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Abstract. Tissue window filtering has been widely used in deep learning for computed tomography (CT) image
analyses to improve training performance (e.g., soft tissue windows for abdominal CT). However, the effective-
ness of tissue window normalization is questionable since the generalizability of the trained model might be
further harmed, especially when such models are applied to new cohorts with different CT reconstruction ker-
nels, contrast mechanisms, dynamic variations in the acquisition, and physiological changes. We evaluate the
effectiveness of both with and without using soft tissue window normalization on multisite CT cohorts. Moreover,
we propose a stochastic tissue window normalization (SWN) method to improve the generalizability of tissue
window normalization. Different from the random sampling, the SWN method centers the randomization around
the soft tissue window to maintain the specificity for abdominal organs. To evaluate the performance of different
strategies, 80 training and 453 validation and testing scans from six datasets are employed to performmultiorgan
segmentation using standard 2D U-Net. The six datasets cover the scenarios, where the training and testing
scans are from (1) same scanner and same population, (2) same CT contrast but different pathology, and (3) dif-
ferent CT contrast and pathology. The traditional soft tissue window and nonwindowed approaches achieved
better performance on (1). The proposed SWN achieved general superior performance on (2) and (3) with stat-
istical analyses, which offers better generalizability for a trained model. © 2019 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JMI.6.4.044005]
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1 Introduction
Computed tomography (CT) is a quantitative imaging technique
that produces imaging intensities normalized in Hounsfield
units (HU) (e.g., air as −1000 HU and water as 0 HU). The
quantitative meaning of intensity units allows clinical practi-
tioners to define typical window ranges (e.g., the range of inten-
sities to display) to enhance the visual contrasts for particular
tissues or organs by applying tissue windows.1 A tissue window
is an intensity band-pass filter, which only keeps the intensities
within the band and censors the intensities beyond the maximal/
minimal values. The band is commonly decided according to
the HU of targeting organ. For instance, a lung window
(−1150 < HU < 350) is typically applied to investigate lung
images, and a soft tissue window (−160 < HU < 240) is com-
monly employed to enhance the image contrast for abdominal
organs.1 Tissue windows not only improve the image contrast
for human visualization2 but also filter out texture/noise in un-
related tissues, organs, and background.

In recent years, the tissue window filtering process has
been widely adapted to deep learning methods on CT image
analyses.3–6 The rationale of using tissue window normalization
(preprocessing) is to get rid of the unnecessary information
before the machine learning stage, which enhances the specific-
ity of the trained deep learning model. The “specificity” in this
study is referred to the performance of deploying a trained deep

learning network on testing data with the same imaging acquis-
ition as the training data. The hypothesis behind that is the
HU values are standardized and homogenous across different
cohorts. However, this hypothesis might not always be valid
for some imaging scenarios, including but, not limited to, (1) dif-
ferent CT hardware, (2) potential confounds of CT reconstruc-
tion kernels, (3) different contrast-enhanced CT imaging,
(4) dynamic variations in acquisition, and (5) physiological
changes. As a result, the generalizability of the trained model
using fixed tissue window might be degraded when it is applied
to the heterogeneous clinical CT scans (Fig. 1). The “general-
izability” in this study is defined as the performance of
deploying a trained deep learning network on testing data with
different imaging acquisition from the training data.

In this paper, we investigate the effectiveness of standard
soft tissue window normalization (STN) for canonical multi-
organ segmentation task, compared with whole intensity range
(WIR, without using tissue windows). Moreover, we propose a
stochastic tissue window normalization (SWN) method to lev-
erage the generalizability upon STN. Different from using ran-
dom windows, we limit the window variations to be centralized
around the soft tissue window to improve specificity.

Eighty noncontrast CT scans with healthy organs are used to
train a standard 2D U-Net from Ref. 7. Then, 20 scans from the
same cohort and 433 scans from different cohorts are used to
evaluate the effectiveness of STN, WIR, and SWN, which
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covers the scenarios, where the training and testing scans are
from (1) same scanner and same population, (2) same CT con-
trast but different pathology, and (3) different CT contrast and
pathology.

2 Method

2.1 Stochastic Tissue Window Normalization

Figure 2 demonstrates the principle of training an organ seg-
mentation network using SWN, which randomly samples the
window size and location beyond the STN. A tissue window
is determined by two parameters: window level (center) and
window size.1 Instead of only pursuing generalizability by
natively sampling random windows, we force the randomly
sampled windows to be centered around soft tissue window
to maintain the specificity. To achieve that, we used the soft tis-
sue window (window level L ¼ 40, half-window sizeW ¼ 200)
as the centers of the random sampling. The pseudocode of the
proposed SWNmethod is shown in Fig. 3. Briefly, we employed
two Gaussian distributions to add variability upon the soft tissue
window. The new windows are randomly sampled from the
following two Gaussian distributions:

EQ-TARGET;temp:intralink-;e001;63;145L ∼ Gaussian ðμ ¼ 40; σ ¼ xÞ; (1)

EQ-TARGET;temp:intralink-;e002;63;103W ∼ Gaussian ðμ ¼ 200; σ ¼ yÞ; (2)

where x and y are the two coefficients to control the variabilities
of the random windows. In the study, we used the format “½x; y�”
to show the values of x and y for any experiments performed

by SWN. During the training, a 2D training image slice Ii is
normalized by the sampled window with the following steps:
EQ-TARGET;temp:intralink-;e003;326;368

IiðIi > ðLi þWiÞÞ ¼ ðLi þWiÞ;
IiðIi < ðLi −WiÞÞ ¼ ðLi −WiÞ;

I 0i ¼
Ii − ðLi −WiÞ

2Wi
: (3)

Note that the Li andWi are different for each input during train-
ing, which are randomly sampled from the aforementioned
two Gaussian distributions. For WIR, the intensity within whole
major intensity range (−1000 < HU < 1000) is normalized for
training without applying any tissue windows. In the testing
stage, we preprocess every testing scan using standard soft tissue
window for STN and SWN while not using such window
for WIR.

2.2 Multiorgan Segmentation Network

To evaluate the effectiveness of using tissue window normaliza-
tion, we keep the training network and processing standardized.
The canonical 2D U-Net7 is employed as the base network. The
same data augmentation stages (random cropping, padding,
rotation, and translation) are performed to enhance the spatial
generalizability. First, all input CT image voxels are converted
to floating-point numbers with 32 bits (“float”). Then, all the
input 2D CT images (after windowing and preprocessing) are
further normalized from 0 to 255 (“float”) with resolution
512 × 512. The number of input channels is one, and the number

Fig. 1 The soft tissue window normalization works well when the distribution of the testing scan (testing
A) matches the training scan. However, the performance might be degraded on the testing scan (testing
B) with different CT contrast. The mechanism of modifying the contrast is to apply a soft tissue window
(−160 < HU < 240) on the raw CT scans.
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of output channels is eight (including background, spleen, right
kidney, left kidney, liver, stomach, pancreas, and body mask).
The Adam optimizer8 with learning rate 0.00001 is used with
a batch size of six. Weighted cross-entropy is used as the loss
function, whose weights of eight channels are [1, 10, 10, 10, 5,
10, 10, 1]. The models are trained with a maximum of 100
epochs. When training each epoch, every image is windowed
once across different windowing methods. The level and win-
dow size are randomly decided for each time when using the
proposed SWN. Therefore, the windows are different, even for
the same image across different epochs. During testing stage, the
standard soft tissue window (without randomness) is used for

SWN to have a fair comparison with the STW method. The
learning rate, epoch number, and the weights were optimized
from internal validation and were applied to all testing cohort
consistently. Notably, the same hyperparameters are used across
all experiments except the tissue window normalization.

2.3 Training and Validation Data (Same Scanner
and Population)

Multiatlas Labeling Beyond the Cranial Vault (MLBCV, multi-
organ): 100 abdominal CT scans were obtained from the
International Conference on Medical Image Computing and

Fig. 2 The workflow of deploying the proposed SWN to train a standard 2D U-Net segmentation network.

Fig. 3 Pseudocode of the SWN. The terms are defined based on Eqs. (1)–(3).
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Computer Assisted Intervention (MICCAI) 2015 MLBCV
challenge.9 The data were acquired from portal venous phase
CT modality with variable volume sizes (512 × 512 × 33 to
512 × 512 × 158) and field-of-views (approximately 300 ×
300 × 250 mm3 to 500 × 500 × 700 mm3). The in-plane resolu-
tion varies from 0.54 × 0.54 mm2 to 0.98 × 0.98 mm2. Among
100 scans, 80 were used as training while the remaining 20 were
used as validation. Six organs (spleen, right kidney, left kidney,
liver, stomach, and pancreas) from MLBCVare used as training
targets.

3 Data

3.1 Testing Data (Same CT Contrast but Different
Pathology)

Figure 4 summarizes the six datasets used in this study. All data-
sets were acquired in deidentified form under Institutional
Review Board approval.

3.1.1 Decathlon (pancreas)

Two hundred and eighty-two abdominal CT scans with manual
pancreas segmentation were obtained from MICCAI 2018
Medical Segmentation Decathlon (pancreas tumor) dataset.
The data were acquired from portal venous phase CT modality.
The details of the data can be found at Ref. 10.

3.1.2 Liver tumor segmentation (liver)

One hundred and thirty-one abdominal CT scans with liver man-
ual segmentation were obtained from liver tumor segmentation
(LiTS) challenge. The data were acquired from portal venous
phase CTmodality. The details of the data can be found at Ref. 11.

3.1.3 Focal nodular hyperplasia (liver)

Eight abdominal CT scans with liver manual segmentation were
internally acquired from patients with focal nodular hyperplasia

(FNH) lesion. The data were acquired from contrast-enhanced in
portal venous phase CT modality with in-plane image size 512 ×
512 and resolution from 0.5 mm to 0.8 mm. The slice thickness
is 5 mm.

3.2 Testing Data (Different CT Contrast and
Pathology)

3.2.1 AA-DHS (liver)

Five abdominal CT scans with fatty liver diagnosis and manual
liver segmentations were obtained from African American-
Diabetes Heart Study (AA-DHS) dataset. The data were
acquired from noncontrast CT modality with in-plane resolution
512 × 512. The details of the data can be found at Ref. 12.

3.2.2 Delayed (kidneys)

Five abdominal CT scans with manual left and right kidney
segmentation were acquired internally with excretory phase
sequences. The scans were performed in the prone position
at an 8-min delay per institutional protocol with 3-mm axial
reconstructions.

4 Simulation

4.1 Specificity and Generalizability Analysis

The 20 validation CT scans were used to evaluate the speci-
ficity and generalizability of STN, WIR, and SWN. To test the
specificity and generalizability, we performed a simulation,
which adds or subtracts constant values on 20 validation scans
(from −300 to þ300 in steps of 25 HU). That experiment
simulates the intensity variations in testing data when applying
the trained model. The 20 validation CT scans were used
since the data were acquired from the same scanner as the train-
ing data. Therefore, the spatial effects will be minimized
and the difference in performance is solely from the global
variations on intensities. Figure 5 shows the variations of

Fig. 4 Summary of training, validation, and testing cohorts.
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segmentation performance on six organs with the changes in
raw intensities.

5 Empirical Validation
The 20 MLBCV scans are used to evaluate the performance
of different window normalization strategies for the scenarios
that the training and testing scans are from the “same scanner
and population.” The Dice similarity coefficient (DSC) has been
used as the metrics to show the segmentation accuracy.

The Decathlon, LiTS, and FNH cohorts are employed to
evaluate the performance of different window normalization
strategies for the scenarios that the training and testing scans
are from “same CT contrast but different pathology.”

The AA-DHS and delayed cohorts are employed to evaluate
the performance of different window normalization strategies
for the scenarios that the training and testing scans are from
“different CT contrast and pathology.”

5.1 Internal Validation (MLBVC)

The qualitative and quantitative results of 20 MLBVC validation
scans are shown in Figs. 6 and 7, respectively. The detailed mea-
surements of six labels are presented in Table 1. As the training
and validation datasets are from the same cohort and the same
scanner, the intensities of training scans and testing scans are
homogeneous. Therefore, the canonical STN or WIR methods
achieved superior performance in either median DSC or mean
DSC for all six organs. In Table 1, the best DSC results are
marked as bold. Briefly, the greater median and mean DSC indi-
cate the better segmentation performance referring to the manual
segmentations. The smaller standard deviation (STD) of DSC
means the variation of the segmentation performance is smaller
and more consistent across the cases. The symbol “—” indicates
that the difference between the corresponding method and the
reference method (“Ref.”) is not significant. The symbols “↑”

Fig. 5 This figure shows the specificity and generalizability of STN, WIR, and SWN. To test the different
tissue window normalization strategy, the testing scans have been added or subtracted constant values
and fed into the same network. The color indicates the mean Dice values across 20 validation scans for
each organ. The width of the yellow color range in each row shows the generalizability, and the bright-
ness indicates the specificity. The proposed SWN has better generalizability compared with STN and
better specificity compared with WIR. (a) MLBCV—spleen, (b) MLBCV—right kidney, (c) MLBCV—left
kidney, (d) MLBCV—liver, (e) MLBCV—stomach, and (f) MLBCV—pancreas.
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Fig. 7 The quantitative results of applying different intensity normalization strategies to MLBCV dataset,
which is from the “same scanner and same population” as training. (a) MLBCV—spleen, (b) MLBCV—
right kidney, (c) MLBCV—left kidney, (d) MLBCV—liver, (e) MLBCV—stomach, and (f) MLBCV—
pancreas.

Fig. 6 The qualitative results of applying different intensity normalization strategies. The segmentation
results of three scans with the (a) lowest DSC, (b) median DSC, and (c) highest DSC (in SWN [50, 50])
are presented for each experiment.
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Table 1 Segmentation performance on MLBCV.

STN WIR SWN [10, 10] SWN [10, 100] SWN [50, 50] SWN [100, 10] SWN [100, 100]

MLBCV—spleen

Median 0.9438 0.9469 0.9444 0.9456 0.9437 0.9442 0.9469

Mean 0.9380 0.9407 0.9359 0.9391 0.9368 0.9399 0.9413

STD 0.0317 0.0294 0.0333 0.0247 0.0283 0.0194 0.0279

p < 0.05 Ref. — p ¼ 0.048↓ — — — —

p < 0.05 — Ref. — — — — —

MLBCV—right kidney

Median 0.9307 0.9274 0.9194 0.9252 0.9240 0.9288 0.9187

Mean 0.8898 0.8942 0.8894 0.8948 0.8995 0.8999 0.8936

STD 0.1231 0.1046 0.0966 0.0894 0.0801 0.0887 0.0859

p < 0.05 Ref. — *p ¼ 0.004 ↓ — — — —

p < 0.05 — Ref. *p ¼ 0.006 ↓ — — — —

MLBCV—left kidney

Median 0.9360 0.9400 0.9364 0.9337 0.9251 0.9346 0.9132

Mean 0.8840 0.8859 0.8855 0.8801 0.8762 0.8835 0.8571

STD 0.2087 0.2096 0.2093 0.2083 0.2074 0.2089 0.2040

p < 0.05 Ref. — — — *p ¼ 0.003 ↓ — *p < 0.001 ↓

p < 0.05 — Ref. — — *p ¼ 0.003 ↓ — *p < 0.001 ↓

MLBCV—liver

Median 0.9633 0.9659 0.9662 0.9633 0.9648 0.9577 0.9634

Mean 0.9622 0.9646 0.9639 0.9613 0.9640 0.9575 0.9611

STD 0.0096 0.0086 0.0089 0.0110 0.0086 0.0127 0.0103

p < 0.05 Ref. *p ¼ 0.010 ↑ *p ¼ 0.025 ↑ — — *p < 0.001 ↓ —

p < 0.05 *p ¼ 0.010 ↓ Ref. — *p ¼ 0.011 ↓ — *p < 0.001 ↓ *p ¼ 0.010 ↓

MLBCV—stomach

Median 0.8528 0.8102 0.8412 0.8418 0.8348 0.8306 0.8325

Mean 0.8377 0.8029 0.8380 0.8327 0.8305 0.8234 0.8307

STD 0.0805 0.1052 0.0777 0.0995 0.0891 0.0944 0.0845

p < 0.05 Ref. p ¼ 0.019 ↓ — — — — —

p < 0.05 p ¼ 0.019 ↑ Ref. p ¼ 0.014 ↑ p ¼ 0.019 ↑ — — —

MLBCV—pancreas

Median 0.7620 0.7196 0.7453 0.7407 0.7234 0.7294 0.7336

Mean 0.7483 0.7030 0.7357 0.7344 0.7313 0.7215 0.7167

STD 0.1149 0.1140 0.1038 0.0886 0.1091 0.1279 0.1046

p < 0.05 Ref. *p ¼ 0.007 ↓ — *p ¼ 0.007 ↓ — *p ¼ 0.003 ↓ *p ¼ 0.005 ↓

p < 0.05 *p ¼ 0.007 ↑ Ref. *p ¼ 0.012 ↑ *p ¼ 0.017 ↑ *p ¼ 0.033 ↑ — —

Note: The best DSC results are marked as bold. The symbol “—” indicates that the difference between the corresponding method and the reference
method (“Ref.”) is not significant. The symbols “↑” and “↓”mean significantly higher and lower, respectively, using theWilcoxon signed-rank test with
p < 0.05. “*” means the FDR corrected p value is also <0.05.
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and “↓” mean significantly higher and lower, respectively, using
the Wilcoxon signed-rank test with p < 0.05. The symbol “*”
means the false discovery rate (FDR) corrected p value within
the corresponding abdominal organ is <0.05, with number of
comparisons = 12 of each organ.

5.2 External Validation on Same Imaging Protocol

We group the results of Decathlon, LiTS, and FNH as the exter-
nal validation results on the same CT modality since such data-
sets were acquired from the same imaging protocol (portal

Fig. 8 The qualitative results of applying different intensity normalization strategies. The segmentation
results of three scans with the lowest, median, and highest DSC (in SWN [50,50]) are presented for each
experiment. (a)–(c) Decathlon—pancreas, (d)–(f) LiTS—liver, (g)–(i) FNH—liver.
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venous phase) as the training datasets but from different sites.
The qualitative and quantitative results of different methods are
shown in Figs. 8 and 9. The corresponding detailed measure-
ments are provided in Table 2. When performing the trained

model on external validation datasets with the same imaging
protocol but different sites and pathologies, the proposed SWN
method achieved superior performance compared with the
canonical STN and WIR methods.

Fig. 9 The quantitative results of applying different intensity normalization strategies to (a) Decathlon,
(b) LiTS, and (c) FNH, which are from “same CT contrast, different pathology.”

Table 2 Performance on testing data (same CT contrast, different pathology).

STN WIR SWN [10,10] SWN [10,100] SWN [50,50] SWN [100,10] SWN [100,100]

Decathlon—pancreas

Median 0.6908 0.6407 0.6996 0.6880 0.6933 0.6870 0.6972

Mean 0.6480 0.6009 0.6714 0.6612 0.6607 0.6590 0.6665

STD 0.1639 0.1645 0.1432 0.1403 0.1507 0.1467 0.1416

p < 0.05 Ref. *p < 0.001 ↓ *p < 0.001 ↑ — *p ¼ 0.034 ↑ — *p ¼ 0.011 ↑

p < 0.05 *p < 0.001 ↑ Ref. *p < 0.001 ↑ *p < 0.001 ↑ *p < 0.001 ↑ *p < 0.001 ↑ *p < 0.001 ↑

LiTS—liver

Median 0.9396 0.9425 0.9414 0.9420 0.9439 0.9389 0.9425

Mean 0.9321 0.9294 0.9315 0.9351 0.9335 0.9288 0.9346

STD 0.0307 0.0472 0.0405 0.0300 0.0376 0.0398 0.0300

p < 0.05 Ref. — — *p ¼ 0.015 ↑ *p ¼ 0.009 ↑ *p ¼ 0.008 ↑ *p ¼ 0.015 ↑

p < 0.05 — Ref. — — — *p ¼ 0.011 ↓ —

FNH—liver

Median 0.9317 0.9395 0.9389 0.9430 0.9422 0.9408 0.9443

Mean 0.9295 0.9367 0.9386 0.9408 0.9423 0.9361 0.9399

STD 0.0264 0.0181 0.0138 0.0119 0.0139 0.0203 0.0166

p < 0.05 Ref. — — — p ¼ 0.008 ↑ — p ¼ 0.016 ↑

p < 0.05 — Ref. — — — — —

Note: The best DSC results are marked as bold. The symbol “—” indicates that the difference between the corresponding method and the reference
method (“Ref.”) is not significant. The symbols “↑” and “↓”mean significantly higher and lower, respectively, using theWilcoxon signed-rank test with
p < 0.05. “*” means the FDR corrected p value is also <0.05.
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Fig. 10 The qualitative results of applying different intensity normalization strategies on (a)–(c) AADHS
and (d)–(f) delayed datasets are provided. The segmentation results of three scans with the lowest,
median, and highest DSC (in SWN [50, 50]) are presented. The yellow and blue arrows indicate the
key observations among different methods.

Fig. 11 The quantitative results of applying different intensity normalization strategies on the testing
scans, which are from “different CT contrast and pathology” compared with training. (a) AADHS—liver,
(b) AADHS—right kidney, and (c) AADHS—left kidney.
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5.3 External Validation on Different Imaging
Protocol

The trained model from portal venous phase CT scans is evalu-
ated using the noncontrast CT scans (AADHS) and delayed
phase CT scans (delayed). In this scenario, the HU intensities
of livers in AADHS are systematically different from training
data. Meanwhile, the HU intensities of kidneys in delayed are
systematically different from training data. Therefore, the inten-
sities of targeting organs in training and testing datasets are
heterogeneous. The qualitative and quantitative results are shown
in Figs. 10 and 11. The corresponding detailed measurements are
provided in Table 3. From the results, the proposed SWNmethod
achieved superior performance compared with the canonical
STN and WIR methods.

6 Conclusion and Discussion
We evaluate the effectiveness of both tissue window normaliza-
tion and nonwindowed methods for deep learning on CT organ
segmentation tasks. The soft tissue window typically yields
superior performance on segmenting smaller and more challeng-
ing organs (pancreas and stomach). Meanwhile, the segmenta-
tion performance of without using tissue window techniques
achieved superior performance on larger and easier organs (liver
and spleen).

From internal validation (training and testing data are from
the same scanner and population), the STN and WIR achieved
overall better segmentation performance (Fig. 7 and Table 1).
We propose a new SWN method and evaluate the STN, WIR,
and SWNmethods using simulation (Fig. 5) of different external
testing cohorts.

According to the absolute differences in Dice values (high-
lighted in bold), the proposed SWN method achieved generally
better Dice scores, when evaluated on the testing scans acquired
from the different scanner but same contrast (Fig. 9 and Table 2).
When evaluated on the testing scans acquired from different
modalities and different pathologies (Fig. 11 and Table 3), the
proposed SWN method also achieved generally superior Dice
values compared with STN and WIR. The proposed SWN pro-
vided better generalizability of a trained model while preserving
the specificity compared with STN and WIR.

The standard Wilcoxon signed-rank test statistical analyses
(highlighted with colors) is used in the study. When the training
and testing scans are regimented to be acquired from the same
scanner, protocol, and patient population (Table 1), the proposed
method demonstrates improved benchmarks as compared to
the standard method. It means the simple standard intensity nor-
malization methods are more proper for internal validation. But
in the real world, we typically would like to train a more general-
izable deep learning model, which can be applied directly to
different cohorts and populations (Tables 2 and 3). Under such

Table 3 Performance on testing data (different CT contrast and pathology).

STN WIR SWN [10, 10] SWN [10, 100] SWN [50, 50] SWN [100, 10] SWN [100, 100]

AADHS—liver

Median 0.8290 0.8752 0.8983 0.9017 0.8924 0.8433 0.8892

Mean 0.7799 0.8214 0.8458 0.8811 0.8797 0.8084 0.8589

STD 0.1661 0.1248 0.1266 0.0559 0.0449 0.1433 0.1039

p < 0.05 Ref. — p < 0.05 ↑ — p < 0.05 ↑ p < 0.05 ↑ p < 0.05 ↑

p < 0.05 — Ref. p < 0.05 ↑ — p < 0.05 ↑ — p < 0.05 ↑

Delayed—right kidney

Median 0.8847 0.8875 0.8678 0.9048 0.9084 0.8954 0.8905

Mean 0.8652 0.8673 0.8690 0.9035 0.9031 0.8921 0.8995

STD 0.0352 0.0719 0.0526 0.0341 0.0256 0.0281 0.0245

p < 0.05 Ref. — — p < 0.05 ↑ p < 0.05↑ — —

p < 0.05 — Ref. — — — — —

Delayed—left kidney

Median 0.8755 0.8328 0.8491 0.8994 0.8841 0.8853 0.8936

Mean 0.8580 0.7898 0.8359 0.8987 0.8910 0.8818 0.8913

STD 0.0605 0.1010 0.0427 0.0334 0.0298 0.0272 0.0293

p < 0.05 Ref. p < 0.05 ↓ — — — — —

p < 0.05 p < 0.05 ↑ Ref. — — — — p < 0.05↑

Note: The best DSC results are marked as bold. The symbol “—” indicates that the difference between the corresponding method and the reference
method (“Ref.”) is not significant. The symbols “↑” and “↓”mean significantly higher and lower, respectively, using theWilcoxon signed-rank test with
p < 0.05.
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external validation scenarios, the generalizability of the trained
model is essential, especially when the number of available
training cases is typically in small-scale for medical imaging
applications. The proposed method achieves overall superior
performance when the testing and training cohorts are more
heterogeneous, which leverages the segmentation performance
of the trained models on the different testing imaging protocols.
Under the more restricted scenarios, FDR correction is ap-
plied to correct the original p-values for multiple comparisons
(highlighted with “*”). After FDR correction, the differences
for MLBCV-spleen, MLBCV-stomach (Table 1), FNH-liver
(Table 2), AADHS-liver, delayed-left kidney, and delayed-right
kidney (Table 3) are not significant. The nonsignificant compar-
isons in Tables 2 and 3 are due to the relatively small sizes of
available cohorts (i.e., five to eight patients).

The standard 2D U-Net is employed as the segmentation
network to evaluate the performance of using tissue windows.
While this combination is successful, we do not claim optimality
of using 2D U-Net. To achieve the superior segmentation net-
work is not the major aim of this work. In the future, it would
be also interesting to have the organs from different contrasts
labeled by different human experts. In that case, the inter-rater
reliability is able to be calculated, which can be used to evaluate
the automatic detection with human variability.

The proposed method is validated on the soft tissue window.
However, other types of tissue windows (e.g., lung, cardiac,
liver window, etc.) have also been widely used in different
applications. Theoretically, the stochastic tissue window would
also improve the generalizability of deep network for such
applications. Therefore, it would be useful to extend and vali-
date the proposed method to such applications in the future.
Another limitation of the proposed window-based normalization
is that it sacrifices the physical information behind the HU
standardization.
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