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Abstract

We followed a systematic approach based on the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses to identify existing clinical natural language processing (NLP) 

systems that generate structured information from unstructured free text. Seven literature 

databases were searched with a query combining the concepts of natural language processing and 

structured data capture. Two reviewers screened all records for relevance during two screening 

phases, and information about clinical NLP systems was collected from the final set of papers. A 

total of 7149 records (after removing duplicates) were retrieved and screened, and 86 were 

determined to fit the review criteria. These papers contained information about 71 different clinical 

NLP systems, which were then analyzed. The NLP systems address a wide variety of important 

clinical and research tasks. Certain tasks are well addressed by the existing systems, while others 

remain as open challenges that only a small number of systems attempt, such as extraction of 

temporal information or normalization of concepts to standard terminologies. This review has 

identified many NLP systems capable of processing clinical free text and generating structured 

output, and the information collected and evaluated here will be important for prioritizing 

development of new approaches for clinical NLP.

*Corresponding author at: Office of Biostatistics & Epidemiology | Center for, Biologics Evaluation and Research | FDA, 10903 New 
Hampshire Ave, Bldg 71 Rm, 1309A, Silver Spring, MD 20993-0002, United States. Kory.Kreimeyer@fda.hhs.gov (K. Kreimeyer). 

5. Competing interests
None.

Appendix A
See Table A1.

Appendix B. Supplementary material
Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/jjbi.2017.07.012.

HHS Public Access
Author manuscript
J Biomed Inform. Author manuscript; available in PMC 2019 November 20.

Published in final edited form as:
J Biomed Inform. 2017 September ; 73: 14–29. doi:10.1016/j.jbi.2017.07.012.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/jjbi.2017.07.012


Keywords

Review; Systematic; Natural language processing; Common data elements

1. Introduction

Important clinical information is often recorded in unstructured free text, and converting it to 

a structured format can be a time-consuming task that may not successfully capture all facets 

of the information. However, there are at least two large incentives for translating 

unstructured data into structured data: i) the reduction of time required for manual expert 

review and ii) the secondary use of these data for large scale automated processing. The 

former goal is an obvious benefit for anyone involved in clinical practice, where physicians 

and other experts examine patients’ electronic health records (EHRs) on a regular basis and 

spend considerable time reading free text. Safety reviewers at the US Food and Drug 

Administration (FDA) who read large numbers of narratives from adverse event reports for 

the medical products they _regulate and any practitioner who tries to keep up to date on the 

medical literature in their field are two more examples of potential beneficiaries of a robust 

free text structuring process. The second important gain from the creation of structured data 

is in the ability to manage and mine clinical data in large volumes or across large time 

scales. This is vital for implementing algorithms to define patients at risk of certain diseases, 

eligible for certain clinical trials, or who fit the case definitions of certain diseases, to name a 

few.

Given the rate at which unstructured clinical information is created, it is clear that automated 

solutions utilizing Natural Language Processing (NLP) are needed to analyze this text and 

generate structured representations. However, clinical text possesses several properties (e.g. 

poor structure, abundant shorthand, domain-specific vocabularies) that make the application 

of NLP challenging. Current NLP systems have proven to be useful for certain activities and 

have, for example, reduced the time required for screening candidates for clinical trial 

eligibility [1] and identified potential adverse drug reactions [2]. There are, however, other 

challenges in the field, such as identification of temporal associations, evaluation of context-

dependent text, and concept normalization to particular terminologies, that remain open [3–

7].

The FDA and the Centers for Disease Control and Prevention (CDC) recently launched a 

collaborative effort for the “Development of a Natural Language Processing (NLP) Web 

Service for Structuring and Standardizing Unstructured Clinical Information”. This project 

aims to create a NLP Platform for clinical text (initially cancer data and safety data) that will 

be extensible for many different subdomains [8]. The overall plan is to perform the 

necessary development for maximizing the use of existing tools and filling certain gaps, e.g. 

when there are no efficient solutions for real-life tasks. This project will initially focus on 

improving the efficiency of clinically relevant use cases involving the structuring and coding 

of unstructured information for the two domains.

As the first step in this NLP development project, we have conducted a systematic literature 

review to identify the existing NLP solutions that may support our project objectives. This 
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review is intended to compile a list of currently-in-use, complete NLP solutions for clinical 

text that are capable of encoding free text into standardized clinical terminologies and of 

capturing common data elements to fill specified forms or templates, a process known as 

structured data capture (SDC) [9]. This is a fairly specific topic, but it forms the core of 

some of the major needs in the biomedical field, especially as they relate to utilization of 

free-text information. We will first describe the methodology of the review and then present 

the information gathered about existing NLP solutions. We will close with a discussion of 

the remaining open challenges in the field and the next steps for the development of the 

clinical NLP Platform.

2. Methods

We based our review procedure on meeting the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) recommendations for reporting in systematic 

reviews, which provide a description of the components involved in a review and best 

practices for performing the work and publishing the results [10]. After reviewing the 

PRISMA guidelines, we structured our review into 4 phases:

1. Publication Retrieval

2. Review of Titles and Abstracts

3. Review of Full Text

4. System Information Collection

In the initial publication retrieval phase, we looked for publications related to NLP and SDC 

and meeting several filtering criteria:

• Published in English

• Published from 2006–01-01 to the time of the search(2016–06–15)

• Peer-reviewed

During the two review phases, we examined each publication to find the ones that were 

relevant to our exploration while attempting to minimize information loss. In particular, we 

defined the following inclusion criteria:

• Published and existing NLP algorithms, methods, or tools for the processing of 

clinical data—including EHRs, clinical trial summaries, post-market reports, 

medical product labels, and medical literature—used by federal agencies, public 

health agencies, academic centers, commercial vendors, or the National Patient-

Centered Clinical Research Network (PCORnet) participants.1

• Activities related to SDC and Common Data Elements (CDEs) that are in use by 

federal agencies, public health agencies, academic centers, commercial vendors, 

or PCORnet participants and involve some NLP or text mining process.

1The identification of the PCORnet efforts was a requirement included in the FDA and the CDC proposal.
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• Complete package solutions that convert clinical texts to structured and/or coded 

data.

We also used the following exclusion criteria:

• Text mining approaches that perform limited tasks, such as keyword extraction 

for topic modeling or document indexing.

• SDC systems that utilize existing humanly assigned codes only and do not 

process actual text using either a NLP or text mining process.

• Systems that require manual processing or preprocessing.

In the final phase, we collected information about the NLP tools described in the relevant 

papers and compiled the results.

We used the EPPI-Reviewer (version 4) software [11] produced by the EPPI-Centre at 

University College London to manage many of the screening and coding processes of our 

systematic review process. Its features broadly matched our desired workflow. In particular, 

EPPI-Reviewer allows comparison screening with two or more reviewers and an adjudicator, 

contains many sorting, filtering, and reporting functionalities for use after screening, and 

supports information collection by allowing codes to be applied to specific sections of text. 

We also made use of the EndNote X7 reference management software [12] from Thomson 

Reuters to store and organize citations at several stages throughout the review.

For the publication retrieval phase, we coordinated with a reference librarian at the FDA 

Library experienced in systematic reviews (GH) to expand and implement our search query. 

In June 2016, a structured search was conducted on NLP systems in several databases: 

PubMed, Excerpta Medica dataBASE (Embase), Cumulative Index to Nursing and Allied 

Health Literature (CINAHL), International Pharmaceutical Abstracts, Web of Science, and 

Science Direct. The query was constructed using keywords from the Medical Subject 

Headings (PubMed) and Emtree (Embase) thesauri related to the concepts of NLP and SDC. 

Each concept was searched separately, and the two concepts were combined using the 

“AND” operator to form the following query:

natural language processing OR text mining OR data mining OR datamining OR 
information storage and retrieval OR information retrieval

AND

common data element OR common data elements OR common data item OR 
common data items OR common data format OR common data formats OR 
common data variable OR common data variables OR common data model OR 
common data models OR structured data capture OR structured data collection OR 
structured data collections

The citations were first compiled in EndNote, and the “Find Duplicates” function, which 

allows comparison of all fields for suspected duplicates, was used to review and delete 

duplicates. Some manual deletion was also performed by the reference librarian (GH).
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In addition, the Department of Defense’s Defense Technical Information Center online 

resource, “Research & Engineering Gateway,” was searched for technical reports available 

for public release using the same query. These records were subsequently imported into the 

same EndNote library file containing the citations from the other databases and 

deduplicated.

The entire list of records was then uploaded to EPPI-Reviewer 4. All citations from all 

search databases were run through the duplicate search in EPPI-Reviewer 4, and suspected 

duplicates were manually reviewed by one of the authors (KK) based on title, authors, date, 

and journal, but not abstract.

ln the second phase, records were screened for the inclusion and exclusion criteria based on 

their titles and abstracts. Two reviewers (MF, AP) independently reviewed the full set of 

records, and an adjudicator (KK) resolved the disagreements.

An initial set of 1% of the entries was screened to test the design and applicability of the 

inclusion and exclusion criteria in EPPI-reviewer before moving on with the remainder of 

the screening. The records were then randomly segmented into 12 screening sets for ease of 

management. The two reviewers performed the initial screening and assigned codes to the 

records from the following list:

• Exclude as not text mining

• Exclude as not clinical

• Exclude for limited text mining

• Exclude for human codes

• Exclude for manual steps

• Exclude as not in use

• Include for now – Uncertain

• Include on title & abstract

The Include for now – Uncertain code was applied to records when the reviewer could not 

make a clear determination of whether the publication matched the inclusion or exclusion 

criteria based on the limited information available in the title and abstract. This code allowed 

us to reduce information loss by retaining potentially interesting records even if they did not 

contain pertinent details in their abstracts. The two reviewers generally selected only a single 

exclusion reason—the one that was most applicable—however, for some records they 

applied two or more reasons. All records for which the two reviewers disagreed with an 

Exclude and an Include code, or where both reviewers assigned the Include for now – 
Uncertain code, were adjudicated. For disagreements on the particular code but not on the 

include vs exclude judgment, the final code was chosen from one of the reviewers’ selected 

codes in an alternating fashion. The agreement between the reviewers was measured using 

the direct percentage of the number of agreements divided by the total number of screened 

records. This was done for both exact agreement, in which both reviewers had to assign the 

exact same code(s), and for agreement only on the main decision of include or exclude.
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Following the first screening, we used the EndNote “Find Full Text” feature to obtain full 

text PDF files for as many of the included records as possible. To obtain the rest, we used 

EPPI-Reviewer’s “Find” function to perform a Google search for the title and author list. 

Additional manual searching was required for some records. The full texts that could not be 

found or could not be obtained because of access restrictions were then requested through 

the FDA Library.

For any records of conference proceedings, which represented a large collection of 

conference papers, we did not examine the full text of every paper. Instead, we briefly 

scanned the titles to determine if any were relevant to our review.

The third phase of the review was screening based on review of the full text of the 

publications. Each paper’s Methodology section was reviewed to judge if it fit the review 

criteria. Additional sections of the paper were also read when necessary to make a clear 

decision. We selected a very similar methodology for this phase as in the previous screening 

phase: the same two reviewers independently reviewed the full text for all records, and the 

same adjudicator resolved disagreements between them. The overall inclusion and exclusion 

criteria were the same for this phase. The screening codes in this phase were nearly the same 

as the previous screening phase: the exclusion reasons were unchanged, but the Include for 
now – Uncertain code was removed. Include and Exclude disagreements were adjudicated. 

The records to be screened were separated into four bins alphabetically by author last name 

for ease of processing.

The fourth and final phase involved collecting information about the NLP system(s) 

described in each paper in the final set of records that satisfied the inclusion criteria. We 

defined seven broad categories of information about NLP systems and multiple items within 

each category to support the generation of a complete system description. The categories 

were:

• System Characteristics: General information about the system itself, the system 

functionalities, and the NLP approach used.

• System Development Cycle: Information about the development process 

(leaders, timeline, versions) of the system.

• System Input: Information about text sources that can be processed by the 

system.

• System Output: Information about the results generated by the system after 

processing clinical text.

• System Evaluation: Information about how well the system has performed while 

being tested and validated, especially in any external validations.

• System Use: Information about projects/tasks that the system has been used for.

• System Availability: Information about obtaining access to the system and its 

source code.
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We decided to review the full text PDF files and annotate sections of text using seven 

different codes for these broad information categories. Then, the individual information 

points were collected from these selected pieces of text. EPPI-Reviewer broadly supports 

this workflow by allowing for codes to be applied to specific text sections within PDF 

documents.

The two reviewers who performed both rounds of screening also performed the initial 

annotation. They highlighted specific sentences or paragraphs from the full text of the 

papers, and marked them with codes for one or more of the seven categories of clinical NLP 

system information. Both reviewers independently annotated the full set of papers that were 

included in this collection phase. Then, the adjudicator read the annotated portions of text 

using the report generated by EPPI-Reviewer containing all the highlighted text and 

recorded all the information that could be gathered about the system(s) in a Microsoft 

Access database.

Additionally, citation counts for the final set of papers were searched in Web of Science or, 

if not found, in Google Scholar. The number of citing papers was totaled by year from 2006 

to 2016. Citation counts were obtained on 2016–11–03.

3. Results

In the case of Embase, the original query generated a set of results with a high irrelevancy 

rate and failed to capture many pertinent papers. To remedy these problems, keywords were 

enclosed in quotes to generate a more precise result set. In addition, the list of citations from 

the Research & Engineering Gateway could only be obtained in the BibTeX file format, 

which is not natively supported in EndNote. Instead, the JabRef reference manager [13] 

(version 3.4) was used to convert the BibTeX citations to the RIS format that is supported by 

EndNote.

The results of the searches in Phase 1 (Publication Retrieval) across all databases showed 

that the largest number of records was obtained from PubMed (2949), followed by Web of 

Science (2893), the Research & Engineering Gateway (1737), Embase (37), and CINAHL 

(16). Neither Science Direct nor International Pharmaceutical Abstracts returned any results 

for the applied query. Following deduplication, the remaining 7149 records were moved to 

Phase 2 (Review of Titles and Abstracts) for Include/Exclude coding. The results of coding 

following adjudication are shown in Fig. 1. The most frequently assigned code was Exclude 
as not clinical (4356 records), followed by Exclude as not text mining (2394), Include on 
title & abstract (132), Exclude for limited text-mining (118), Include for now – Uncertain 
(81), Exclude for human codes (76), and Exclude for manual steps (13). The sum of these 

categories exceeds 7149 because some records were given more than one exclude code.

During Phase 2, exact agreement of reviewers, based on the specific include or exclude code, 

was 71.8%. General agreement on Include versus Exclude was 93.7%. A total of 533 records 

required adjudication (of which 447 were adjudicated for Include/Exclude disagreements, 60 

were adjudicated because both reviewers chose Include For Now – Uncertain, and 26 were 
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adjudicated due to a disagreement on exclusion codes in the initial criteria testing set of 1% 

of records).

Following Phase 2, the 213 records with an adjudicated code of Include for now – Uncertain 
or Include on title & abstract were moved to Phase 3 (Review of Full Text). Full text PDFs 

were retrieved for 136 of these records using the EndNote “Find Full Text” feature. Google 

searches returned 56 additional PDFs, and 21 records were requested through the FDA 

Library’s Inter-Library Loan program. A total of 6 records were not found or could not be 

used in the following step. Four were conference proceedings covering dozens of papers, 

and 2 were conference posters that could not be obtained. We did not find any relevant paper 

titles from the conference proceedings listings after quickly reviewing the titles.

During the screening of Phase 3 (Review of Full Text), the 207 full text records that were 

retrieved were screened and assigned an Include/Exclude code. The results of coding after 

adjudication are shown in Fig. 2. The most frequently assigned code was Include on full text 
(86 records), followed by Exclude for limited text mining (68), Exclude as not text mining 
(29), Exclude as not clinical (14), Exclude for manual steps (8), and Exclude as not in use 
(2). Exact agreement of reviewers, based on the specific include or exclude code, was 

47.8%. General agreement on Include versus Exclude was 63.3%. ln Phase 3 the Include for 
now – Uncertain code was removed, which contributed to lower agreement as compared to 

Phase 2 screening. A total of 76 records required adjudication. The review flowchart for 

Phases 1 through 3 is shown in Fig. 3.

The citations for the records can be found as Supplementary Material in three separate files 

in RIS format. These represent snapshots of the record review process at three different 

stages: i) at the start of Phase 2 (Review of Titles and Abstracts); ii) at the end of Phase 2 

(Review of Titles and Abstracts); and iii) at the end of Phase 3 (Review of Full Text).

ln Phase 4 (System Information Collection), the 86 full text records that met the inclusion 

criteria were annotated and reviewed using the seven categories of system information. The 

information collected from the final 86 papers was grouped per system rather than per paper, 

yielding a list of 71 systems. A system name was identified for 49 out of the 71 systems.

During the system information collection, it was determined that a total of five papers did 

not actually include information about a system matching our criteria. Two of the papers 

focused on extracting biological entities like genes and proteins from text [14,15]. Two 

papers described systems that only performed indexing or word-counting of documents 

[16,17]. The final paper noted that several institutions in a large consortium were using NLP, 

but did not provide details about any specific system [18].

Since the information collection process was based only on the identified papers, there were 

gaps in the collected information about many systems. Certain data were much more 

difficult to gather than others, and some statements in papers were ambiguous. We focused 

only on clear and certain facts that could be gathered directly from the text, leading to high 

missingness for certain systems or for certain fields. In fact, for 6 systems (8.5%), we did not 

gather any information about the NLP approach used or whether it used rules or machine 

learning techniques. For 4 systems (5.6%), we found no information about the types of input 
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texts that the system had been applied to, and for 7 systems (9.86%), we did not identify the 

specific type or format of the output generated by the system. For 15 systems (21.1%), we 

found no clear information about how the system’s performance had been evaluated. There 

were 49 systems (69.0%) lacking information about their licensing model or availability of 

their source code.

Fig. 4 shows the distribution of papers from the original queried set by publication year, as 

well as the percentage from each year that were included after each screening phase. There 

was an increase over time in both the total number of papers matching the query and the 

share of those papers that were judged to fit the review criteria.

Multiple papers in the final set had zero citations (N = 14), or between one and five citations 

(N = 30). A heatmap of the citations over time for the top ten most highly cited papers is 

shown in Fig. 5. Another heatmap showing all 81 papers (excluding five that did not contain 

a system of interest) is included as Supplementary Data 1.

The 71 systems identified within the review are presented in Table 1, along with the records 

they were located in. For 12 of the 14 systems with only brief mentions within the final set 

of papers, we have included an external citation that describes the system. We also provide a 

short description of each system and the results of any evaluations found for the system in 

Table A1 in Appendix A. Commonly reported metrics for performance include recall (or 

sensitivity), precision (or positive predictive value), F-Measure (harmonic mean of recall and 

precision), accuracy, and specificity. A few of the entries in the table are for NLP 

frameworks that can support different NLP pipelines by selecting or creating different 

components. Some evaluation results were identified for specific implementations using 

these frameworks.

We noted a number of trends based on the (sometimes limited) information collected from 

the final set of papers. Rule-based NLP approaches were the most common (N = 33), with 

hybrid systems also being strongly represented (N = 19); few systems used a purely machine 

learning approach to NLP (N = 4). The most common form of input text processed was 

clinical notes (N = 35), followed by radiology reports (N = 11), pathology reports (N = 9), 

biomedical literature (N = 7), and clinical trial documents (N = 5). The programming 

language for system development was frequently not found, but Java (N = 8) was the most 

common among those reported, with Perl (N = 3) and Python (N = 2) being the only other 

languages found more than once. Also, more systems were available in an open-source 

model (N = 12) than were unavailable (N = 7), although this information was not determined 

for a large number of systems. We also identified a number of systems using the 

Unstructured Information Management Architecture [19] (N = 7) and the General 

Architecture for Text Engineering [20,21] (N = 6) frameworks.

Finally, we recorded several additional observations about features and commonalities of the 

reviewed systems. A large number of systems in our review have leveraged prior work by 

incorporating existing components or by expanding existing systems for new domains or 

with new techniques. We have found multiple systems that utilize solutions like the NegEx 

algorithm [22] or the Weka machine learning workbench [23]. Other systems have adapted 
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some or the full suite of components from Stanford CoreNLP [24], NLTK [25], or OpenNLP 

[26]. The goals of the systems cover a very broad range of clinical tasks across multiple 

domains, but there are a few areas that have been the focus of more than one system. For 

example, multiple systems have been developed to identify medication information [27–34] 

and to extract tumor and cancer characteristics from pathology reports [35–39]. There are 

also systems attempting to process clinical trial eligibility criteria for easier cohort matching 

[40,41] and to determine the smoking history of patients [42,43]. Further descriptions of 

each system can be found in Table A1 in Appendix A.

4. Discussion

In this systematic review of clinical NLP solutions, we reviewed over 7000 publication 

records and narrowed our focus to a set of 86 papers. These papers provided information 

about 71 different NLP systems that could be used to process unstructured clinical text and 

generate structured output. This output varied from extraction of specific numeric values to 

complete normalization of multiple types of clinical data into standardized terminologies 

like the Unified Medical Language System or Systematized Nomenclature of Medicine 

Clinical Terms. Many of the systems seemed to be developed to address a specific need and 

had a fairly narrow focus, whether it was extracting medication dosage information or 

classifying cancer staging from pathology reports. For many tasks, especially involving 

extraction of numbers, acceptable performance was often achieved with relatively simple 

rule-based approaches (e.g. regular expression patterns) [41,108,109,113,116]. These rules 

were required to be highly tuned to the intricacies of data at a specific institution, however, 

and most practitioners agree that they are not scalable. Machine learning approaches have 

been rarer overall, but may grow in popularity as more public data sets are made available, 

helping to overcome the initial hurdle of obtaining training data. We were also heart-ened to 

see that a number of system developers were willing to provide their tools to the community.

Our systematic review has several limitations. First, our initial query involved the 

combination of two concepts (NLP and SDC). This was required because the query for the 

NLP concept by itself returned over 90,000 records from PubMed alone, and we did not 

have the resources to perform a proper review of this scale. It also means that the results for 

this particular query may not have contained certain papers about relevant NLP systems, 

although these systems might still have been captured if they were mentioned in other 

papers. Second, the information that could be gathered from the final set of papers was 

incomplete for many of the NLP systems. It is possible some of this missing information 

could have been obtained from other publications that were excluded during the screening 

phases, but this data source was too large to search in a reasonable time for this information. 

Third, we did not robustly gather citation counts for the final set of papers, but instead relied 

on only two sources which do not necessarily provide a complete or comparable set of 

citation information. This was only a brief exploration of the citation rates for these systems 

and was not a major goal of the analysis.

This review has highlighted the importance and, in many ways, the difficulty of performing 

comprehensive extraction and standardization of clinical information. Many of the most 

difficult tasks in this area have also been the target of open community challenges at 
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ongoing conferences like the Informatics for Integrating Biology & the Bedside (i2b2), the 

Sharing Annotated Resources/Conference and Labs of the Evaluation Forum (ShARe/

CLEF) eHealth challenges, and the International Workshop on Semantic Evaluation 

(SemEval). For example, the 2009 i2b2 Challenge on Medication Information focused on 

identifying medication names, dosages, modes, and frequencies [119], which was also the 

goal of several systems found in the review. Task 1 of the 2013 ShARe/CLEF eHealth 

challenge and the Analysis of Clinical Text tasks at the 2014 and 2015 SemEval conferences 

have focused on identifying disorder mentions in text and then normalizing them to ontology 

terms [5–7]. This is a vital task for general purpose NLP and has still been shown to be 

somewhat challenging. Only a limited set of systems in this review attempt to do such a 

complete task. Some community challenges have also focused on important clinical NLP 

topics that have not been strongly addressed by the systems from the review, such as 

extraction of temporal information. The organizers of the 2012 i2b2 challenge on temporal 

relations concluded that even state of the art techniques did not provide good performance 

for temporal relation identification [3]. Indeed, we found few systems in this review that 

appeared to utilize any temporal information in text at all.

Addressing these few remaining challenges will help move clinical NLP systems toward the 

full-scale, mainstream acceptance and daily use that they have so far struggled to achieve. 

The promise of improving health outcomes with advanced methodologies like NLP is only 

possible when the systems can reliably satisfy unmet needs or support real-life use cases on 

a routine basis.

The rate of publication in the clinical NLP field is increasing, and literature-based reviews 

like this one may have difficulty in keeping up with new developments. It is therefore 

worthwhile to point out some other avenues that may prove useful in identifying and 

characterizing new systems. The ongoing NLP challenges mentioned above are excellent 

sources for new insights. A great deal of information can also be obtained by searching for 

clinical NLP software in online code repositories, as these listings are updated on a much 

faster basis than publications. For example, the amount of current activity around a software 

tool can be inferred by looking at the frequency of updates. Sources like these should be 

explored for the most up-to-date information.

Although we found evidence for a few focused specialty areas and identified a handful of 

tools that attempt to cover a broad set of needs, this review has demonstrated that there 

cannot be a single one-size-fits-all solution for the full set of clinical NLP subdomains. 

Nearly every system is focused on addressing a single clinical need (or at least started out 

that way), and true improvements in the field will come from making quality NLP 

applications available for specific use cases. Our joint project with CDC aims to accomplish 

exactly this, by creating a versatile platform with available pipelines for many specific tasks. 

Where needed, we will supplement the review information with additional searches to 

support our decision-making processes. Although we cannot guarantee we have identified 

every relevant system with this review, the compiled information provides an excellent base 

for evaluating the next steps for both our specific clinical NLP Platform and for the field as a 

whole. Certain areas of clinical NLP remain as open problems and will require development 
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of new advancements and approaches, but for the well-studied and “solved” aspects, we 

must ensure we are leveraging existing knowledge and systems in moving forward.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Table A.1:

Detailed information about the Natural Language Processing systems.

System 
Name

Brief 
Description

Evaluation Performance Usage On 
Other
Texts

Citations

Amalga a commercial 
system for 
extracting data 
from clinical 
event messages

Unknown Unknown Unknown [44]

ASLForm an adaptive 
learning system 
with some basic 
rules for finding 
candidate text 
and a machine 
learning 
implementation 
that continuously 
updates as a user 
selects 
appropriate 
output

adaptively 
evaluated on 
subsets of the 
i2b2 2006 
Smoking Status 
and 2008 
Obesity 
challenge 
discharge 
summary 
corpora

precision 0.91–
0.94 for single-
value extractions 
and 0.81–0.89 for 
multi-value 
extractions (with 
recall 0.84–0.86)

Unknown [45]

BaselineM extracts frequent 
semantic tags 
from clinical trial 
eligibility criteria

Unknown Unknown Unknown [40]

Bio-LarK 
Concept 
Recognizer

a semantic 
concept retrieval 
system that can 
process literature 
abstracts for 
common diseases 
and generate 
Human 
Phenotype 

run on over 5 
million PubMed 
records, but 
results were only 
evaluated after 
applying 
additional steps

Unknown Unknown [46]
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System 
Name

Brief 
Description

Evaluation Performance Usage On 
Other
Texts

Citations

Ontology 
annotations

BioMedICUS system capable 
of finding family 
history 
statements in 
clinical notes by 
applying rules 
within likely 
sentences 
identified by a 
stochastic 
gradient descent 
classifier

tested on a set of 
a few hundred 
History and 
Physical notes 
from 
MTSamples.com

F-Measure was 
0.92 for family 
member words 
and 0.65 and 
lower for 
relationships

Unknown [47]

BioMedLEE an extension of 
the MedLEE 
system to extract 
phenotypic 
information from 
MEDLINE 
abstracts

Unknown Unknown Unknown [48];[49]*

CaRE developed for 
processing 
discharge 
summaries

evaluated on 
hospital 
discharge 
summaries

F-Measure above 
0.9 for retrieval 
of relevant 
medical concepts

Clinical notes, 
speech-to-text 
translated patient 
consultations

[50]

caTIES a GATE-based 
system from 
University of 
Pittsburgh for 
coding pathology 
reports with 
terms from NCI 
Thesaurus

Unknown Unknown Unknown [51];[52]*

ChartIndex uses Stanford 
Parser and 
MetaMap to find 
noun phrases in 
radiology or 
pathology reports 
and map them to 
SNOMED-CT or 
UMLS terms

evaluated on 400 
surgical 
pathology 
reports for 
extracting 
anatomic site 
and findings/
diagnosis

Precision was 
0.88

Radiology 
reports, 
pathology 
reports

[53]

ClearForest processes breast 
cancer pathology 
reports and uses 
rules to identify 
certain diagnoses 
along with dates 
and laterality

run on a sample 
of over 75,000 
pathology 
reports from 
three hospitals

sensitivity was 
0.99, specificity 
was 0.965, 
precision was 
0.986

Unknown [38]

ClinREAD a rule-based 
system for 
clinical notes that 
has been used to 
categorize pain 
status

was evaluated on 
24,000 pages for 
33 cancer 
patients

F-Measure of 
0.95 for pain 
detection and 
0.81 for pain 
severity 
management

Unknown [54];[55]*

COAT a framework for 
clinical note 
processing 
allowing rule-
based and 
machine learning 
(through WEKA) 
components and 
offering 
integration with 

an 
implementation 
was tested on 
pathology 
reports to extract 
Gleason score, 
tumor stage, and 
surgical margin 
status

accuracy was 
0.99 for Gleason 
score and tumor 
stage; 0.97 for 
surgical margin 
status

Unknown [56]
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System 
Name

Brief 
Description

Evaluation Performance Usage On 
Other
Texts

Citations

MetaMap 
Transfer

CR processes 
PubMed 
abstracts to find 
text chunks that 
can be mapped to 
UMLS concepts 
by considering 
the inverse 
document 
frequencies of 
terms

evaluated on 
3663–7669 
PubMed 
abstracts for 3 
different 
diseases; also 
run on over 
800,000 
PubMed 
abstracts in the 
two 
Collaborative 
Annotation of a 
Large-scale 
Biomedical 
Corpus 
challenges, but 
results not 
identified

compared to 
assigned MeSH 
terms, precision 
was < 0.41, recall 
was < 0.52

Unknown [57]

CRIS-IE-
Smoking

rule-based 
system to extract 
patient smoking 
status from open-
text fields of 
mental health 
case records

tested on 100 
random mental 
health records 
from South 
London and 
Maudsley case 
register

precision was 
0.93, recall was 
0.58

Unknown [43]

cTAKES a large and well-
used open-source 
system using the 
UIMA 
framework that 
extracts clinical 
data with 
contextual 
attributes like 
polarity and 
certainty and 
generates 
structured output 
using SNOMED-
CT, UMLS, and 
RxNorm

many 
components 
have been 
evaluated 
separately; 
evaluated on 150 
chest CT 
reports; 
medication 
extraction tested 
on 1507 breast 
cancer patients’ 
notes for two 
drugs

accuracy for 
sentence 
boundary 
detector was 
0.949, for 
tokenizer 0.949, 
for POS tagger 
0.936, for 
shallow parser 
0.924, and F-
score for named 
entity recognizer 
was 0.715 for 
exact matching 
and 0.824 for 
overlapping span; 
for chest CT 
reports, precision 
was 0.72, recall 
was 0.48; 
medication 
accuracy was 
0.925

Clinical notes, 
radiology reports

[30,40,45,51,58–68]

EpiDEA an extension of 
cTAKES focused 
on epilepsy that 
extracts and 
structures data 
using the 
Epilepsy and 
Seizure Ontology 
and has been 
incorporated into 
the MEDCIS 
federated query 
platform

tested against 
104 manually 
annotated 
discharge 
summaries

precision was 
0.936, recall was 
0.84

Unknown [51,69,70]

FreePharma a commercial 
system for 
structuring 

Unknown Unknown Unknown [31,34]
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System 
Name

Brief 
Description

Evaluation Performance Usage On 
Other
Texts

Citations

dosage 
instructions

GATE an extensive 
open-source 
framework for 
text processing 
with a basic 
information 
extraction 
pipeline and a 
wide variety of 
additional 
components

an 
implementation 
was evaluated to 
extract mini 
mental state 
exam scores and 
dates from 
mental health 
records

precision was at 
least 0.85, recall 
was at least 0.85, 
depending on 
note type

Drug patent 
documents, 
mental health 
notes

[20,50]

HITEx a system utilizing 
many GATE 
resources to 
process clinical 
notes and 
discharge 
summaries and 
extract 
normalized 
diagnostic and 
family history 
terms

evaluated on 150 
discharge 
summaries for 
principal 
diagnosis, 
comorbidity, and 
smoking status; 
also evaluated 
separately for 
extraction of 
family history 
information 
from discharge 
summaries

accuracy was 
0.82 for principal 
diagnosis, 0.87 
for comorbidity, 
and 0.9 for 
smoking status; 
for family 
history, precision 
was 0.96, recall 
was 0.93

Unknown [59,71,72]

i2b2 
Workbench

an optional NLP 
component is 
included in the 
i2b2 Workbench, 
but limited to 
specific purposes

Unknown Unknown Unknown [73]; [74]*

I2E an indexing and 
standardizing 
tool for clinical 
trial documents 
that finds 
concepts from 
NCI Thesaurus, 
MeSH, and 
PubChem

tested retrieval 
of documents for 
queries based on 
certain 
compounds

“relative” recall 
and precision 
were 0.94–0.99

Unknown [75]

LEXIMER a machine 
learning system 
for CT and MR 
imaging reports 
that locates 
important clinical 
findings or 
recommendations 
in text; has been 
incorporated into 
the Render 
medical imaging 
platform

evaluated on a 
set of over 1000 
radiology reports

sensitivity and 
specificity were 
0.989 and 0.949 
for marking 
important 
findings and 
0.982 and 0.999 
for marking 
recommendations 
for more imaging

Unknown [58,64,76]

LifeCode a commercial 
system for 
extracting billing 
codes and dosage 
information from 
medical records

has also been 
extended and 
tested for cancer 
findings in 500 
reports

identified 4347 
of 5139 findings

Unknown [34,42,58]; [77]*

LINNAEUS a NER tool with 
customizable 
dictionary

tested on 50 and 
25 PubMed 
documents, 
respectively, 
using custom 

precision and 
recall were 1.0 
and 0.896 for 
pain terms and 

Unknown [78,79]
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System 
Name

Brief 
Description

Evaluation Performance Usage On 
Other
Texts

Citations

dictionaries of 
pain and disease 
terms

0.96 and 0.96 for 
disease terms

LSP-MLP one of the 
earliest clinical 
NLP systems for 
parsing clinical 
notes and 
converting to 
SNOMED codes

had been 
evaluated for 
information 
retrieval tasks

precision was 
0.986, recall was 
0.925

X-ray reports [59]; [80]*

MedEx an UIMA-based 
system for 
medication 
extraction

Unknown Unknown Unknown [59]; [81]*

MedKATp a pathology 
extraction system 
that uses rules to 
map text to 
elements of the 
Cancer Disease 
Knowledge 
Representation 
Model

Unknown Unknown Unknown [35,39,59]

MedLEE an early rule-
based system for 
structuring 
radiography 
reports that was 
expanded for 
nearly all types 
of clinical notes 
and was later 
commercialized

evaluated on 150 
random 
sentences from 
clinical 
documents

precision was 
0.83, recall was 
0.77

radiology 
reports, 
pathology 
reports, clinical 
notes, discharge 
summaries

[48,51,58,59,64,82–
92]

MedTagger an adaptation of 
BioTagger-GM 
for extracting 
UMLS concept 
mentions from 
clinical notes

participated in 
the concept 
mention task in 
the 2010 i2b2 
NLP challenge

F-Measure was 
0.84

Unknown [93]

Medtex extracts terms 
and SNOMED-
CT concepts 
from death 
certificate text

Unknown Unknown Unknown [94]

MedXN extracts 
medication 
information from 
clinical notes 
into a form based 
on the RxNorm 
dictionary

evaluated on an 
unknown 
clinical note 
corpus

F-Measure was 
0.92 for dosage 
and 0.84 for 
frequency

Unknown [28]; [95]*

MERKI a rule-based 
system to extract 
medication 
information, 
including context 
of drugs (history, 
hospital, 
discharge, or not 
administered), 
from discharge 
summaries

tested on 26 
manually 
annotated 
discharge 
summaries

precision was 
0.94, recall was 
0.825 for drug 
names; context 
was correct for 
66% of found 
drugs

Unknown [34,96]

MetaMap a long-running 
system originally 
designed for 

evaluated on 42 
publications 
related to sleep 

precision was 
0.7, recall was 
0.77 for sleep 

biomedical 
literature, 
clinical notes

[35,53,58,59,78,93,96–
98]
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System 
Name

Brief 
Description

Evaluation Performance Usage On 
Other
Texts

Citations

literature 
abstracts that 
assigns the best 
candidate UMLS 
terms to 
segments of text 
and can map 
output to any 
constituent 
terminology in 
the UMLS

disorder; 
previously 
evaluated on 
mining ICD 
codes from 
records of 
pneumonia and 
influenza death; 
also tested for 
mining concepts 
for respiratory 
syndromes from 
emergency 
department 
reports

disorder 
publications; 
precision was 
0.98, recall was 
0.998 for ICD 
codes from death 
reports; precision 
was 0.56, recall 
was 0.72 for 
emergency 
department 
reports

MTERMS a rule-based 
system for 
extracting terms, 
concepts, and 
drug information 
from standard 
terminologies 
including UMLS, 
RxNorm, and 
SNOMED-CT

evaluated for 
medication 
extraction on 30 
charts (1108 
terms); later 
evaluated on 200 
notes for family 
history info

precision and 
recall were 0.9 
for drugs; 
precision was 
1.0, recall was 
0.97 for family 
history

Unknown [71,99]

Multithreaded 
Clinical 
Vocabulary 
Server

extracts 
SNOMED-CT 
concepts from 
radiology reports 
and other clinical 
notes

evaluated on 
chest 
radiography and 
CT reports to 
identify 
pneumonia

sensitivity was 
1.0, specificity 
was 0.98

radiography and 
CT reports, 
clinical notes

[58,100]

Natural 
Language 
Patient 
Record

a commercial 
system for 
identifying drugs 
and dosage 
information in 
medical records

Unknown Unknown Unknown [34]

NCBO 
Annotator

uses drug and 
disease 
ontologies to 
identify terms 
and map them to 
medical concepts 
from UMLS and 
RxNorm, 
including flags 
for things like 
negation

evaluated for 
recognizing 16 
disease events 
on the i2b2 2008 
Obesity 
challenge 
discharge 
summary 
corpus; also 
separately 
evaluated for 
drug exposure 
recognition

sensitivity was 
0.74, specificity 
was 0.96 for 
events; precision 
was 0.84, recall 
was 0.84 for 
drugs

clinical notes, 
pathology 
reports,radiology 
reports

[101,102]

NILE identifies 
location of 
pulmonary 
embolism from 
radiology reports

Unknown Unknown Unknown [58]; [103]*

OntoFusion takes structured 
and unstructured 
clinical and 
genomic data and 
uses known and 
inferred 
relationships to 
generate a logical 
data schema

Unknown Unknown clinical trial 
documents, 
biomedical 
literature

[104]
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System 
Name

Brief 
Description

Evaluation Performance Usage On 
Other
Texts

Citations

ONYX processes chest 
radiography 
reports to 
determine if they 
are consistent or 
inconsistent with 
pneumonia

run on a set of 
5000 chest 
radiography 
reports (where it 
decided 12% of 
reports needed 
manual review 
for decision)

sensitivity was 
0.75, specificity 
was 0.95

Unknown [45,58]; [105]*

OpenNLP an Apache 
project for NLP 
that includes 
components like 
a sentence 
boundary 
detector, 
tokenizer, 
symbol remover, 
and POS tagger, 
as well as 
MaxEnt and 
Perceptron 
named entity 
recognizers

Unknown Unknown Unknown [29,45,60,106]

PEP an extension of 
MedKATp with 
additional 
annotators still 
focusing on 
pathology reports

measured 
extraction results 
for 22 fields 
from 400 
pathology 
reports in the 
Strategic 
Partnering to 
Evaluate Cancer 
Signatures 
database

F-Measure above 
0.9 for half of 
fields, above 0.8 
for all fields

prostate, breast, 
and lung 
pathology 
reports

[39]

RADA uses a specialized 
domain glossary 
and predefined 
grammar rules to 
extract key 
medical concepts 
and their 
attributes from 
radiology reports

Unknown Unknown Unknown [64]; [107]*

REDEx a system for 
extracting 
numeric values 
like body weight 
by 
algorithmically 
creating regular 
expression 
patterns from 
annotated 
instances

tested on 568 
notes annotated 
for body weight 
in 10-fold cross-
validation

precision was 
0.98, recall was 
0.98

Unknown [108]

Regextractor a rule-based 
system for 
extracting 
numeric values 
from pulmonary 
function test text 
data

tested on 
pulmonary 
function test 
result charts for 
100 subjects 
(1100 data 
points)

99.5% 
congruency with 
manual chart 
abstraction

cardiac 
catheterization 
and 
echocardiograph 
data

[109]

SymText / 
MPLUS

a long-running 
and much-
updated system 
with Bayesian 
network-based 

evaluated on 292 
chest 
radiography 
reports to detect 
pneumonia as 

sensitivity was 
0.94, specificity 
was 0.91

Unknown [58,59,64,83]; [110]*
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System 
Name

Brief 
Description

Evaluation Performance Usage On 
Other
Texts

Citations

semantic 
grammar that can 
extract and 
normalize 
findings from 
radiography 
reports

determined by 
consensus of 4 
physicians

TagLine processes 80 
character lines 
from VA health 
records and first 
classifies each 
line with a 
decision tree 
classifier and 
then uses rules to 
extract info from 
them

evaluated on 47 
notes containing 
over 5000 lines

accuracy of line 
classifier was 
0.985; precision 
was above 0.95, 
recall was 0.99 
for single values; 
lower for lists

Unknown [111]

TextMiner a rule-based 
system for 
identifying 
possible drug 
side effect 
mentions in notes 
by parsing 
sentences 
containing a drug 
mention into 
labeled phrase 
structures

tested on 242 
notes for statin-
related adverse 
events

precision was 
0.99, recall was 
0.81 for sentence 
level information

Unknown [112]

Valx extracts and 
structures 
numeric value 
ranges or 
inequalities by 
using synonyms 
in the UMLS and 
manually defined 
heuristics

evaluated on an 
unknown 
number of Type 
1 and Type 2 
diabetes trial 
eligibility 
requirements

F-Measure was 
>=0.97 for 
“HbA1c” 
extraction and 
>=0.92 for 
“Glucose” 
extraction

Unknown [41]

Abhyankar & 
Demner-
Fushman 
2013 
(unnamed)

uses regular 
expressions to 
extract maternal 
information 
including lab test 
results from 
NICU admission 
notes and 
discharge 
summaries

manually 
evaluated results 
for about 500 
data-rich NICU 
notes from 
MIMIC II

recall above 0.9 
and precision 
above 0.95 for 
most features

Unknown [113]

Barrett et al. 
2013 
(unnamed)

a machine 
learning system 
with rules for 
number 
extraction to 
identify 17 
serious sentinel 
events (e.g. 
dyspnea, 
delirium, and 
sepsis) in 
palliative care 
consult letters

tested on 
datasets of15 
and 215 labeled 
consult letters

average accuracy 
of 0.7–0.8 for 
different sentinel 
events

Unknown [114]

Cameron et 
al. 2012 
(unnamed)

extracts smoker 
semantic types 
from progress 
notes

tested on a set of 
notes for 100 
patients

precision was 
0.87

Unknown [42]
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System 
Name

Brief 
Description

Evaluation Performance Usage On 
Other
Texts

Citations

Chen et al. 
2015 
(unnamed)

uses Stanford 
recursive neural 
network parser 
and some regular 
expressions and 
heuristics to 
extract noun 
phrases and lab 
result values 
from sleep 
reports

tested noun 
phrase extraction 
and regular 
expressions on 
100 documents

precision was 
0.8, recall was 
0.75 for noun 
phrases; accuracy 
was 0.98 for 
regular 
expressions

Unknown [73]

Fang et al. 
2014 
(unnamed)

uses stemming 
and grouping 
algorithms (and 
NegEx) to do 
NER on clinical 
notes for 
diseases, 
symptoms, 
mental behaviors, 
and medications 
and converts to 
UMLS terms

Unknown Unknown Unknown [115]

Hao & Weng 
2015 
(unnamed)

an extension of 
the BaselineM 
system to extract 
frequent 
semantic tags 
using some 
heuristic rules 
and some 
algorithms from 
NLTK

run on 500 
clinical trial 
summaries, 500 
paragraphs from 
12 clinical trial 
protocols, and 
500 clinical data 
warehouse 
requests

found 10%−20% 
more frequent 
semantic tags 
than BaselineM

Clinical Data 
Warehouse 
requests; 
Clinical Trial 
summaries and 
protocols

[40]

Hassanpour 
& Langlotz 
2016 
(unnamed)

applies many 
pieces of the 
Stanford NER 
toolkit, including 
CMM and CRF 
methods, to 
extract radiology 
terms from chest 
CT reports

evaluated on 150 
manually 
annotated chest 
CT radiology 
reports from 
RadCore

precision was 
0.87, recall was 
0.84 for both 
methods

Unknown [64]

He et al. 2014 
(unnamed)

a system for 
processing 
clinical trial 
eligibility criteria 
that checks 
substrings for 
UMLS matches 
and uses the Valx 
system to extract 
numeric values 
like lab results

Unknown Unknown Unknown [41]

Kadra et al. 
2015 
(unnamed)

a GATE-based 
system to extract 
prescription 
information 
(especially anti-
psychotic 
medications) 
from health 
records

tested on records 
for 120 patients 
over 6 months 
for 6 frequent 
anti-psychotic 
medications

precision was 
0.94–0.97, recall 
was 0.57–0.77 
across 6 drugs

Unknown [27]

Karystianis et 
al. 2016 
(unnamed)

a rule-based 
system to capture 
dosage 
instructions 

evaluated on 220 
free text 
prescription 
instructions from 

accuracy was 
0.94–1.0 for 
individual 
attributes and 

Unknown [28]
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System 
Name

Brief 
Description

Evaluation Performance Usage On 
Other
Texts

Citations

(including min 
and max 
variability) from 
special 
instruction notes 
to patients

Clinical Practice 
Research 
Datalink

0.91 for full 
prescriptions

Korkontzelos 
et al. 2015 
(unnamed)

a system with 
several different 
approaches for 
performing drug 
NER on 
biomedical 
literature with 
minimal or no 
gold standard 
corpus

evaluated on 120 
MEDLINE 
abstracts

precision was 
0.973, recall was 
0.93 when using 
genetically 
evolved patterns 
and MaxEnt 
method

Unknown [29]

Li et al. 2015 
(unnamed)

uses a CRF 
model to identify 
medications and 
their attributes in 
clinical notes and 
compares the list 
to the structured 
medication list 
for discrepancies

tested on 300 
discharge 
summaries with 
corresponding 
structured 
prescription lists

precision and 
recall were 0.88–
0.95 for all 
features except 
duration

Unknown [30]

Martinez et 
al. 2014 
(unnamed)

classifies 
pathology reports 
for cancer 
staging 
information with 
Genia Tagger, 
MetaMap, and 
NegEx as input

tested several 
different 
machine 
learning 
methods and 
data subsets 
from about 400 
pathology 
reports from 2 
hospitals

F-Measures from 
0.7–0.9 for 
different 
methods, but 
lower when 
training and 
testing used 
different 
hospitals

Unknown [35]

Mork et al. 
2010 
(unnamed)

a rule-based 
system using 
MetaMap that 
was built for a 
medication 
extraction 
challenge and 
that informed 
further 
development of 
MetaMap

participated in 
the 2009 i2b2 
Medication 
Extraction 
Challenge

precision was 
0.78, recall was 
0.82

Unknown [96]

Otal et al. 
2013 
(unnamed)

a machine 
learning system 
using WEKA 
algorithms to 
detect T cancer 
staging 
classification

tested for 68 
non-metastatic 
breast cancer 
patients

agreement with 
expert was 93% 
for best portable 
algorithm

Unknown [36]

Shah & 
Martinez 
2006 
(unnamed)

extracts 
medication 
dosage 
instruction 
information from 
free text 
instructions to 
patient

tested on 1000 
prescription 
records from 
General Practice 
Research 
Database; then 
further training 
and testing on 
prescription 
records from the 
Adverse Drug 
Reactions On-
line Information 

99.4% correct 
daily dose 
extraction in 
GPRD; accuracy 
was 0.93 for 
ADROIT

Unknown [31,34]
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System 
Name

Brief 
Description

Evaluation Performance Usage On 
Other
Texts

Citations

Tracking 
database

Turchin et al. 
2014 
(unnamed)

a rule-based 
system that 
identifies 
discrepancies 
between free text 
prescription 
information and 
structured 
medication 
information

evaluated on 
1000 electronic 
prescriptions 
manually 
reviewed for 
discrepancies by 
two experts

precision was 
0.84, recall was 
0.76

Unknown [32]

Voorham & 
Denig 2007 
(unnamed)

a rule-based 
system for 
processing 
clinical notes and 
extracting 13 
numeric 
measurements 
for evaluating the 
quality of 
diabetes care 
(e.g. blood 
pressure, weight, 
height, and 
serum glucose)

tested on 60 
annotated patient 
records

Precision was 
>=0.91 for 10 of 
13 values, recall 
was >=0.94 for 
11 of 13 values

Unknown [116]

Wieneke et 
al. 2015 
(unnamed)

a machine 
learning system 
for breast 
pathology reports 
that extracts 
procedure, result, 
and laterality; 
when high PPV 
and high NPV 
classifiers 
disagreed, reports 
were marked for 
manual review

evaluated on 324 
breast pathology 
reports after 
training on 
nearly 3000 
reports

12.7% were 
completely 
correctly coded; 
half of reports 
sent to manual 
review

Unknown [37]

Xu et al. 2012 
(unnamed)

a voting-based 
system built 
(after the fact) 
for the i2b2 2010 
three-part 
challenge

evaluated on the 
i2b2 2010 
corpus of 477 
discharge 
summaries for 
the concept 
extraction, 
assertion 
classification, 
and relation 
identification 
tasks

micro-averaged 
F-Measure for 
the 3 tasks: 0.85, 
0.94, 0.73

Unknown [117]

Yli-Hietanen 
et al. 2009 
(unnamed)

an expansion to a 
chief complaint 
normalization 
system to add 
approximate 
matching for 
misspelling

tested on chief 
complaints from 
5 hospital 
emergency 
departments; 
checked results 
for 500 of them

99% correctly 
normalized, 
98.4% when 
allowing 
misspellings

Unknown [118]

Zheng et al. 
2015 
(unnamed)

uses some 
proprietary NLP 
components/
software and a 
custom 
dictionary of 
aspirin terms to 
extract low dose 
aspirin 

evaluated on 
5339 manually 
annotated notes 
from patients 
with atrial 
fibrillation

precision was 
0.93, recall was 
0.955

Unknown [33]
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System 
Name

Brief 
Description

Evaluation Performance Usage On 
Other
Texts

Citations

medication 
information

*
These citations did not originate through the systematic review process, but are provided for the sake of convenience.

NLP: Natural Language Processing; POS: Part-of-Speech; NER: Named Entity Recognition; CMM: Conditional Markov 
Model; CRF: Conditional Random Fields; WEKA: Waikato Environment for Knowledge Analysis; NLTK: Natural 
Language Toolkit; i2b2: Informatics for Integrating Biology & the Bedside; NCI: National Cancer Institute; MeSH: 
Medical Subject Headings; UMLS: Unified Medical Language System; SNOMED-CT: Systematized Nomenclature of 
Medicine – Clinical Terms; UIMA: Unstructured Information Management Architecture; GATE: General Architecture for 
Text Engineering; CT: Computerized Tomography; PPV: Positive Predictive Value; NPV: Negative Predictive Value
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Fig. 1. 
The coding results of the title and abstract screening following adjudication.
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Fig. 2. 
The coding results of the full text screening following adjudication.
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Fig. 3. 
The review process and the number of records in Phases 1–3.
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Fig. 4. 
The queried records and the percentage included after each screening phase by publication 

year. The number in each bar represents the total records found by the initial query that were 

published during that year. Note that 2016 is an incomplete year because the query was run 

on June 15 of that year. The two lines show the percentage of records published in each year 

that were included after review of their title and abstract (red dashed line) and full text (blue 

solid line). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 5. 
The citation counts per year for the 10 publications with the most citations. Retrieved from 

Web of Science on 2016–11–03.
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