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Prediction and associations of 
preterm birth and its subtypes with 
eicosanoid enzymatic pathways 
and inflammatory markers
Max T. Aung1, Youfei Yu2, Kelly K. Ferguson3, David E. Cantonwine4, Lixia Zeng5, 
Thomas F. McElrath4, Subramaniam Pennathur5,6,7, Bhramar Mukherjee2,8 & John D. Meeker1*

Endogenous signaling molecules derived from lipids, peptides, and DNA, are important regulators of 
physiological processes during pregnancy. The effect of their collective impact on preterm birth (delivery < 37 
weeks gestation) is understudied. We aimed to characterize the associations and predictive capacity of an 
extensive panel of eicosanoids, immune biomarkers, oxidative stress markers, and growth factors towards 
preterm birth and its subtypes. We conducted a cross-sectional study of pregnant women (recruited < 15 
weeks gestation) in the LIFECODES birth cohort, which included 58 cases of preterm birth and 115 controls 
that delivered term. Among the cases there were 31 cases who had a spontaneous preterm birth (cases who 
had spontaneous preterm labor and/or preterm premature rupture of membranes) and 25 that had preterm 
birth associated with aberrant placentation (cases who had preeclampsia and/or intrauterine growth 
restriction) and 2 cases that could not be sufficiently categorized as either. We analyzed single biomarker 
associations with each preterm birth outcome using multiple logistic regression. Adaptive elastic-net was 
implemented to perform a penalized multiple logistic regression on all biomarkers simultaneously to identify 
the most predictive biomarkers. We then organized biomarkers into biological groups and by enzymatic 
pathways and applied adaptive elastic-net and random forest to evaluate the accuracy of each group for 
predicting preterm birth cases. The majority of associations we observed were for spontaneous preterm 
birth, and adaptive elastic-net identified 5-oxoeicosatetraenoic acid, resolvin D1, 5,6-epoxy-eicsatrienoic 
acid, and 15-deoxy-12,14-prostaglandin J2 as most predictive. Overall, lipid biomarkers performed the best 
at separating cases from controls compared to other biomarker categories (adaptive elastic-net AUC = 0.78 
[0.62, 0.94], random forest AUC = 0.84 [0.72, 0.96]). Among the enzymatic pathways that differentiate 
eicosanoid metabolites, we observed the highest prediction of overall preterm birth by lipoxygenase 
metabolites using random forest (AUC = 0.83 [0.69, 0.96]), followed by cytochrome p450 metabolites 
using adaptive elastic-net (AUC = 0.74 [0.52, 0.96]). In this study we translate biological hypothesis into 
the language of modern machine learning. Many lipid biomarkers were highly associated with overall and 
spontaneous preterm birth. Among eicosanoids, lipoxygenase and cytochrome p450 products performed 
best in identifying overall and spontaneous preterm birth. The combination of lipid biomarkers may have 
good utility in clinical settings to predict preterm birth.

Preterm birth is a significant public health issue that occurs in approximately 10% of live births in the U.S., and 
remains the leading cause of neonatal mortality1,2. Babies who are born preterm have increased risk for health 
conditions later in life, including neurodevelopmental and sensory disorders, physical disabilities, cardiovascular 
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disease, and impaired respiratory function3,4. Live births are broadly classified as preterm if they occurred at less 
than 37 weeks gestation, and there is great heterogeneity in clinical presentation and other circumstances con-
tributing to preterm birth. Therefore, differentiation of preterm birth cases by clinical subtypes provides greater 
insight on the underlying antecedent mechanisms of preterm delivery. For example, spontaneous preterm births 
can involve spontaneous preterm labor or premature rupture of membranes, which is determined by the presence 
of vaginal pooling and either documentation of nitrazine-positive testing or ferning followed by regular uterine 
activity5. Whereas preterm birth associated with aberrant placentation is dominated by the presentation of preec-
lampsia (encompassing onset of hypertension and proteinuria) or intrauterine growth restriction5.

During pregnancy, systemic oxidative stress – the imbalance of reactive oxygen species and antioxidant mol-
ecules – can lead to inflammation and perturbation of several physiological processes that are integral for the 
progression of a healthy pregnancy. For example, oxidative stress and inflammation can cause tissue damage 
and alter vascularization, both of which can be harmful during critical stages of pregnancy, such as placentation, 
quiescence, cervical ripening, and induction of labor6. Furthermore, several biomarkers of oxidative stress and 
inflammation serve as signaling molecules that are integral for not only regulating maternal hormones but also 
facilitating cross talk between the maternal circulation and fetal compartment7,8.

We have previously reported associations between preterm birth and select biomarkers of inflammation 
and oxidative stress9,10. For inflammation, this included the general marker C-reactive protein (CRP) as well 
as a panel of cytokines; for oxidative stress, this included 8-isoprostane, a marker of lipid peroxidation, and 
8-hydroxydeoxyguanosine, a marker of oxidative DNA damage. These represent only a small fraction of the rep-
ertoire of signaling molecules that regulate inflammation during pregnancy. Nonetheless, we learned that the 
pro-inflammatory cytokine interleukin-6 was associated with increased risk for spontaneous preterm birth, while 
the anti-inflammatory cytokine interleukin-10 was elevated among cases of preterm birth associated with aber-
rant placentation9. Among oxidative stress markers, we found that overall and spontaneous preterm birth were 
positively associated with 8-isoprostane and inversely associated with 8-hydroxydeoxyguanosine10.

We sought to expand our panel of biomarkers to investigate the combined effects of those previously measured 
biomarkers in addition to a newly measured panel of eicosanoids – a large class of lipid metabolites. Eicosanoids 
are metabolized from large fatty acids such as arachidonic acid and linoleic acid and produced through many enzy-
matic pathways, including three broad families of enzymes: lipoxygenases (LOX), cytochrome P450 (CYP450), and 
cyclooxygenases (COX)11. Eicosanoids are intimately connected to immunological signaling molecules and inflam-
mation, and are therefore potent regulators of physiological processes11. Animal studies also indicate overlapping 
consequences clustered by enzyme specific metabolites. For example, metabolites produced through LOX pathways 
resulted in inflammation, vascular remodeling, and altered renal function12. Furthermore, although many eicosa-
noids, such as prostaglandins, can cause pro-inflammatory stimulation of target tissues, some groups of eicosanoids 
such as resolvins can be anti-inflammatory and resolve inflammation13,14. Altogether, the effects of eicosanoids on 
inflammation and cardiovascular activity provide a mechanistic link for preterm birth15.

Our primary study aim was to evaluate a group of 65 biomarkers in association with preterm birth and its sub-
types. By measuring a large panel of eicosanoids and other biomarkers of inflammation and oxidative stress, we 
obtain greater coverage of signaling molecules, which could potentially increase the capacity to predict preterm 
birth. However, there are also major challenges that arise from analyzing high dimensional data, including multi-
collinearity and the risk for false discoveries due to multiple testing. We integrated variable selection and machine 
learning methods to circumvent some of the challenges with high-dimensional data. Our secondary study aim 
was to focus more deeply on the biological context of observed associations by grouping our analyses based on 
categories of molecules, and then by enzymatic pathways within the eicosanoids panel. We hypothesized that the 
combination of biomarkers would predict preterm birth, and that select pathways among eicosanoids will have 
differential predictive capacity. We translated this hypothesis by using a grouped variable selection framework.

Results
The demographic characteristics of the subjects in this study are summarized in Table 1 according to their case 
and control status. In general, the controls had lower BMI, higher education level and were predominantly white 
subjects compared to the three types of cases, however these differences were not statistically significant. Patients 
with spontaneous preterm had lower BMI than those with preterm birth associated with aberrant placentation. 
The majority of patients were privately insured for both cases and controls.

Association of preterm birth with single biomarkers.  Figures 1–3 respectively present the estimates 
of log odds ratios of all preterm birth, spontaneous preterm birth, and preterm birth associated with aberrant 
placentation along with their 95% confidence interval for each biomarker. In particular, 14 biomarkers (13,14-dih
ydro-15-keto-prostaglandin [13,14DHK-PGD2], 15-deoxy-12,14-prostaglandin J2 [15DO12,14-PGJ2], 
8,9-dihydroxy-eicosatrienoic acid [8,9-DHET], 11,12-epoxy-eicosatrienoic acid [11(12)-EET], 
9,10-epoxy-octadecenoic acid [9(10)-EpoME], 11,12-dihydroxy-eicosatrienoic acid [11,12-DHET], resolvin D1 
[RVD1], leukotriene D4 [LTD4], 15-hydroxy-eicosatetraenoic acid [15-HETE], 12-hydroxy-eicosatetraenoic 
acid [12-HETE], docosahexaenoic acid [DHA], eicosapentaenoic acid [EPA], α-linolenic acid [αLA], and 
interleukin-10 [IL-10]) were significantly associated with increased odds of preterm birth of any type at the level 
of 0.05. The lipid biomarkers that were associated with preterm birth are involved in all enzymatic pathways: the 
COX pathway (13,14DHK-PGD2, 15DO12,14-PGJ2), CYP450 pathway (8,9-DHET, 11(12)-EET, 9(10)-EpoME, 
11,12-DHET), LOX pathway (RVD1, LTD4, 15-HETE, 12-HETE), or belong to the parent compound group 
(DHA, EPA, αLA). Four markers (9-oxooctadeca-dienoic acid [9-oxoODE], 12,13-epoxy-octadecenoic acid 
[12(13)-EpoME], 5,6-epoxy-eicsatrienoic acid [5(6)-EET], and placental growth factor [PGF]) had a significant 
protective effect on overall preterm birth. After controlling the false discovery rate (FDR) at 0.1, only RVD1 
remained significant (Fig. 1).

https://doi.org/10.1038/s41598-019-53448-z


3Scientific Reports |         (2019) 9:17049  | https://doi.org/10.1038/s41598-019-53448-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Combined with the biomarkers that were associated with overall preterm birth, we observed fourteen addi-
tional lipid biomarkers associated with increased risk for spontaneous preterm birth (Fig. 2). These biomarkers 
included prostaglandin E2 [PGE2], 13,14-dihydro-15-keto-prostaglandin F2α [13,14DHK-PGF2α*], prosta-
glandin B2 [PGB2], 12,13-dihydroxy-octadecenoic acid [12,13-DiHOME], 9,10-dihydroxy-octadecenoic acid 
[9,10-DiHOME], 8,9-epoxy-eicosatrienoic acid [8(9)-EET], resolvin D2 [RVD2], 5- hydroxy-eicosatetraenoic 
acid [5-HETE], leukotriene E4 [LTE4], leukotriene C4 methyl-ester [LTC4-ME], 5-oxoeicosatetraenoic 
acid [5-oxoETE], 12-oxoeicosatetraenoic acid [12-oxoETE], arachidonic acid [AA], and linoleic acid [LA]. 
Prostaglandin J2 [PGJ2] was inversely associated with odds of spontaneous preterm birth but not with overall 
preterm birth. None of the non-lipid markers had significant associations with spontaneous preterm birth. With 
an FDR of 0.1, all of the biomarkers that were significantly associated with spontaneous preterm birth, regardless 
of the direction of associations, remained significant (Fig. 2). We observed fewer biomarkers in association with 
preterm birth associated with aberrant placentation compared to spontaneous preterm birth, with IL-10 being 
associated with a significantly increased odds ratio, and bicyclo-prostaglandin E1 [BCPGE1], LTD4, leukotriene 
B4 [LTB4], and PGF having protective associations (Fig. 3). The FDR corrected results revealed that PGF is the 
only biomarker that was significantly linked to preterm birth associated with aberrant placentation after the 
Benjamini-Hochberg procedure. Due to the sparsity of associations between the set of biomarkers and preterm 
birth associated with aberrant placentation, we focused our subsequent analysis on overall and spontaneous pre-
term birth. The specific values of log odds ratios and their 95% confidence intervals for overall preterm birth and 
subtypes are reported in Supplemental Table 1.

Association of preterm birth with groups of biomarkers.  We observed moderate to strong correlations 
between biomarkers (Fig. 4). Correlations among biomarkers were in general stronger in preterm birth cases, and spon-
taneous preterm birth in particular, compared to controls. For example, for spontaneous preterm, the median positive 
and negative pairwise correlations of biomarkers in the COX pathway were 0.33 and −0.33 (Fig. 4B), respectively, while 
their counterparts for the controls were 0.21 and −0.16, respectively (Fig. 4D). The correlations of the combined sam-
ples weighted for case-control sampling (Supplemental Fig. 2) were close to those of controls (Fig. 4D). Five biomarkers 
(15DO12,14-PGJ2, 5(6)-EET, LTB4, LA, and PGF) were identified by adaptive elastic-net as having a non-null effect on 
preterm birth overall (Fig. 1), the first four of which were lipid damage markers and the last one was an angiogenic fac-
tor. When we restricted the outcome to spontaneous preterm birth, 15DO12,14-PGJ2, 5(6)-EET, RVD1 and 5-oxoETE 
were associated with spontaneous preterm birth according to the results of adaptive elastic-net (Fig. 2). For preterm 
birth associated with aberrant placentation, only PGF and LTB4 were selected (Fig. 3). The corresponding adaptive 
elastic-net point estimates of the log odds ratios are reported in Supplemental Table 1.

The results of sparse-group lasso on the five major groups show that when we modeled for the conditional 
probability of all preterm birth, angiogenic factors exited the model first (indicating least importance), and lipid 
damage markers and protein damage markers exited the model last (indicating greatest importance) as the 

All Preterm 
(n = 58)

Spontaneous 
Preterm 
(n = 31)

Preterm associated with 
aberrant placentation 
(n = 25)

Other 
Preterm 
(n = 2)

Controls 
(n = 115)

Timing of sample collection (gestational 
weeks)a

25.7 (1.3)
[23.7, 28.4]

25.8 (1.2)
[24.0, 28.4]

25.5 (1.4)
[23.7, 28.4]

25.5 (1.5)
[24.4, 26.6]

26.2 (1.2)
[23.1, 28.9]

Duration between sample collection and 
delivery (gestational weeks)a

8.6 (3.3)
[1.0, 13.0]

8.1 (3.4)
[1.3, 12.9]

9.1 (3.2)
[1.0, 13.0]

10.1 (2.8)
[8.1, 12.1]

12.9 (1.6)
[8.7, 16.9]

Agea 32.3 (5.0)
[20.9, 46.4]

31.3 (4.6)
[20.9, 40.1]

33.7 (5.5)
[25.8, 46.4]

31.0 (1.6)
[29.8, 32.1]

32.9 (4.3)
[21.4, 43.5]

BMI at Initial Visitb

Normal 22 (38%) 14 (45%) 7 (28%) 1 (50%) 62 (54%)

Overweight 15 (26%) 9 (29%) 5 (20%) 1 (50%) 34 (29.5%)

Obesity 21 (36%) 8 (26%) 13 (52%) — 19 (16.5%)

Raceb

White 32 (55%) 14 (45.2%) 17 (68%) 1 (50%) 76 (66%)

African American 8 (14%) 2 (6.4%) 6 (24%) — 11 (10%)

Other 18 (31%) 15 (48.4%) 2 (8%) 1 (50%) 28 (24%)

Education Levelb

High school degree 12 (21%) 6 (19.3%) 6 (24%) — 12 (10%)

Technical school 9 (16%) 6 (19.3%) 3 (12%) — 11 (10%)

Junior college or some college 17 (29%) 8 (26%) 9 (36%) — 40 (35%)

College graduate 20 (34%) 11 (35.4%) 7 (28%) 2 (100%) 52 (45%)

Health Insurance Providerb

Private/HMO/Self-pay 48 (84%) 25 (81%) 21 (88%) 2 (100%) 105 (91%)

Medicaid/SSI/MassHealth 9 (16%) 6 (19%) 3 (12%) — 10 (9%)

Table 1.  Characteristics of all participants in the subset sample from the LIFECODES prospective birth cohort 
(n = 173). aContinuous variables presented as: mean (standard deviation) [min, max]. bCategorical variables 
presented as: count (percent).
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penalty on the coefficients increased (Fig. 5A). For spontaneous preterm birth, lipid markers were again the last 
ones that exited the model (Fig. 5B). These results indicate that lipid markers contributed most to the associations 
of overall preterm birth and spontaneous preterm birth among the whole set of biomarkers. When the combina-
tion of major groups and eicosanoids pathways were considered (with 9 groups in total, including 4 eicosanoids 
pathways), biomarkers in COX pathway, LOX pathway and protein damage markers exited the model last as the 
tuning parameter λ increased for all preterm birth (Fig. 6A); CYP450 pathway and LOX pathway were the last 
two groups that exited the model for spontaneous preterm birth (Fig. 6B). The groups that exit the model last are 
most predictive of the respective preterm birth outcome.

Prediction of preterm birth.  The computed area under the Receiver Operating Characteristic (ROC) curve 
(AUC) is a measure of discrimination, where in our study an AUC value of 0.5 would indicate that a given com-
bination of biomarkers has no better accuracy to predict preterm birth than chance, while an AUC value of 1 rep-
resents perfect accuracy at predicting preterm birth. While AUC values above 0.9 typically represent diagnostic 
tests of biomarker combinations with the greatest utility in separating cases from controls, tests with AUC values 
between 0.7–0.9 indicate biomarker combinations that have fair to good utility and can potentially be improved 
with a larger training data set or expanded measurement of additional predictive biomarkers. We reported AUC 
values corresponding to prediction of all preterm birth (Table 2) and spontaneous preterm birth (Table 3).

According to Table 2 and Fig. 7A,B, when all preterm birth was considered, among the five major groups of 
markers, lipid markers provided better separation of cases and controls (adaptive elastic-net AUC = 0.78 [0.62, 
0.94], random forest AUC = 0.84 [0.72, 0.96]) than the other four groups (which collectively had AUC values 

Figure 1.  Log odds ratios of all preterm birth. Positive and negative log odds ratios with p < 0.05 are 
represented by red and green dots, respectively. Biomarkers that remain significant after controlling the false 
discovery rate at 0.1 are labeled by (*) in their names. Biomarkers selected by adaptive elastic-net applied to all 
biomarkers are labeled by blue triangles. The blocks are shaded according to their corresponding major groups: 
lipid damage markers (orange), DNA damage marker (green), angiogenic factors (grey), protein damage marker 
(pink), and inflammatory markers (blue).
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ranging from 0.57–0.76), and such performance was comparable to using all biomarkers (adaptive elastic-net 
AUC = 0.72 [0.53, 0.91], random forest AUC = 0.85 [0.74, 0.97]). The misclassification errors yielded by lipid 
markers for adaptive elastic-net (0.29) and random forest (0.24) were among the smallest across the five major 
groups. The results for the other four major groups were not consistent across different training methods, and 
such discrepancy indicated either a nonlinear and complex relationship between the corresponding biomarkers 
and outcome variables or potentially random chance (Fig. 7A,B). Among the three eicosanoid enzymatic path-
ways, the LOX pathway gave the best overall performance in terms of misclassification error and AUC (Table 2 
and Fig. 8A,B). In particular, LOX pathway had higher AUC (0.83 [0.69, 0.96]) and sensitivity (0.91) than the 
other three groups when we used random forest to train the prediction model (Table 2 and Fig. 8A,B).

When spontaneous preterm birth was considered, the group of lipid markers again gave the largest AUC 
(adaptive elastic-net AUC = 0.63 [0.42, 0.84], random forest AUC = 0.79 [0.62, 0.96]) and sensitivity (adaptive 
elastic-net sensitivity = 0.63, random forest sensitivity = 0.57) among the five major groups for each training 
method (Table 3 and Fig. 7C,D). The adaptive elastic-net AUC of the groups of DNA damage markers, angi-
ogenic factors, and inflammatory markers ranged from 0.51 to 0.57, which indicated that the performance of 
these three groups was barely (if any) better than random guess (Table 3 and Fig. 7C,D). According to Table 3 
and Fig. 8C, biomarkers involved in the CYP450 pathway generally performed better than those involved in the 
other three pathways in classifying spontaneous preterm birth when we used adaptive elastic-net to train the 
model. However, the LOX pathway outperformed the CYP450 pathway when we used random forest (Table 3 and 
Fig. 8D), which indicates that potential nonlinear relationships may exist between spontaneous preterm birth and 
biomarkers in the LOX pathway that were not captured by adaptive elastic-net.

Figure 2.  Log odds ratios of spontaneous preterm birth. Positive and negative log odds ratios with p < 0.05 are 
represented by red and green dots, respectively. Biomarkers that remain significant after controlling the false 
discovery rate at 0.1 are labeled by (*) in their names. Biomarkers selected by adaptive elastic-net applied to all 
biomarkers are labeled by blue triangles. The blocks are shaded according to their corresponding major groups: 
lipid damage markers (orange), DNA damage marker (green), angiogenic factors (grey), protein damage marker 
(pink), and inflammatory markers (blue).
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Discussion
In this study, we made two primary contributions: (1) integrated cutting edge machine learning methods and multi-
ple inferential tools (hypothesis testing, variable selection, and prediction) to analyze an extensive panel of biomark-
ers related to inflammation, oxidative stress, and angiogenesis, in association with preterm birth and its subtypes; 
and (2) contextualized associations with preterm birth by grouped analyses of biomarker categories and enzymatic 
pathway groups for eicosanoids. To our knowledge, this is the first study to investigate eicosanoids and associated 
biomarkers to this degree of metabolite coverage during pregnancy in association with overall preterm birth and its 
subtypes. Several biomarkers were associated with overall preterm birth in single biomarker models, and adaptive 
elastic-net identified five biomarkers (PGF, LA, LTB4, 5(6)-EET, and 15DO12,14-PGJ2) to be most predictive of 
overall preterm birth. The overall preterm birth outcome contains multiple constituent sub-pathologies, therefore 
interpretation of these associations is more crude compared to focusing on preterm birth subtypes. Once we dis-
aggregated cases by preterm birth subtypes, we learned that many of the effect estimates were largely driven by 
spontaneous preterm birth, where adaptive elastic-net identified four biomarkers (5-oxoETE, RVD1, 5(6)-EET, and 
15DO12,14-PGJ2) to be most predictive. Whereas for preterm birth associated with aberrant placentation, adaptive 
elastic-net identified two biomarkers with protective associations (PGF and LTB4). Prediction of preterm birth was 
most accurate with the lipid biomarkers using both adaptive elastic-net and random forest. When focusing solely on 
the lipid biomarkers, adaptive elastic-net showed greater accuracy in preterm birth prediction among metabolites of 
the CYP450 pathway, while random forest reported metabolites of the LOX pathway to be more accurate. Overall, 
these findings provide insight on prioritization of biomarker groups for the prediction of preterm birth, and future 
studies should explore CYP450 and LOX metabolites to validate these findings.

Figure 3.  Log odds ratios of preterm birth associated with aberrant placentation. Positive and negative log 
odds ratios with p < 0.05 are represented by red and green dots, respectively. Biomarkers that remain significant 
after controlling the false discovery rate at 0.1 are labeled by (*) in their names. Biomarkers selected by adaptive 
elastic-net applied to all biomarkers are labeled by blue triangles. The blocks are shaded according to their 
corresponding major groups: lipid damage markers (orange), DNA damage marker (green), angiogenic factors 
(grey), protein damage marker (pink), and inflammatory markers (blue).
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The biomarkers that adaptive elastic-net identified as most predictive for spontaneous preterm birth are all 
eicosanoid metabolites, with each of the three enzymatic pathways and parent compounds being represented. 
5-oxoETE is a polyunsaturated fatty acid product derived from AA processing via the LOX pathway. Receptors 
for 5-oxoETE are highly expressed in peripheral leukocytes, lungs, kidney, liver, spleen, and placenta16,17. The 
impact that 5-oxoETE has on target sites can vary by cell type, but broadly involve intracellular changes that lead 
to heightened chemotaxis – an integral process that attracts immune cells to target tissues to drive the inflam-
matory process18. 5(6)-EET is a fatty acid metabolite of AA produced through the CYP450 pathway and com-
monly originates from the liver, kidneys, and vascular endothelium19. Importantly, 5(6)-EET is a modulator of 
cardiovascular function and predominantly acts as an anti-inflammatory vasodilator19,20. We observed protective 
associations between 5(6)-EET and spontaneous preterm birth, which aligns with the predominant paradigm 
of an anti-inflammatory and anti-hypertensive profile. However, other studies have observed higher plasma 
and placental concentrations of 5(6)-EET or total EET in women with preeclampsia compared to normotensive 
women19,21 and non-pregnant women22. Another study found lower concentrations of 5(6)-EET in amnion of 
women with preeclampsia compared to laboring women that had a cesarean section23. Differences between stud-
ies underline potential nuances to 5(6)-EET activity, potentially masked by our uncertainty of concentrations at 
target tissues at the maternal-fetal interface.

Figure 4.  Correlations among biomarkers in cases and controls. Correlations were calculated among all 
preterm birth (A), spontaneous preterm birth (B), placental preterm birth (C), and controls (D). Eicosanoids 
were grouped by biological pathways (dashed lines).
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The prostaglandin 15DO12,14-PGJ2 has been shown to elicit anti-inflammatory properties through inhi-
bition of the nuclear transcription factor NFκ-B24. Although we observed positive associations between 
15DO12,14-PGJ2 and spontaneous preterm birth, several pro-inflammatory prostaglandins (PGB2, 
13,14DHK-PGF2a, PGE2, and 13,14DHK-PGD2) were also positively associated with spontaneous preterm 
birth. 15DO12,14-PGJ2 may likely be up-regulated during inflammation to help with the resolution of inflamma-
tion, thereby partly explaining why we observed positive associations with spontaneous preterm birth. A similar 
conclusion may be drawn from the positive association we observed between spontaneous preterm birth and 
the anti-inflammatory molecule RVD1, which belongs to the group of compounds called resolvins and is a LOX 
pathway product of DHA14,25. Interestingly, our findings suggest that both pro- and anti-inflammatory fatty acid 
metabolites are associated with increased risk for overall and spontaneous preterm birth, emphasizing the utility 
of evaluating these biomarkers collectively as a combination of predictors to enhance the classification of preterm 
birth cases early in pregnancy.

Figure 5.  Sparse-group lasso on the five major groups for (A) all preterm birth and (B) spontaneous preterm 
birth. The dashed lines indicate the value of log(λ) corresponding to the first time the whole group of variables 
are excluded from the model as log(λ) increases. The numbers 1 to 6 on the dashed lines indicate covariates (1), 
lipid damage markers (2), DNA damage marker (3), angiogenic factors (4), protein damage markers (5), and 
inflammatory markers (6), respectively.

Figure 6.  Sparse-group lasso on the combination of major groups and eicosanoids pathways for (A) all preterm 
birth and (B) spontaneous preterm birth. The dashed lines indicate the value of log(λ) corresponding to the first 
time the whole group of variables are excluded from the model as log(λ) increases. The numbers 1 to 10 on the 
dashed lines indicate covariates (1), cyclooxygenase pathway (2), CYP450 pathway (3), lipoxygenase pathway 
(4), parent compound (5), 8-isoprostane (6), DNA damage marker (7), angiogenic factors (8), protein damage 
markers (9), and inflammatory markers (10), respectively.

https://doi.org/10.1038/s41598-019-53448-z
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Among the predictors that were linked to preterm birth associated with aberrant placentation, adaptive elas-
tic net identified PGF and LTB4 as most predictive, both of which are protective for this type of preterm birth. 
PGF is a growth factor that promotes angiogenesis in part by stimulating cellular migration and recruitment26. 
Previous studies observed lower levels of PGF among women with preeclampsia – one requisite for preterm 
birth associated with aberrant placentation – indicating that higher concentrations of PGF may potentially be 
protective of this type of preterm birth26. LTB4 is a leukotriene metabolized from AA through the LOX pathway, 
and has pro-inflammatory properties through stimulating vasoconstriction, platelet aggregation, and cellular 
migration of immune cells27. Although LTB4 has been previously reported to increase the risk for preeclampsia27, 
we observed a protective relationship between LTB4 and preterm birth associated with aberrant placentation. 
One possible explanation is that LTB4 elevation may potentially be a proxy for increased anti-inflammatory bio-
markers, given evidence that LTB4 concentrations can remain high before and after onset of preeclampsia27. 
Conversely, this observation, alongside numerous null associations, may be due to underpowered sample size of 
this type of preterm birth in our study.

Very few studies have investigated circulating maternal eicosanoids and lipid biomarkers in association with 
preterm birth. One case control study of preterm birth (ncases = 37, ncontrols = 37) observed higher concentrations 
of AA in plasma collected at delivery from women who delivered preterm compared to AA in plasma collected 
at 34 weeks gestation from women that delivered term, which is consistent with the increased risk we observed 
between AA and spontaneous preterm birth28. Another study evaluated differences in PGF2α and PGE2 by pre-
term status (ncases = 37, ncontrols = 34) and found lower levels of both in placenta and amnion samples from cases 
collected at delivery, but did not find significant differences in maternal plasma29. A separate case-control study 
(ncases = 50, ncontrols = 50) found lower levels of PGF2α measured in serum collected at the onset of active labor in 
preterm birth cases compared to controls30. However, another case-control study of preterm birth (ncases = 57, 
ncontrols = 624) did not observe notable differences in urinary concentrations of PGF2α31. Although we did not 
measure PGF2α, we did find higher concentrations of its metabolite 13,14DHK-PFG2α among spontaneous 

Biomarker Biomarkers in the group Biomarker(s) selected*
Misclassification 
error† Sensitivity† Specificity† AUC

None (0) N/A N/A 0.40‡

0.40§
0.57‡

0.57§
0.61‡

0.61§
0.66 (0.49, 0.83)‡

0.62 (0.45, 0.80)§

All biomarkers (65) All biomarkers listed below in this column
PGA2; 15DO12,14-PGJ2; BCPGE2; 
13,14DHK-PGF2a*; RVD1; LTE4; 
LTB4; LA;IL-10

0.29‖

0.27§
0.64‖

1.00§
0.74‖

0.65§
0.72 (0.53, 0.91)‖

0.85 (0.74, 0.97)§

Major group

DNA damage marker 
(1) 8-OHdG 8-OHdG 0.30‡

0.26§
0.71‡

0.64§
0.69‡

0.78§
0.76 (0.61, 0.90)‡

0.74 (0.56, 0.92)§

Angiogenic factors (2) PGF; sFlt-1 PGF; sFlt-1 0.33‡

0.41§
0.77‡

0.69§
0.64‡

0.56§
0.76 (0.60, 0.93)‡

0.68 (0.50, 0.87)§

Protein damage 
markers (3) NY; DY; CY NY; DY; CY 0.46‡

0.40§
0.43‡

0.50§
0.58‡

0.64§
0.60 (0.41, 0.79)‡

0.60 (0.44, 0.77)§

Inflammatory markers 
(5) IL-1β; IL-6; IL-10; TNF-α; CRP IL-1β; IL-6; IL-10; TNF-α; CRP 0.28‡

0.50§
0.57‡

0.50§
0.78‡

0.50§
0.73 (0.58, 0.89)‡

0.57 (0.40, 0.74)§

Lipid damage markers 
(54) 8-isoprostane; all eicosanoids 15DO12,14-PGJ2; BCPGE2; RVD2; 

RVD1; LTE4; LTB4
0.29‖

0.24§
0.64‖

0.91§
0.74‖

0.71§
0.78 (0.62, 0.94)‖

0.84 (0.72, 0.96)§

All markers except 
lipid damage markers 
(11)

8-OHdG; PGF; sFlt-1; NY; DY; CY;IL-1β; 
IL-6; IL-10; TNF-α; CRP PGF; IL-6; IL-10; TNF-α

0.31‡

0.35‖

0.43§

0.77‡

0.77‖

0.69§

0.67‡

0.61‖

0.53§

0.84 (0.71, 0.96)‡

0.75 (0.56, 0.94)‖

0.71 (0.54, 0.89)§

Pathways of eicosanoids

Cyclooxygenase (15)
13,14DHK-PGD2; TXB2; PGE2; PGD2; 
PGA2; 15DO12,14-PGJ2; PGD3; PGE3; 
PGJ2; BCPGE1; BCPGE2; PGB2; 
13,14DHK-PGF2a*; 9-oxoODE; PGE1

13,14DHK-PGD2; TXB2; PGE2; 
PGA2; 15DO12,14-PGJ2; PGJ2; 
BCPGE1; BCPGE2; PGB2; 
13,14DHK-PGF2a*; 9-oxoODE

0.37‡

0.43‖

0.39§

0.79‡

0.64‖

0.71§

0.57‡

0.64‖

0.57§

0.73 (0.58, 0.89)‡

0.58 (0.41, 0.75)‖

0.65 (0.47, 0.83)§

CYP450 (18)

12,13-DiHOME; 9,10-DiHOME; 8,9-
DHET; 8(9)-EET; 14(15)-EET; 11(12)-EET; 
5(6)-EET; 12(13)-EpoME; 9(10)-EpoME; 
CAA; 20-HETE; 11-HETE; 16-HETE; 17-
HETE; 18-HETE; 11,12-DHET; 5,6-DHET; 
9S-HODE

9(10)-EpoME; 18-HETE
0.40‡

0.42‖

0.42§

0.71‡

0.64‖

0.43§

0.56‡

0.56‖

0.64§

0.63 (0.47, 0.79)‡

0.68 (0.51, 0.85)‖

0.56 (0.39, 0.73)§

Lipoxygenase (15)
RVD2; RVD1; 5-HETE; LTD4; LTE4; 
LTC4-ME; 13S-HODE; 5-oxoETE; 
12-oxoETE; 13-oxoODE; 15-oxoETE; 15-
HETE; 12-HETE; 8-HETE; LTB4

RVD1; 5-HETE; LTD4; LTE4; 
LTC4-ME; 13S-HODE; 13-oxoODE; 
5-oxoETE; 15-oxoETE; 12-oxoETE; 
12-HETE; 8-HETE; LTB4

0.33‡

0.40‖

0.31§

0.55‡

0.55‖

0.91§

0.71‡

0.61‖

0.61§

0.68 (0.49, 0.86)‡

0.65 (0.45, 0.84)‖

0.83 (0.69, 0.96)§

Parent Compound (5) DHA; EPA; AA; αLA; LA EPA; LA
0.38‡

0.44‖

0.40§

0.71‡

0.64‖

0.71§

0.58‡

0.53‖

0.56§

0.64 (0.47, 0.81)‡

0.56 (0.37, 0.76)‖

0.65 (0.48, 0.81)§

Table 2.  Biomarkers selected by adaptive elastic-net for prediction of all preterm birth and corresponding 
prediction parameters estimated through adaptive elastic-net and random forest. *Variables were selected 
by adaptive elastic-net using the training set only. †The cutoff of the predicted probability used here was 0.5 
(predicted probability greater than 0.5 indicates a case). ‡Results obtained from logistic regression models. 
§Results obtained from random forest. ‖Results obtained from adaptive elastic-net.

https://doi.org/10.1038/s41598-019-53448-z


1 0Scientific Reports |         (2019) 9:17049  | https://doi.org/10.1038/s41598-019-53448-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

preterm birth cases. Ultimately there are few existing studies for comparisons, however our findings are largely 
consistent with current frameworks for biological mechanisms of eicosanoids.

The findings of this study can inform future screening tests aimed at detecting high-risk groups for preterm birth 
and its subtypes. Our study provides evidence that utilizing multiple biomarkers simultaneously to predict pre-
term birth is more accurate than using single biomarkers. However there is evidence of differentiation in predictive 
capacity across categories of biomarkers. In our study sample, biomarkers of lipid metabolism have good accuracy in 
identifying cases of overall and spontaneous preterm birth. Specifically, the eicosanoid panel used in this study had 
comparable predictive capacity compared to using the full combination of inflammatory, oxidative stress, and eicos-
anoid biomarkers. Adaptive elastic-net also selected lipid biomarkers in higher frequency than all other categories of 
biomarkers. These findings underline the predictive utility of lipid biomarkers and this should be replicated for con-
sistency in an independent sample. Focusing in on eicosanoids from specific pathways can be useful when resources 
are limited, especially given that measuring extensive panels of signaling molecules can be cost-prohibitive. Future 
studies in independent samples could potentially utilize estimations from our present study to replicate prediction 
of preterm birth using any combination of eicosanoids that were presented in this study.

Among the eicosanoids, metabolites from the LOX and CYP450 pathways had greater performance of overall 
and spontaneous preterm birth classification. Animal models indicate that the LOX pathway eicosanoid prod-
ucts are collectively involved inflammation, vascular remodeling, and renal function12,32. For example, mouse 
models with knockouts of LOX enzymes resulted in impaired implantation, indicating an important role for 
LOX products early in pregnancy33. Similarly, eicosanoids produced through CYP450 pathway also contribute to 
vascular remodeling, with a hypothesized link to hypertension and inflammation34. For instance, in rat models, 
disruption in the production of eicosanoids from the CYP450 pathway has been shown to alter myometrium con-
tractile activity35 and lead to the development of hypertension and renal dysfunction36. Thus, LOX and CYP450 
eicosanoid products as whole groups can be useful in predicting broad pathological precursors to preterm birth; 
whereas analysis of disruption in any single metabolite may only provide limited insight due to potential compen-
satory roles of multiple metabolites produced from the same pathway.

This study contains several limitations that should be discussed to improve future studies. First, our study 
had low numbers of cases, especially as we disaggregated to preterm birth subtypes. We may have been under-
powered to observe smaller effect estimates with some of the biomarkers that we measured. The greater count 
of spontaneous preterm birth cases compared to preterm birth associated with aberrant placentation may have 
biased the results of overall preterm birth towards the biological mechanisms underlying spontaneous preterm 
birth. Additionally, samples were collected between 2006 and 2008, therefore biomarkers in our samples may 
be susceptible to degradation over long periods of storage. However, rigorous storage protocols for freezing and 
preserving samples partially ameliorate this problem. Furthermore, the measurement error bias associated with 
long storage periods would likely lead to attenuation of research findings towards null, rather than create false 
positives. Another limitation in our study was the cross-sectional study design and we were limited to a single 
time point measurement of biomarkers, therefore we were unable to evaluate time-course concentrations of indi-
vidual biomarkers during pregnancy. One previous repeated measures study of select eicosanoids in adult women 
(n = 9) observed low intra-individual variability across eight repeated blood measurements37. Conversely, another 
study of adult men (n = 19) observed high intra-individual variability in two repeated measurements of blood 
eicosanoids38. In the LIFECODES cohort, we have also leveraged repeated measurements of the inflammatory 
biomarkers (CRP and cytokines), and observed moderate intra-individual variability9. These results provide pre-
liminary evidence that although single time point measurements may have good utility in some study samples, 
repeated measurements would be advantageous when intra-individual variability is moderate or high. Future 
studies should consider measuring these biomarkers at multiple study visits that range across each trimester of 
pregnancy and conduct longitudinal analyses to determine if specific periods of gestation have greater predictive 
capacity.

Since we conducted multiple comparisons, some of the single biomarker models may be at risk for false 
discoveries. However, the biomarkers that we discussed in depth that were selected by adaptive elastic-net cir-
cumvent the drawbacks of multiple comparisons since it evaluates all biomarkers in a single predictor matrix 
simultaneously rather than conducting multiple tests. We are also limited by the fact that we measured for circu-
lating plasma or urinary biomarkers, which provides limited insight on the physiology occurring locally at the 
maternal-fetal interface and other target tissues. It is critical that future studies consider measuring endogenous 
biomarkers in multiple biological media across various time points in pregnancy. Among the biomarkers that 
we measured, our study focused predominantly on biomarkers measured in plasma samples. Other less invasive 
media such as urine, fingernail clippings, hair samples, and oral swabs can also be explored for potential predic-
tive biomarkers. Follow up studies need to explore these additional biological media and test for their predictive 
capacity in observational studies. Finally, our study measured several biomarkers from the repertoire of lipid 
biomarkers; however we were limited in our measurement of biomarkers from the other major groups (immune, 
protein oxidation, growth factors). The lack of representation of biomarkers from these other major groups may 
also be contributing to some degree to our observations of higher prediction capacity among lipid biomarkers 
compared to immune, protein oxidation, and growth factor biomarkers.

Despite these limitations, our study contains several strengths to highlight. First, the study was conducted in a 
well-characterized birth cohort. Further, this study used high-sensitivity instrumentation to measure an extensive 
panel of biomarkers to assess predictors of preterm birth. Our findings provide insight on the utility of several 
biomarkers and groups of biomarkers to predict preterm birth. We integrated multiple statistical methods for 
high-dimensional data analysis that can be applied in future studies seeking to analyze a large amount of biomark-
ers. Another strength is that our differentiation of preterm birth subtypes provides greater clinical and physiolog-
ical insight on the etiology of preterm birth. Overall our study presents new applications of statistical frameworks 
within biological context for future studies that seek to utilize maternal biomarkers to predict preterm birth.
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In conclusion, this study demonstrated that lipid biomarkers are good predictors of overall and spontaneous 
preterm birth. Our findings attempt to contribute a first step at prioritization of biomarker categories and eicosa-
noid enzymatic pathways for future studies that seek to predict preterm birth and inform precision health studies. 
Among eicosanoids, LOX and CYP450 products have the greatest performance of identifying overall and sponta-
neous preterm birth. We recommend replication studies to evaluate the consistency of our findings, and conclude 
that lipid biomarkers may have good utility in clinical settings to predict preterm birth.

Methods
Study population.  The LIFECODES prospective birth cohort enrolled approximately 1,600 pregnant 
women between 2006 and 2008 at the Brigham and Women’s Hospital in Boston, MA. Participants were between 
20 and 46 years of age, recruited at less than 15 weeks gestation at the initial study visit, and attended up to 4 
study visits (targeted at median 10, 18, 26, and 35 weeks gestation) at which point they provided urine and blood 
specimens. At the initial study visit, questionnaires were administered to collect demographic and health-related 
information. Among participants recruited in the LIFECODES cohort, 1,181 participants were followed to term, 
and delivered live, single infants. This present study was cross-sectional and focused on urine and plasma samples 
collected at one study visit occurring between 23.1 and 28.9 weeks gestation (median = 26 weeks). The study sam-
ple included 58 women who delivered preterm (<37 weeks gestation), and 115 randomly selected women who 
delivered after 37 weeks gestation. Among the cases, there were 31 spontaneous preterm births and 25 preterm 
births associated with aberrant placentation, and 2 cases that could not be sufficiently categorized as either. This 
study received institutional review board (IRB) approval from the Brigham and Women’s Hospital and all partic-
ipants provided written informed consent. All of the methods within this study were performed in accordance 
with the relevant guidelines and regulations approved by the IRB. Additional details regarding recruitment and 
study design can be found elsewhere39,40.

Biomarker Biomarkers in the group Biomarker(s) selected*
Misclassification 
error† Sensitivity† Specificity† AUC

None (0)† N/A N/A 0.40‡

0.33§
0.13‡

0.50§
0.71‡

0.71§
0.63 (0.40, 0.86)‡

0.51 (0.24, 0.77)§

All biomarkers (65)* All biomarkers listed below in this 
column

13,14DHK-PGD2; TXB2; 
PGD2; 15DO12,14-PGJ2; 
BCPGE1; 13-oxoODE; 
5-oxoETE; DHA; LA; IL-10

0.37‖

0.17§
0.75‖

0.67§
0.60‖

0.87§
0.69 (0.46, 0.91)‖

0.79 (0.61, 0.98)§

Major group

DNA damage marker (1)† 8-OHdG 8-OHdG 0.44‡

0.47§
0.50‡

0.38§
0.57‡

0.57§
0.51 (0.26, 0.76)‡

0.52 (0.29, 0.75)§

Angiogenic factors (2) † PGF; sFlt-1 PGF; sFlt-1 0.38‡

0.33§
0.14‡

0.43§
0.71‡

0.71§
0.51 (0.32, 0.71)‡

0.54 (0.25, 0.83)§

Protein damage markers (3)† NY; DY; CY NY; DY; CY 0.35‡

0.30
0.38‡

0.50§
0.71‡

0.74§
0.53 (0.29, 0.78)‡

0.64 (0.44, 0.84)§

Inflammatory markers (5)† IL-1β; IL-6; IL-10; TNF-α; CRP IL-1β; IL-6; IL-10; TNF-α; 
CRP

0.33‡

0.35§
0.50‡

0.38§
0.71‡

0.71§
0.57 (0.31, 0.83)‡

0.55 (0.31, 0.79)§

Lipid damage markers (54)* 8-isoprostane; all eicosanoids PGD2; 15DO12,14-PGJ2; 
5-oxoETE

0.42‖

0.19§
0.63‖

0.57§
0.57‖

0.87§
0.63 (0.42, 0.84)‖

0.79 (0.62, 0.96)§

All markers except lipid 
damage markers (11)†

8-OHdG; PGF; sFlt-1; NY; DY; CY; 
IL-1β; IL-6; IL-10; TNF-α; CRP PGF; IL-6; CY; DY

0.38‡

0.40‖

0.36§

0.43‡

0.43‖

0.29§

0.66‡

0.63‖

0.71§

0.50 (0.25, 0.75)‡

0.50 (0.23, 0.78)‖

0.51 (0.29, 0.73)§

Pathways of eicosanoids

Cyclooxygenase (15)*

13,14DHK-PGD2; TXB2; PGE2; 
PGD2; PGA2; 15DO12,14-PGJ2; 
PGD3; PGE3; PGJ2; BCPGE1; 
BCPGE2; PGB2; 13,14DHK-PGF2a*; 
9-oxoODE; PGE1

13,14DHK-PGD2; PGE2; 
15DO12,14-PGJ2; PGJ2; 
BCPGE1; BCPGE2; 
13,14DHK-PGF2a*; PGB2

0.42‡

0.28‖

0.28§

0.50‡

0.63‖

0.25§

0.60‡

0.74‖

0.83§

0.56 (0.32, 0.79)‡

0.67 (0.44, 0.90)‖

0.63 (0.40, 0.87)§

CYP450 (18)*

12,13-DiHOME; 9,10-DiHOME; 
8,9-DHET; 8(9)-EET; 14(15)-
EET; 11(12)-EET; 5(6)-EET; 
12(13)-EpoME; 9(10)-EpoME; CAA; 
20-HETE; 11-HETE; 16-HETE; 
17-HETE; 18-HETE; 11,12-DHET; 
5,6-DHET; 9S-HODE

5(6)-EET; 12(13)-EpoME; 
11,12-DHET

0.33‡

0.26‖

0.23§

0.38‡

0.63‖

0.50§

0.74‡

0.77‖

0.83§

0.66 (0.46, 0.86)‡

0.74 (0.52, 0.96)‖

0.73 (0.51, 0.95)§

Lipoxygenase (15)*

RVD2; RVD1; 5-HETE; LTD4; LTE4; 
LTC4-ME; 13S-HODE; 5-oxoETE; 
12-oxoETE; 13-oxoODE; 15-oxoETE; 
15-HETE; 12-HETE; 8-HETE; LTB4

5-HETE; LTD4; LTC4-ME; 
13-oxoODE; 5-oxoETE; 
8-HETE; LTB4

0.51‡

0.44‖

0.27§

0.71‡

0.63‖

0.43§

0.43‡

0.51‖

0.80§

0.62 (0.38, 0.85)‡

0.60 (0.35, 0.85)‖

0.82 (0.68, 0.96)§

Parent Compound (5)† DHA; EPA; AA; αLA; LA EPA; AA; αLA; LA
0.35‡

0.26‖

0.23§

0.25‡

0.50‖

0.50§

0.74‡

0.80‖

0.83§

0.59 (0.39, 0.78)‡

0.67 (0.43, 0.91)‖

0.63 (0.39, 0.86)§

Table 3.  Biomarkers selected by adaptive elastic-net for prediction of spontaneous preterm birth and 
corresponding prediction parameters estimated through adaptive elastic net and random forest. *Variables were 
selected by adaptive elastic-net using the training set only. †The cutoff of the predicted probability used here was 
0.5 (predicted probability greater than 0.5 indicates a case). ‡Results obtained from logistic regression models. 
§Results obtained from random forest. ‖Results obtained from adaptive elastic-net.
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Biomarker analysis.  Spot urine samples were collected and stored at −80 °C. Approximately 10 mL of blood 
was collected using ethylenediaminetetraacetic acid plasma tubes and temporarily stored at +4 °C for less than 
4 hours. Afterwards, blood was centrifuged for 20 minutes and stored at −80 °C. Urine and plasma were subse-
quently analyzed for endogenous biomarkers. Supplemental Fig. 1 illustrates each individual biomarker that we 
analyzed and the media (urine vs. plasma) in which they were measured. We measured for the immunological 
biomarkers CRP, interleukin-1β [IL-1β], interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α], and IL-10 in 
plasma. These biomarkers were quantified at the Cancer Center Immunology Core at the University of Michigan 
(Ann Arbor, MI, USA). CRP was measured using a DuoSet enzyme-linked immunosorbent assay (ELISA) (R&D 
Systems, Minneapolis, MN). The remaining cytokines were simultaneously measured using the Milliplex MAP 
High Sensitivity Human Cytokine Magnetic Bead Panel (EMD Millipore Corp., St. Charles, MO). Further details 
on detection rates and assay sensitivity were previously described9. We also measured angiogenic factors PGF 
and soluble fms-like tyrosine kinase-1 [sFlt-1] in plasma using the ARCHITECT immunoassays by Abbott 
Laboratories (Abbott Park, IL).

The expanded panel of lipid biomarkers included 53 eicosanoids and lipid metabolites measured using a 6490 
Triple Quadrupole mass spectrometer (Agilent, New Castle, DE, USA), set to a targeted multiple reaction moni-
toring mode. Eicosanoids were identified based on metabolite-specific fragmentation and corresponding reten-
tion time. Further details on instrument parameters and quality control can be found elsewhere41. We measured 
for five oxidative stress biomarkers. The biomarkers total 8-isoprostane [8-IP] and 8-hydroxydeoxyguanosine 
[8-OHdG] were measured in urine samples by Cayman Chemical (Ann Arbor, MI). Urine samples were hydro-
lyzed for deconjugation of 8-IP and then purified through affinity column chromatography prior to measurement 
with enzyme immunoassay. 8-OHdG was measured with direct dilution into buffer without purification using an 
enzyme immunoassay.

Three protein oxidative stress markers were measured in plasma samples, including 3-nitrotyrosine [NY], 
3-chlorotyrosine [CY], and o,o’-dityrosine [DY]. To quantify these markers, plasma protein was first precipi-
tated from plasma samples and diluted with a phosphate buffer. Plasma samples were then delipidated, spiked 
with isotopically labeled internal standards, and hydrolyzed for 24 hours. The processed plasma samples were 
then analyzed for each protein oxidation marker via liquid chromatography electrospray ionization tandem mass 
spectrometry42.

Outcome variables.  We defined overall preterm birth as delivery prior to 37 weeks gestation. Among the 
preterm birth cases, we categorized a subset as spontaneous preterm births based on the following clinical criteria: 
(1) preterm premature rupture of the membranes (PPROM), or (2) spontaneous preterm labor5. Clinically, we 
defined another subset of preterm birth cases as those associated with aberrant placentation using the following 
criteria: (1) preterm birth resulting from the presentation of preeclampsia (encompassing onset of hypertension 
and proteinuria), or (2) intrauterine growth restriction (IUGR; <10th percentile in fetal weight for gestational 
age) during pregnancy5.

Association of preterm birth with single biomarkers.  In this study, we evaluated the associations 
of overall preterm birth, in addition to spontaneous preterm birth, and preterm birth associated with aberrant 
placentation subtypes with 65 endogenous biomarkers of interest. The subsequent analyses were restricted to 
individuals who had all information on covariates and biomarkers available: ncases+controls = 138 for all preterm, 
ncases+controls = 121 for spontaneous preterm and ncases+controls = 110 for preterm birth associated with aberrant pla-
centation. We first investigated the effects of single endogenous biomarkers on overall, spontaneous, and preterm 
birth associated with aberrant placentation. Measurements were log-transformed and then standardized with 
mean of 0 and standard deviation of 1. The effects were estimated from the model:

θθ θ| = + +Y M Z M ZP Modellogit ( , ) ( 1)zm0

where Y denotes an n × 1 vector of the outcome variable in separate logistic regression models where each pre-
term birth outcome was individually modeled to test for associations compared to term births. M is an n × 1 
vector that represents the biomarker of interest. The covariate matrix Z contained age at the initial visit, race, 
education level, health insurance provider, and maternal BMI at the initial study visit. Age is a continuous varia-
ble and the rest of the covariates were categorical. Z further included specific gravity if M is a urinary biomarker 
(8-OHdG and 8-IP). To account for multiple testing and control the FDR, we applied the Benjamini-Hochberg 
procedure to the set of p-values obtained from Model 1 with FDR being 0.1 for each definition of outcome43. We 
also performed a sensitivity analysis by examining associations in unadjusted models.

Association of preterm birth with individual and grouped biomarkers.  One of our study goals was 
to determine which of the 65 biomarkers were contributing most to associations with preterm birth in a multiple 
biomarker model:

β ββ| = + +Y M Z M ZP Modellogit ( , ) ( 2)M z0

where Y and Z are defined in the same way as for Model 1, while M is now an n × m matrix of the biomarkers 
of interest with m being the number of biomarkers considered in Model 2. We applied adaptive elastic-net44,45, a 
regularized regression approach, to each of the three outcome definitions separately using the R package gcdnet. 
The estimates of the p × 1 vector β = (β0, βM, βz)T were obtained by solving:
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which uses both lasso46 and ridge47 type penalty to perform variable selection with a correlated set of candidate 
predictors. The function h(y,m,z;β) is an assumed loss function, and the the adaptive weights ŵj’s were con-
structed using the coefficient estimates obtained from regular elastic-net. We let the parameter for the 2 penalty 
(λ2) take values on a grid from 0 to 2, in increments of 0.1. Furthermore, we forced the covariates Z to always be 
included in the model. For each fixed λ2, the function automatically computes the solutions for a fine grid of λ1’s, 
the 1 regularization parameter, assuming a Huberized squared hinge loss. We selected the combination of λ1 and 
λ2 that yielded the smallest 10-fold cross-validated misclassification error and used their corresponding coeffi-
cient estimates as adaptive weights.

Figure 7.  The Receiver Operating Characteristic (ROC) curve for the selected model for major groups. The 
area under the ROC curve for each group is: (A) logistic regression or adaptive elastic-net for all preterm: all 
(0.72 [0.53, 0.91]), lipid (0.78 [0.62, 0.94]), angiogenic factors (0.76 [0.60, 0.93]), protein (0.60 [0.41, 0.79]), 
DNA (0.76 [0.61, 0.90]), inflammatory (0.73 [0.58, 0.89]); (B) random forest for all preterm: all (0.85 [0.74, 
0.97]), lipid (0.84 [0.72, 0.96]), angiogenic factors (0.68 [0.50, 0.87]), protein (0.60 [0.44, 0.77]), DNA (0.74 
[0.56, 0.92]), inflammatory (0.57 [0.40, 0.74]); (C) logistic regression or adaptive elastic-net for spontaneous 
preterm: all (0.69 [0.46, 0.91]), lipid (0.63 [0.42, 0.84]), angiogenic factors (0.51 [0.32, 0.71]), protein (0.53 [0.29, 
0.78]), DNA (0.51 [0.26, 0.76]), inflammatory (0.57 [0.31, 0.83]); (D) random forest for spontaneous preterm: 
all (0.79 [0.61, 0.98]), lipid (0.79 [0.62, 0.96]), angiogenic factors (0.54 [0.25, 0.83]), protein (0.64 [0.44, 0.84]), 
DNA (0.52 [0.29, 0.75]), inflammatory (0.55 [0.31, 0.79]).
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In addition to analyzing each of the 65 biomarkers individually, we further sought to evaluate associations 
within biological context. To accomplish this, we organized the biomarkers into five major groups (Table 2): (1) 
DNA damage marker (8-OHdG), (2) angiogenic factors (PGF, sFlt-1), (3) protein damage markers (NY, CY, and 
DY), (4) immune biomarkers (CRP, IL-1β, IL-6, TNF-α, IL-10), and (5) lipid biomarkers (8-IP and all eicosa-
noids). We also sought to evaluate the 53 eicosanoids by enzymatic pathways, therefore we further organized the 
eicosanoids according to the three enzymatic pathways derived from previous studies (LOX, CYP450, or COX)41, 
or if they are parent compounds (Table 2). To investigate how individual groups were associated with preterm 
birth, we applied sparse-group lasso to the five major groups of biomarkers that we created, which performs selec-
tion among these whole groups to determine which groups are most predictive of preterm birth48. The coefficient 
estimates are solutions to:

   ∑β β βα λ αλ





− + − +



β =n

L pargmin 1 log ( ) (1 )
k

q

k
k

1

( )
2 1

Figure 8.  The Receiver Operating Characteristic (ROC) curve for the selected model for biological pathways 
of eicosanoids. The area under the ROC curve for each group is: (A) adaptive elastic-net for all preterm: 
cyclooxygenase (0.58 [0.41, 0.75]), CYP450 (0.68 [0.51, 0.85]), lipoxygenase (0.65 [0.45, 0.84]), parent 
compound (0.56 [0.37, 0.76]); (B) random forest for all preterm: cyclooxygenase (0.65 [0.47, 0.83]), CYP450 
(0.56 [0.39, 0.73]), lipoxygenase (0.83 [0.69, 0.96]), parent compound (0.65 [0.48, 0.81]); (C) adaptive elastic-
net for spontaneous preterm: cyclooxygenase (0.67 [0.44, 0.90]), CYP450 (0.74 [0.52, 0.96]), lipoxygenase (0.60 
[0.35, 0.85]), parent compound (0.67 [0.43, 0.91]); (D) random forest for spontaneous preterm: cyclooxygenase 
(0.63 [0.40, 0.87]), CYP450 (0.73 [0.51, 0.95]), lipoxygenase (0.82 [0.68, 0.96]), parent compound (0.63 [0.39, 
0.86]).
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where L(β) is the likelihood function for Model 2, q is the total number of groups considered (in this case q = 5), 
pk is the number of predictors in group k, and ∥1 and ∥2 are L1 and L2 norm, respectively. The mixing parameter 
α and tuning parameter λ together controls both “groupwise sparsity” and “within group sparsity” of non-null 
biomarkers. We set α to be 0.95, which assumes strong overall sparsity but encourages grouping48. In a secondary 
sparse-group lasso implementation, we split the major group of lipid damage markers into five subgroups, which 
included groupings for the three enzymatic pathways, lipid parent compounds, and 8-IP on its own (q = 9). Since 
current R implementation of sparse-group lasso does not support the specification of non-penalized coefficients, 
we treated the group of covariates as an additional group48. The relative importance of the associations was evalu-
ated based on the sequence of the path in which each group exits the model as the tuning parameter λ increased 
(the group exiting last being the most important).

Prediction of preterm birth.  We evaluated the performance of all and grouped endogenous biomarkers in 
predicting preterm birth. Subjects were randomly divided into training set and validation set with a ratio of 70:30 
for the respective comparison of overall, spontaneous, and preterm birth associated with aberrant placentation 
vs. term deliveries. The training set was resampled using the Synthetic Minority Over-sampling Technique49 to 
achieve balance between cases and controls, which may improve the prediction of minority class (in this case pre-
term birth). We used three different prediction algorithms using: (1) logistic regression, (2) adaptive elastic-net, 
and (3) random forest. First, we fitted a standard logistic regression model (Model 2) with the coefficients being 
estimated by maximum likelihood to the resampled training data for all biomarkers organized by each major 
group, and each eicosanoid enzymatic pathway. This method serves as a benchmark for evaluating the perfor-
mance in prediction. The group of lipid damage biomarkers (all eicosanoids and 8-IP) was excluded for this 
approach because the maximum likelihood estimates obtained from logistic regression were unstable due to the 
high dimension of predictors. Second, we trained the model by applying adaptive elastic-net to the training set 
for each major group of biomarkers, the process of which was the same as what was done on the whole data set. 
Building on this framework, we also applied the same adaptive elastic-net method to the training set where we 
focused solely on the lipid biomarkers differentiating the three enzymatic pathways and the parent compounds. 
Finally, going beyond parametric regression methods, we trained the model using random forest for all groups 
considered, where the number of variables randomly sampled at each split for the random forest method was 
determined using 10-fold cross validation. The logistic regression prediction approach is limited and becomes 
unstable in the presence of multicollinearity and high-dimensionality of covariates and predictors. The adaptive 
elastic-net prediction method has improved performance in the presence of multi-collinearity, however it is una-
ble to account for non-linear relationships between predictors and outcome variables. Finally, the random forest 
prediction method is able to account for non-linear relationships and interactions among predictors.

For all three prediction approaches, we obtained the predicted probability of the outcome of interest for each 
subject in the validation set using the optimal parameters determined by the training set. Subjects were classified 
as cases if their predicted probabilities were greater than 0.5 and controls otherwise. We calculated the misclas-
sification error, sensitivity and specificity, the latter two of which are defined as the probability of correctly iden-
tifying the participants with and without preterm delivery, respectively. Over fitting can be a possible concern in 
the logistic regression prediction method; however over fitting is not a major concern in both adaptive elastic-net 
and random forest prediction methods. We also examined the ROC curve and computed the AUC to assess the 
performance of the final model.

Ethical approval and informed consent.  This study received institutional review board approval from 
the Brigham and Women’s Hospital and all participants provided written informed consent.

Data availability
Due to the sensitive nature of biological samples and demographic variables of the human subjects dataset, the 
data used for this manuscript should remain confidential and not publicly shared to protect human subjects.
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