
The ISME Journal (2019) 13:2916–2926
https://doi.org/10.1038/s41396-019-0480-2

ARTICLE

Global change-driven use of onshore habitat impacts polar bear
faecal microbiota

Sophie E. Watson 1,2
● Heidi C. Hauffe 2

● Matthew J. Bull 1,2
● Todd C. Atwood3

● Melissa A. McKinney 4
●

Massimo Pindo5
● Sarah E. Perkins 1,2

Received: 4 October 2018 / Revised: 4 July 2019 / Accepted: 11 July 2019 / Published online: 5 August 2019
© The Author(s), under exclusive licence to International Society for Microbial Ecology 2019

Abstract
The gut microbiota plays a critical role in host health, yet remains poorly studied in wild species. Polar bears (Ursus
maritimus), key indicators of Arctic ecosystem health and environmental change, are currently affected by rapid shifts in
habitat that may alter gut homeostasis. Declining sea ice has led to a divide in the southern Beaufort Sea polar bear
subpopulation such that an increasing proportion of individuals now inhabit onshore coastal regions during the open-water
period (‘onshore bears’) while others continue to exhibit their typical behaviour of remaining on the ice (‘offshore bears’).
We propose that bears that have altered their habitat selection in response to climate change will exhibit a distinct gut
microbiota diversity and composition, which may ultimately have important consequences for their health. Here, we perform
the first assessment of abundance and diversity in the faecal microbiota of wild polar bears using 16S rRNA Illumina
technology. We find that bacterial diversity is significantly higher in onshore bears compared to offshore bears. The most
enriched OTU abundance in onshore bears belonged to the phylum Proteobacteria, while the most depleted OTU abundance
within onshore bears was seen in the phylum Firmicutes. We conclude that climate-driven changes in polar bear land use are
associated with distinct microbial communities. In doing so, we present the first case of global change mediated alterations in
the gut microbiota of a free-roaming wild animal.

Introduction

As an apex predator with vulnerable conservation status [1],
the polar bear (Ursus maritimus) is widely acknowledged as
a key indicator of Arctic ecosystem health [2], a model
species for studying the effects of climatic and other
anthropogenic stressors in the Arctic [3–5], and a flagship
for environmental change [6]. As one of the most ice
dependent Arctic marine mammals [7], polar bears require
sea ice for long-distance movements, mating and accessing
prey [8]. One subpopulation of polar bear, the southern
Beaufort Sea subpopulation, is exhibiting a distinct beha-
vioural response to climate-driven changes in sea ice con-
ditions. Historically, these polar bears remained year-round
on the sea ice (hereafter referred to as ‘offshore bears’),
taking advantage of the biologically productive continental
shelf [9]. Since the 2000s, however, substantial declines in
the spatial and temporal availability of sea ice in summer
and fall [10, 11], extending well beyond the continental
shelf, have driven a divide in polar bear behaviour whereby
some continue to select the retreating ice habitat (‘offshore
bears’) while others instead adopt a novel behaviour and
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move to coastal onshore habitat during the reduced ice
period (‘onshore bears’) [12]. The entire subpopulation uses
the sea ice during the remainder of the year. Onshore bears
have been associated with a range of dietary items that
offshore bears are unable to access, notably ‘bone piles’, the
remains of locally harvested bowhead whales (Balaena
mysticetus), along with the carcasses of fish, birds and
caribou (Rangifer tarandus) [13]. Conversely, offshore
bears primarily consume a traditional diet of ringed seal
(Pusa hispida), bearded seal (Erignathus barbatus) and
occasionally beluga whale (Delphinapterus leucas) [13],
which are inaccessible to onshore bears.

Changes in trophic interactions alter the exposure of
polar bears to contaminants and novel parasites [14, 15].
For example, ringed seals (available only to offshore bears)
are considered to occupy a high trophic position and so
typically bioaccumulate higher levels of contaminants than
species lower in the trophic chain such as the filter feeders
(i.e. bowhead whales) and herbivores (i.e. caribou) [16–18],
which are available only to onshore bears. In addition, bone
piles, foraged on by onshore bears, are utilised as a food
resource by other terrestrial species [13, 19] and lie within
comparatively close range of human settlements, such as
Kaktovik (70.13°N, 143.62°W) and Deadhorse (70.20°N,
148.46°W). Thus, onshore bears are potentially exposed to
(and therefore at greater risk of infection from) novel
parasites carried by terrestrial species, including humans
and their domestic pets. For example, Atwood et al. (2017)
[5] found that southern Beaufort Sea polar bears exhibiting
onshore behaviour have a greater risk of exposure to Tox-
oplasma gondii and lower exposure to certain contaminants
than offshore bears. Thus, onshore bears are exposed to
different biotic stressors compared to offshore bears [5, 20],
which have the potential to drive variation in the gut
microbiota. In humans and mice, for example, helminth
infection is associated with significant differences in the
community composition of gut bacterial communities [21–
23], while contaminants such as herbicides and pesticides
have been shown to inhibit the growth of a variety of
beneficial gut bacteria [24] and even cause dysbiosis [25].

The gut microbiota, a diverse community of bacteria that
resides within the gastrointestinal tract, has a long co-
evolutionary association with its host [26], carrying out vital
nutritional and physiological roles [26–28]. In effect, the
regular intestinal development and function of an individual is
attributed to an array of specific bacterial groups or species,
the composition and diversity of which are a function of
complex interactions between host and environment [29].
Despite the importance of the gut microbiota to health, little is
understood of the composition or community structure of the
gut microbiota of wild fauna [30]. In brown bears (U. arctos)
however, we know a distinct gut microbiota profile is asso-
ciated with active bears compared to those in hibernation

phase—this specific community of bacteria is thought to play
a role in promoting adiposity while still maintaining normal
gut metabolism [31]. A paucity of knowledge on wild
microbiota is particularly concerning considering that in the
face of rapid climate change tight host-gut microbiota asso-
ciations could quickly become decoupled, negating millions
of years of co-evolutionary adaptation [26], and yet this too
remains poorly understood.

A number of studies provide support for an association
between host microbial communities and environmental
fluctuations. Cold acclimated laboratory mice, for example,
harbour a dramatically different gut microbiota composition
to those raised at higher temperatures [32], while experi-
mentally induced temperature increases of 2–3 °C cause a
34% loss of microbiota diversity in the common lizard
(Zootoca vivipara) [33]. Outside a laboratory setting, varia-
tions in weather events have been linked to the increased
occurrence of gastrointestinal illness in residents of Nunat-
siavut, Canada [34]. To the best of our knowledge, however,
no study has demonstrated a climate change mediated
alteration in the gut microbiota of free-roaming wildlife.

The gut microbiota has been examined once before in wild
polar bears, specifically those from the Svalbard archipelago
belonging to the Barents Sea subpopulation [35]. The authors
found a low bacterial diversity, dissimilar to that reported in
other Arctic carnivores [36] and wild ursids [31, 37, 38],
possibly attributed to the methodologies employed (having
used 16S rRNA clone libraries as opposed to next generation
sequencing techniques) and small sample size [35, 39]. Here
we use high-throughput sequencing techniques to conduct the
first detailed investigation of the gut microbiota composition
of a large sample (n= 112) of wild southern Beaufort Sea
polar bears and to establish the diversity, abundance, and
composition of gut bacteria associated with on- and offshore
bears. In doing so, we are able to evaluate the effect of a
climate driven change in habitat use on microbial composi-
tion. Reflecting methods widely used in other gut microbiota
studies [40], we use faeces as a proxy of gut microbiota,
herein referred to as the faecal microbiota.

Materials and methods

Polar bear capture and sampling

Polar bears were captured under the United States Geolo-
gical Survey (USGS) Polar Bear Research Program (Marine
Mammal Permit MA690038 to T.C.A.) in an area ranging
approximately from Utqiagvik, Alaska (156°W) in the west
to Demarcation Point (140°W) at the US-Canada border in
the east, and extending from the shoreline to ~135 km north
on sea ice (with the exception of one individual; Fig. 1). In
the spring and fall of 2008 and 2009, and the spring of 2010
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and 2013, polar bears were encountered via helicopter and
immobilised with a remote injection of zolazepam-
tiletamine (Telazol®, Fort Dodge Animal Health, Fort
Dodge, Iowa, USA, and Warner-Lambert Co., Groton,
Connecticut, USA). A single faecal sample was collected
directly from the rectum of each polar bear using a sterile
latex glove and immediately transferred to a sterile Whirl-
pak bag (Nasco, Fort Atkinson, Wisconsin, USA) for sto-
rage. In total, samples were taken from 112 individuals,
including 89 adults and 23 subadults, (51 males and 61
females). All samples were stored at −20 °C for the dura-
tion of the field season (~5 weeks) before being stored at
−80 °C at the US Geological Survey, Alaska Science
Center (Anchorage, Alaska, USA), and subsequently ship-
ped on dry ice to the Fondazione Edmund Mach, Italy
(CITES permit IT/IM/2015/MCE/01862 to S.W.).

Age of subadults and adults was estimated by extracting and
analysing the cementum annuli of a vestigial premolar tooth
[41]. In total, 85 of the 112 bears were known to be either
onshore or offshore (onshore n= 46; offshore n= 39; Sup-
plementary Table 1). Individuals were categorised as either
‘onshore bears’ or ‘offshore bears’ as described in [5]. In brief,
location data collected from satellite collars were used to
identify adult females that used land (‘onshore’) or sea ice
(‘offshore’) in summer and fall [42]. We classified both male
and female individuals as onshore bears if they were detected
(via genetic identification and cross-referencing with our
database of known bears) at hair-snags erected in the fall
around bowhead whale bone piles and from biopsy-darting
during fall coastal surveys from 2010 to 2013. An individual
was classified as onshore or offshore if spatial or genetic data

suggested that the individual was onshore or offshore in
summer and/or in the year of capture (for fall-captured bears) or
immediately prior to capture (for spring-captured bears). Body
condition for each polar bear was estimated using a ‘Body
Condition Index’ metric [43] and was classified as either above
or below the mean body condition for our sample set. Year and
season of capture was also recorded.

Extraction of bacterial DNA

All faecal matter was collected from inside each sample glove
using a sterile cotton swab (APTACA sterile transport swabs,
Brescia, Italy). The swab was subsequently vortexed for
10 min in 1ml phosphate-buffered saline solution (PBS) and
pelleted by centrifugation at 16,000 g for 12min. Lysis buf-
fer, 80 µl, (200mM NaCl, 100mM Tris, 20mM EDTA,
20mg/ml Lysozyme, pH 8.0); 5 mm stainless steel beads
(Qiagen) were added to each sample before a three-minute
homogenisation step at 30 Hz using a Mixer Mill MM200
(Retsch GmbH, Haan, Germany). Samples were then shaken
at 37 °C for 40min Grant-Bio PCMT Thermoshaker
(500 rpm). Microbial DNA was extracted using the QIAamp®
DNA Mini Kits (QIAGEN©, Milan, Italy), following the
manufacturer’s Buccal Swab Spin Protocol for cotton swabs
(QIAamp® DNA Mini and Blood Mini Handbook), but
starting from step 2 (addition of Proteinase K).

16S rRNA gene amplification and sequencing

Using the bacteria-specific primer set 341F (5′-CCTACGG
GNGGCWGCAG-3′) and 805Rmod (5′-GACTACNVG

Fig. 1 Map of study area
showing the sampling locations
of 112 southern Beaufort Sea
polar bears along the north coast
of Alaska. Inset map shows the
location of the study area,
highlighting that one sample
originates from a more northerly
location that the others
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GGTWTCTAATCC-3′) (based on Klindworth et al. [44]
with degenerate bases) with overhanging Illumina adaptors,
a ~460 base pair (bp) fragment of the 16S rRNA gene
(variable region V3-V4) [45] was amplified using a Gen-
eAmp PCR System 9700 (Thermo Fisher Scientific) and the
following steps: 94 °C for 5 min (one cycle), 95 °C for 30 s,
55 °C for 30 s, 72 °C for 30 s (30 cycles), 72 °C for 5 min (1
cycle). The PCR products were visualised on a 1.5%
agarose gel and purified using Agencourt AMPure XP SPRI
beads (Beckman Coulter, Brea, CA, USA) following man-
ufacturer’s instructions. Subsequently, Illumina® Nextera
XT indices and sequencing adaptors (Illumina®) were
incorporated using seven cycles of PCR (16S Metagenomic
Sequencing Library Preparation, Illumina®). The final
libraries were quantified using the Quant-IT PicoGreen
dsDNA assay kit (Thermo Fisher Scientific) by the
Synergy2 microplate reader (Biotek), pooled in equimolar
concentration before sequencing on an lllumina® MiSeq
(2 × 300 bp reads) at the Next Generation Sequencing
Platform, Fondazione Edmund Mach in collaboration with
the Core Facility, CIBIO, University of Trento, Italy. All
samples were sequenced in one Illumina MiSeq Standard
Flow Cell targeting a depth of 20,000 reads per sample.

Bioinformatic processing of 16S data

Reads were processed with MICCA v1.5.0 [46]. In brief,
paired-end reads were merged, and pairs diverging by more
than 8 bp or overlapping by <100 bp were discarded. PCR
amplification primers were trimmed (sequences not con-
taining both PCR primer sequences were discarded).
Finally, sequences were quality filtered at 0.5% Expected
Error (EE); those displaying greater than 0.5% EE were
discarded along with those shorter than 400 bp or contain-
ing unknown base calls (N). Using the VSEARCH clus-
ter_smallmem algorithm [47], OTUs were created de novo
by clustering sequences with 97% sequence identity, dis-
carding chimeric sequences. Taxonomic assignments of
representative sequences from each OTU were performed
using the RDP Classifier v2.12 in conjunction with RDP
16S rRNA training set 15 [48]. OTU sequences were
aligned and phylogenetic analysis was performed using
Nearest Alignment Space Termination (NAST) and a phy-
logeny reconstructed using FastTree [49], both via MICCA
[46]. The raw sequencing data can be found at the National
Centre for Biotechnology Information (NCBI) Sequence
Read Archive (SRA) [Accession number: PRJNA542176].

Statistical analyses

Following initial processing, singletons were removed and
all samples with fewer than 5000 reads were removed using
the R package ‘phyloseq’ [50], leaving a total of 511,952

reads across 112 samples. The data were rarefied to an equal
depth within 90% of the minimum observed sample size
(specifically 4571 reads per sample). Generalized Linear
Models (GLMs) with a Gamma error function were used to
investigate whether metadata (onshore/offshore, age class,
sex, body condition, year of capture and season of capture)
were associated with alpha diversity of the faecal micro-
biota (Shannon, Inverse Simpson and Faith’s Phylogenetic
Diversity Indices). For Shannon and Faith’s Phylogenetic
Diversity measures, an identity link function was used,
while a log link function was used when analysing an
Inverse Simpson measure of diversity. All multivariate
analyses on faecal microbiota structure according to host
metadata (on-/offshore, age class, sex, body condition, year
of capture and season) were assessed using PERMANOVA,
based on Bray-Curtis dissimilarity and weighted UniFrac
indices, using the ‘adonis’ function in the R package
‘vegan’ [51]. An important assumption for PERMANOVA
is homogenous dispersion of data among groups; for this
reason, the ‘betadisper’ function in ‘vegan’ was imple-
mented to investigate the homogeneity of data. Data rows
containing missing values (NAs) were removed from the
dataset prior to conducting the PERMANOVA to ensure
matrices were even between variables. To determine the
differential abundance of OTUs between on- and offshore
bears, sex and season were examined using the R package
‘DESeq2’ [52]. To assess whether the microbiota profiles of
polar bears is related to their geographic distribution, a
GPS-based pairwise distance matrix was constructed using
the R package ‘geosphere’ [53] and compared to a PCoA
matrix (using both Bray-Curtis and weighted UniFrac) via a
Mantel Test. All analyses were carried out using R statis-
tical software package, version 3.2.0 [54]. Data were
visualised using the R packages ‘ggplot2’ [55] and ‘meta-
coder’ [56].

Results

Faecal microbiota composition

The faecal microbiota of all 112 bears was composed of
1221 operational taxonomic units (OTUs) encompassing 25
bacterial phyla, with prevalence and abundance of specific
phyla differing among individuals (Fig. 2a). Across the
population, the most abundant phyla (which composed 91%
of the total reads and were present in all individuals) were
Firmicutes (45%), Proteobacteria (25%) and Actinobacteria
(21%), making up the core microbiota. All other phyla
represented <9% of reads each (Fig. 2a), and their pre-
valence among samples varied between 97% (Bacter-
oidetes) and 1% (Armatimonadetes, Deferribacteres,
Lentisphaerae and Synergistetes). From the total number of
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reads obtained for the most dominant phylum (Firmicutes),
70% belonged to the class Clostridia, and 99% of those
were from the order Clostridiales. The dominant orders for
the remaining top bacterial phyla were Enterobacteriales
(phyla: Proteobacteria) and Actinomycetales (phyla: Acti-
nobacteria) (Fig. 2b).

Onshore versus offshore microbiota

Using the subset of bears for which we had on- and offshore
information (n= 85), we found alpha diversity was sig-
nificantly higher in on- (n= 46) compared to offshore (n=
39) bears, for Shannon (adjusted R2= 0.06, F1,83= 6.32,
P= 0.014; Fig. 3a and Supplementary Table 2) and Inverse
Simpson (adjusted R2= 0.07, F1,83= 6.09, P= 0.016;
Fig. 3b and Supplementary Table 2) indices but not for
Faith’s Phylogenetic Diversity index (Supplementary
Table 3). Beta diversity did not differ between on- and
offshore bears when using Bray-Curtis (Supplementary
Fig. 1) but differed significantly between on- and offshore
bears when using a weighted UniFrac metric (adjusted R2=
0.03, F1,80 = 2.53, P= 0.029; Supplementary Fig. 2). Data
dispersion did not significantly differ between on- and
offshore bears (P= 0.740).

The faecal microbiota of onshore bears consisted of 858
OTUs (19 bacterial phyla; 37 classes) compared to 635

OTUs (21 phyla; 35 classes) for offshore bears, of which
386 were shared between on- and offshore polar bears
(Fig. 4). Of the total number of OTUs found 472 were
unique to onshore bears, and a smaller number of OTUs
(n= 249) were unique to offshore bears. Eleven OTUs
(10 Firmicutes; 1 Proteobacteria) were significantly
enriched and 6 OTUs (3 Bacteroidetes; 2 Firmicutes; 1
Proteobacteria) were significantly reduced in onshore bears
(Fig. 5; Supplementary Table 4). The majority (73%; n= 8)
of OTUs that were enriched in onshore bears belonged to
the order Clostridiales (Phylum: Firmicutes), although
family level assignment varied across OTUs (Fig. 5 and
Supplementary Table 4). OTUs that were significantly
decreased in on- compared to offshore bears varied in
taxonomic assignment across taxonomic ranks (Supple-
mentary Table 4). The most enriched OTU abundance
in onshore bears belonged to the family Moraxellaceae
(Phylum: Proteobacteria), with a 6.78 log2 fold change in
abundance (P < 0.001), while the most depleted OTU
abundance within onshore bears was seen in Clostridiaceae
1 (Phylum: Firmicutes) with a −8.04 log2 fold change in
abundance (P < 0.001; Supplementary Table 4).

The gut microbiota composition of individuals was not
associated with their geographic proximity to one another
(P= 0.56 and P= 0.17; Mantel Test using Bray-Curtis and
weighted Unifrac respectively).

Fig. 2 a Stacked bar chart of the relative abundance of 25 bacterial
phyla in the faecal microbiota of 112 southern Beaufort Sea polar
bears. Phyla in the legend are listed in order of decreasing abundance.
b Inset is a metacoder heatmap plotted to order level: each node

moving from the centre outwards represents a different taxonomic
rank, whereby kingdom is the centre and nodes representing order
appear on the outer edges. The map is weighted and coloured by read
abundance
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Ecological factors and the microbiota

When using Faith’s Phylogenetic Diversity Index, alpha
diversity was significantly higher in females compared to
males (adjusted R2= 0.30, F2,109= 25.18, P= 0.017), as
well as in fall compared to spring captures (adjusted R2=

0.30, F2,109= 25.18, P < 0.001). However, alpha diversity
did not differ with sex, season of capture, body condition,
year or age class when using either a Shannon or Inverse
Simpson index of diversity and no significant difference in
alpha diversity was seen with body condition, year or age
class when using Faith’s Phylogenetic Diversity. Beta

Fig. 3 Violin plots of alpha diversity within the faecal microbiota of
85 southern Beaufort Sea polar bears for which ‘onshore/offshore’
land use is known (see text for definitions): a Shannon diversity index.

b Inverse Simpson diversity index. Violin plots combine a box plot
with a density plot, and as such the width of each plot corresponds to
the distribution of the data

0

1

2

3

4

5

6

7

8

9

10

Onshore Offshore

0

200

400

600

800

1000

Total number of OTUs Number of unique OTUs

Offshore
635 OTUs

Onshore
858 OTUs

Shared
386 OTUs

Fig. 4 Log abundance of OTUs in the faecal microbiota of ‘onshore’ and ‘offshore’ bears, by bacterial Class. Inset shows shared number of OTUs
by onshore (green) and offshore (blue) bears

Global change-driven use of onshore habitat impacts polar bear faecal microbiota 2921



diversity differed significantly with sex (Bray-Curtis; P=
0.001; weighted UniFrac P= 0.006) although data disper-
sion was seen to be significantly different between males
and females (P= 0.018) and so the PERMANOVA should
be interpreted with caution. Beta diversity also differed
significantly with season when using Bray-Curtis (P=
0.005) but not weighted UniFrac (P= 0.184), where beta
dispersion was P= 0.113. No differences in beta diversity
were seen with year, age class or body condition when
using either Bray-Curtis or a weighted UniFrac metric.
When investigating the differential abundance of OTUs
with sex, DESeq analysis showed that 66 OTUs were sig-
nificantly different between males and females; 9 OTUs
were significantly increased in males compared to females
(the largest increase, of 5.40 log fold change, belonging to
the family Clostridiales Incertae Sedis XI, phylum: Firmi-
cutes) and 57 OTUs were significantly decreased (the lar-
gest decrease, of −10.04 log fold change, being seen in the
family Flavobacteriaceae, phylum: Bacteroidetes). For sea-
son of capture, DESeq analysis revealed that 15 OTUs were
significantly different between fall and spring captures; 2
OTUs were increased in spring compared to fall captures
(the largest increase, of 3.01 log fold change, belonging to
the family Veillonellaceae, phylum: Firmicutes) and 13
OTUs were significantly decreased (the largest decrease, of
−7.50 log fold change, being seen in the family Peptos-
treptococcaceae, phylum: Firmicutes).

Discussion

Investigating factors which may influence the gut micro-
biota in a sentinel species experiencing rapid environmental
change may improve our understanding of the role of the

gut microbiota in wildlife health and conservation. Here we
have shown that for the southern Beaufort Sea subpopula-
tion of polar bears alpha diversity and bacterial composition
are significantly different in the gut of onshore bears com-
pared to those that remain on the sea ice year-round. As
such, our study shows for the first time, that global change
driven alterations in habitat use are associated with changes
in the gut microbial composition and diversity of a free-
ranging species.

We detected 25 bacterial phyla, as opposed to just the
one (Firmicutes) previously found by Glad et al. [35] in
wild Barents Sea polar bears. This diversity closely mirrors
that seen in other studies utilising next generation sequen-
cing methods to investigate the gut microbiota of ursids; for
example, 24 bacterial phyla were detected in wild brown
bears [31]. The most abundant phyla in polar bear faeces
(Firmicutes, Proteobacteria and Actinobacteria), coincided
with those of the core mammalian gut microbiota [26],
including that of Asiatic black bears (Ursus thibetanus)
[38]. Our finding that Firmicutes constituted the majority of
OTUs is noteworthy in that increased Firmicutes in
genetically obese mice and humans suggests that this phy-
lum plays an important role in promoting adiposity or
energy resorption [57], although conflicting studies show no
link between Firmicutes levels and obesity/high-fat intake
[58]. Interestingly, brown bears gaining weight for hiber-
nation during summer months show simultaneously ele-
vated levels of Firmicutes in the gut [31], implying this
phylum may also play a role in synthesising high energy
inputs in large carnivores. More specifically, we show that
70% of reads assigned to the phylum Firmicutes belonged
to the class Clostridia, and subsequently 99% were from the
order Clostridiales—an outcome that coincides with the
results of Glad et al. [35], who showed all except one of

Fig. 5 Differential OTU
abundance of onshore compared
to offshore bears from DESeq2
analysis, plotted with individual
OTU number and associated
family assignment
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the gene clones generated within their study were affiliated
with the order Clostridiales. In a study using both wild type
and laboratory mice, Hilderbrant et al. [59] showed that
levels of Clostridiales greatly increases after prolonged
durations of time feeding on a high-fat diet.

Within this study we found that alpha diversity of bac-
terial OTUs was significantly higher in the faecal micro-
biota of onshore compared to offshore bears when using a
Shannon or Inverse Simpson measure, but no association
was found between alpha diversity and host metadata (age
class, sex, body condition, year or season of capture) when
using these indices. Much microbiota work focusing on
humans has found sex and age influences microbiota
dynamics [60–62]. Although the majority of microbiota
research has focused on humans, microbial studies of wild
animals are increasing [30] and in some cases wild animals
have been shown to follow similar trait-related stratification
in microbiota. For example, the presence/absence of specific
bacterial taxa were seen to correlate with specific age
classes within the gut microbiota of wild ring-tailed lemurs
(Lemur catta) [63]. Similarly, sex-specific differences in
bacterial diversity have been found in, for example, wild
rufous mouse lemurs (Microcebus rufus), whereby females
demonstrated higher bacterial diversity compared to their
male counterparts [64]. Further to this, season of capture has
been seen to influence the gut microbiota composition.
Sommer et al. [31], for example, demonstrated that gut
microbial composition of free-roaming brown bears is sea-
sonally altered between summer and winter. This change in
bacterial composition is thought to, in part, be influenced by
extreme dietary shifts within brown bears between active
and hibernation phase [30]. We also see this seasonal shift
in gut microbial composition in other wild animal models
such as wild wood mice (Apodemus sylvaticus) [65], wild
black howler monkey (Alouatta pigra) [66] and the giant
panda (Ailuropoda melanoleuca) [37], probably also attri-
butable to season-driven shifts in diet. None of these fac-
tors, however, were found to influence the gut microbiota
composition of the polar bears sampled within this study
when using a Shannon and Inverse Simpson index of
diversity. However, when using Faith’s Phylogenetic
Diversity (i.e. a metric that characterises only the related-
ness or distinctness of species and works under the
assumption that different species make unequal contribu-
tions to diversity [67]) we see a significant difference in
diversity with sex and season only, whereby females had a
higher bacterial diversity than males, and fall captures had a
higher bacterial diversity than spring captures. Faith’s
phylogenetic diversity index does not incorporate the rela-
tive abundances of taxa within communities, but rather
calculates phylogenetic diversity based on the presence or
absence of species [68, 69]. Our results therefore imply that
for sex and season, there was no difference in alpha

diversity when considering the richness and evenness of
species, but that there may be a number of species with deep
and/or distinct branching that are making an unequal con-
tribution to the diversity of those communities.

We posit that the differences in gut microbiota compo-
sition between on- and offshore bears is most likely driven
by environmental factors, such as diet, contaminants and
parasites which are known to differ between the two groups
[5, 12, 70, 71] although this hypothesis is yet to be tested.
Diet, as one of the biggest drivers in gut microbial changes
[72–74], likely plays the largest role in the observed dif-
ferences in bacterial diversity. Historically, southern Beau-
fort Sea polar bears remained offshore hunting ringed seal
(Pusa hispida) and, to a lesser extent, bearded seal (Erig-
nathus barbatus) [75], primarily consuming high-calorie
blubber with a specific, restricted nutritional input [76]. In
contrast, onshore bears have access to a more varied but less
natural diet, including bowhead whale bone piles, which
can consist of whale blubber, meat, and viscera, as well the
carcasses of fish, birds and caribou (Rangifer tarandus)
[13, 42, 71], a more varied food source in terms of both
species and tissue types.

Not only do onshore bears consume a larger range of
food items, but they also likely come into contact with more
terrestrial species and their associated bacteria and patho-
gens. Whale bone piles are utilised by a range of other
nearshore/terrestrial scavengers [5, 19] providing an inter-
specific focal point for many species with which polar bears
do not typically interact. Beach-cast bowhead whale
remains frequently lie in close proximity to settlements and
towns, increasing the potential for microbiota and pathogen
spillover to polar bears from humans, and domestic animals.
The high gut microbiota diversity seen in onshore bears
may therefore be associated with this complex network of
interspecific contacts. A secondary consequence of high
inter-species contact could be a higher parasite load and/or
diversity in polar bears, which is associated with high gut
microbiota diversity in other species [23, 29, 77].

Understanding the ways in which polar bears respond to
climate-change mediated displacement from primary habitat
is crucial in discerning their ability to cope with an
increasingly changeable and uncertain environment [42].
Future management plans for polar bears could therefore
benefit from a better understanding of the relationship
between habitat availability, microbiota and health. Our
results suggest that climate driven changes in land use by
bears leads to changes in gut community composition, but
further analyses are needed to determine whether these
changes are linked to underlying causes such as diet,
parasites and health. It has been suggested that researchers
should incorporate health assessments into wildlife con-
servation practices [78, 79] and long term faecal microbiota
monitoring could provide this framework.
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