of Mississippi), and negatively related to infec-

tion risk in Alabama (Supplementary Fig. S5). Along

the same line of reasoning, infection risk in states

with more similar meteorological conditions (e.g.,

Mississippi and Louisiana) was not more correlated

than those with very different meteorological condi-

tions (e.g., Mississippi and California). Similarly, the

centroid of infection risk in neighboring states that

had significant positive relationships with infection

risk in focal states were not closer than those with

weaker relationships (Supplementary Fig. S6), sug-

gesting that spatial spread among states is not mainly

from neighboring states. Interestingly, infection risk

in most states, including California, was positively

correlated with infection risk in Florida in the pre-

vious month, except Texas which was negatively cor-

related (Supplementary Fig. S5). States that had the

most strongly correlated infection risks (positive re-

lationship) were North Carolina and Texas and

Oklahoma, and Tennessee and California.

Discussion

While there is ample evidence from genetic analyses

that strains of IAVs are exchanged between domestic

swine and humans (Nelson et al. 2014; 2015; 2016),

less is known about the role of wild pigs in this

multi-host system (Feng et al. 2014; Martin et al.

2017). A primary reason for this gap is that it is

challenging to detect IAVs in wild pig populations.

Because samples are serological and collected oppor-

tunistically, it has been difficult to interpret how

wild pig serosurveillance data align with virus sur-

veillance data that are collected in other host pop-

ulations (e.g., humans, domestic swine). Our

methodology provides a first attempt at linking

IAV infection risk in wild pigs to that in domestic

swine and humans. The positive correlation we

found between IAV trends in domestic swine and

humans, and IAV infection risk in wild pigs suggests

that wild pigs could play a role in the national-scale

circulation of IAVs in the United States. However, as

these covariates did not explain much of the varia-

tion in wild pig infection risk without considering

state-level effects, our results highlighted that within-

state processes strongly influenced how covariates

determined the patterns of IAV infection risk in

wild pigs. These patterns were further corroborated

by the finding that IAV infection risk among states

with closer centroids of infection risk (and more

similar meteorological conditions) did not predict

IAV infection risk more strongly than those that

were further apart (with more different meteorolog-

ical conditions). This further suggests that IAV

transmission in wild pigs occurs endemically within

the sampled states with levels governed by unmeas-

ured state-level processes or/and there is substantial

long-distance movement of infectious individuals

among states (similar to IAV in humans, e.g.,

Brownstein et al. 2006). We found no evidence

that IAV transmission spreads through wild pig pop-

ulations as a traveling wave as in some human pop-

ulations (Alonso et al. 2007).

Wild pigs may interact directly or indirectly with

domestic swine (Gipson et al. 1999; Wyckoff et al.

2009). Humans may be exposed to pathogens in wild

pigs during hunting and trapping, or through hunt-

ing dogs (Pedersen et al. 2018). There is growing

evidence that wild pigs are translocated frequently

by humans (Spencer and Hampton 2005;

Goedbloed et al. 2013; Tabak et al. 2017;

Hernandez et al. 2018) to establish new hunting op-

portunities or backyard populations, and fencing is

often inadequate to prevent them from escaping and

becoming feral. In addition to promoting transmis-

sion between wild pigs and humans, this behavior

may also partly explain why infection risk in wild

pigs in neighboring states was not a primary driver

of wild pig infection risk (i.e., due to long-distance

translocation of infected individuals). Interactions
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that occur during trap-and-release typically involve

close physical contact. This could serve as a mecha-

nism of transmission to humans who could subse-

quently transmit IAV to domestic swine. Using a

subset of the same IAV surveillance data from wild

pigs (including years 2011–2013), Martin et al.

(2017) found that of the 38.4% and 53.7% out of

294 seropositive samples cross-reacted with swine H1

and H3 subtypes respectively, 17.7% cross-reacted

with both H1 and H3 swine subtypes, and 92.2%

cross-reacted with both swine and human H1 and/

or H3 subtypes. Thus, there is genetic evidence that

the dominant IAVs circulating in wild pigs are

closely related to human IAVs. These results com-

bined with our results showing that infection risk in

wild pigs is positively correlated with human flu and

domestic swine activity suggests that spillover be-

tween wild pigs and humans could be occurring ei-

ther directly or through domestic swine. Applying

phylodynamic approaches (e.g., Dudas et al. 2018)

to genetic surveillance of IAVs in all three host pop-

ulations concurrently over time (domestic swine,

humans, and wild pigs) are important for under-

standing the directionality of transmission pathways

and the frequency at which IAVs are transmitted

between these different host populations.

Similar to domestic swine (Corzo et al. 2013;

Kaplan et al. 2015), our analyses revealed that IAV

infections in wild pigs occurred year-round but that

infection risk was highest from January to March,

remaining moderately high until July. Wild pigs

and domestic swine can have very different density

and birth dynamics, despite similar seasonal trends

in IAV infection risk. This suggests that demographic

dynamics may not be a primary driver of seasonal

IAV dynamics in swine. Although the analyses by us

and others have not formally tested effects of demo-

graphic dynamics on IAV seasonality in swine, stud-

ies from humans have reached a similar

conclusion—that human density is not the most

prominent determinant of seasonal IAV infection

risk (Tamerius et al. 2011). Although data on wild

pig densities over time were unavailable for us to test

demographic factors, a study on birth seasonality of

wild pigs in South Carolina, United States, showed

that births are highest in December–January, mod-

erately high February–May, and lowest June–

November, but they occurred all year-round

(Mayer and Brisbin 2009). These trends in birth sea-

sonality appear to correlate positively with the trends

in IAV infection risk we identified. Studies to inves-

tigate the potential role of birth seasonality on infec-

tion risk could reveal whether birth seasonality

explains some of the unexplained or among-state

variation in infection risk. Other factors that can

affect disease transmission risk for which we did

not have data include wild pig social structure

(Pepin et al. 2016; Pepin and VerCauteren 2016)

and individual-level variation in movement patterns

(McClure K, unpublished results).

Fig. 3 Predicted relationship of IAV infection risk in wild pigs to time-varying covariate data by state. States are distinguished by a

combination of gray shades and symbols. Covariates are labeled on the X-axes. Dashed lines illustrate the linear trends by state for the

variables that have random slope effects by state.
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Two meteorological conditions have been found

to predict risk of IAV in humans: cold–dry condi-

tions in climates with a wider range of temperatures

across seasons, and humid–rainy conditions in cli-

mates with more constant temperature throughout

the year (Tamerius et al. 2013). For wild pigs across

southern United States, infection risk generally in-

creased with increasing humidity, although the rela-

tionship trended negative in some states, and the

interaction of humidity with IAV trends in domestic

swine and humans was important for predicting

their relationship to IAV infection risk in wild

pigs. This further confirms that meteorological fac-

tors can modify IAV transmission levels, but that

their effects can vary depending on local conditions

or climate (Tamerius et al. 2013).

Wild pigs can also be exposed to avian IAVs

(Martin et al. 2017). Avian IAVs have well-

documented seasonality that is thought to be pri-

marily determined by the migratory behavior and

host demography of wild birds (van Dijk et al.

2014; Hill et al. 2016). It is possible that the season-

ality of IAV infection risk in wild pigs is affected by

the seasonal dynamics of avian IAVs in wild birds, in

addition to those in domestic swine and the epidem-

ics in humans (analyzed in this study). One possible

mechanism could be environmental transmission as

wild pigs seek out water for wallowing, and wild

birds are known to shed IAVs that remain infectious

in water. However, the subtype diversity for avian

IAVs is much broader than for swine IAVs and

many of these subtypes are not known to infect

mammals. Thus, it would be important to analyze

subtype-specific data to understand the potential

transmission interface of avian IAVs and wild pigs.

In a recent study of wild-pig serosurveillance data,

only 1 of 294 serum samples selected for antigenic

characterization cross-reacted with avian IAVs (but

16 cross-reacted with avian and swine IAVs),

whereas 236 cross-reacted with swine IAVs (Martin

et al. 2017). Thus, to date, the frequency of avian

IAVs present in wild pigs appears low. Nevertheless,

lack of consideration of seasonality of IAVs in wild

birds in our analyses is a limitation of our study.

Our individual-level analysis did not detect a dif-

ference between the sexes in infection risk, similar to

Feng et al. (2014) who used serological status.

Generally, we expected to find similar results in

this regard because sex is a lifetime characteristic

and thus the timing of infection may have less rele-

vance. However, if we only consider current seropos-

itivity status, infections that occurred in the past may

escape detection (because antibody levels can wane

below the seropositivity threshold). Our survival

analysis framework can be modified to account for

the likelihood of prior infection in determining

whether a seronegative sample was once seropositive

(Wilber M, unpublished results), and thus could

produce different results if variation in the seropos-

itivity threshold is higher or different between the

sexes. Similarly, both methodologies do not account

for the frequency of IAV infections in the same host.

If additional data that allowed us to identify prior

infection history were available (e.g., levels of other

types of antibodies such as IgM), our methodology

could reveal different results than analysis of current

seroprevalence (e.g., if there was a difference between

the sexes in the likelihood of repeated infections).

Disentangling the population-level distribution of

antibody levels due to prior infections from

individual-level sources of variation is an important

challenge for improving inference of infection risk

using quantitative antibody methods. A final differ-

ence of our approach compared with using seroprev-

alence is that we estimated a baseline, time-

dependent hazard jointly while estimating the effect

of sex. In systems where the effects of sex may be

significant, our framework could allow quantification

of the effect of sex over the course of a disease trans-

mission season, an analysis that could not be per-

formed using regression of seroprevalence data.

Our approach assumed that variation in antibody

levels in nature is similar to those during experimen-

tal infections. This is unrealistic as individuals in

natural settings likely experience a wider range of

environmental conditions that can affect immuno-

logical responses (Hawley and Altizer 2011), relative

to individuals in controlled experimental settings. It

is even plausible that the overall magnitude of im-

mune responses are different in experimental con-

ditions relative to natural conditions due to

phenotypic plasticity (Gervasi et al. 2015), especially

when natural populations are experiencing

resource-poor conditions. Thus, ideally, it would

be better to use within-host data from individuals

tracked over time in natural populations for a more

appropriate perspective of individual-level variation

in antibody levels, which could be accomplished in

a small-scale research study. Separate studies that

quantify factors affecting antibody kinetics within

hosts in natural settings could reveal important co-

variate data (e.g., host physiological condition, ge-

netics, or co-infection status) for improving

inference of infection dates. Although our analysis

does not currently provide precise quantitative rela-

tionships for IAV infection risk factors in wild pigs,

it is suggestive of IAV infection risk factors that

deserve further attention.
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While we focused on translating individual-level

variation in antibody levels to seasonal infection

risk, other applications of our methodology are

also possible. For example, by using serosurveillance

date to infer time of infection for individuals, we

could reconstruct transmission patterns in space

(e.g., Jombart et al. 2011; Ypma et al. 2012). This

could be done using the time of infection data alone,

but could be more accurate if IAV genetic data were

also collected, at least for some individuals (Ypma

et al. 2012). Using serosurveillance data to unravel

the spatial dynamics of transmission is important for

spatial risk assessment, planning interventions, and

improving our understanding of disease transmission

mechanisms.

Conclusions

Our methodology provides a promising avenue for

interpreting and harnessing immunological variation

within and among hosts to improve inference of dis-

ease risk. Our methodology is important to many

disease surveillance systems, particularly for wildlife

species where surveillance for pathogens is frequently

infeasible and sampling designs are necessarily op-

portunistic. Although our current inferences were

coarse due to the resolution of our within-host an-

tibody data (and low seropositivity of IAV), we iden-

tified significant correlations between IAV infection

in wild pigs and those in humans and domestic

swine that merit further investigation. For example,

are these patterns merely correlative because human

IAV and domestic swine IAV trends in these areas

are driven by the same meteorological variables (e.g.,

Tamerius et al. 2019), or are these three host pop-

ulations actively exchanging IAVs (e.g. Nelson et al.

2014), and if so, how often? Additional studies to

understand factors that determine individual-level

antibody kinetics are important for identifying ap-

propriate surveillance data for extracting more accu-

rate estimates of time-varying disease risk from

serosurveillance data; and realizing the full potential

of quantitative antibody methods.
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