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Abstract: Reliable and accurate localization of objects is essential for many applications in wireless
networks. Especially for large-scale wireless sensor networks (WSNs), both low cost and high accuracy
are targets of the localization technology. However, some range-free methods cannot be combined
with a cooperative method, because these range-free methods are characterized by low accuracy of
distance estimation. To solve this problem, we propose a hard decision-based cooperative localization
method. For distance estimation, an exponential distance calibration formula is derived to estimate
distance. In the cooperative phase, the cooperative method is optimized by outlier constraints from
neighboring anchors. Simulations are conducted to verify the effectiveness of the proposed method.
The results show that localization accuracy is improved in different scenarios, while high node density
or anchor density contributes to the localization. For large-scale WSNs, the hard decision-based
cooperative localization is proved to be effective.
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1. Introduction

Location awareness is rapidly becoming an essential feature of many commercial, public service,
and military wireless networks [1–3]. Most of the time, data recorded from a wireless sensor only
make sense if correlated with a position. For example, the sensors in the wireless sensor network
(WSN) for environment monitoring need to be accurately oriented or localized in order to sense,
report, and process relevant environmental events [4,5]. Conventional techniques are not adequate
for providing seamless and high-accuracy location awareness in harsh environments. For example,
the global positioning system (GPS) does not operate well indoors or in urban canyons due to signal
blockage [6–8]. Hence, new localization techniques are required to meet the increasing need for
accurate localization in such harsh environments.

Inspired by their promising applications, researchers have developed many localization systems
using different wireless measurements, which are categorized as range-based and range-free methods.
The range-based methods, such as time of arrival (TOA) [9], time difference of arrival (TDOA) [10],
angle of arrival (AOA) [11,12], and received signal strength index (RSSI), assume that a node is able
to measure the distances or angles with respect to its neighbors. The range-free methods, such as
Distance Vector-Hop (DV-HOP) [13], Approximate Point-in-Triangulation (APIT) [14], Centroid [15],
and Localization Algorithm using Expected Hop Progress (LAEP) [16], assume that a node has no
ability to measure the distances or angles with respect to its neighbors and uses connectivity or
hop-count information to estimate the positions of the nodes. The range-based localization provides
higher accuracy for distance measurement, but extra hardware required by the nodes increases its cost.
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The range-free localization has a reduced cost, but its accuracy is also relatively decreased. In this
paper, we explore a localization technology in large-scale networks characterized by a large node
amount and a large node distribution area. Considering the cost requirement for large-scale WSNs,
range-free methods are mainly considered in this paper.

Compared with range-based methods, the reason for the lower localization accuracy of range-free
methods is the inaccurate estimation of node distance. To improve the localization accuracy, most
research in the field is focused on the improvement of distance accuracy. Multi-hop distance estimation
is one of the most popular ways to improve distance accuracy. In the field of multi-hop distance
estimation, Ta et al. [17] provided an analytical recursive equation for the probability that any two
sensors separated by a known distance x are k-hop neighbors for any positive integer k. Wang et al. [18]
derived the expected hop progress from a network model for WSNs in terms of network parameters.
Since distance estimation is a key issue in localization systems for WSNs, the proposed range-free
LAEP achieves better performance and less communication overhead compared to other existing
schemes. Vural et al. [19] proposed a greedy method of distance maximization and evaluated the
distribution of the obtained multi-hop distance through analytical approximations and simulations.
Zaidi et al. [20,21] considered that the per hop length (PHL) between different nodes might be greatly
different in anisotropic WSNs, resulting in a large error in distance estimation. They proposed a novel
range-free localization algorithm and derived its average location estimation error in closed form. Wang
et al. [22] proposed an error compensation-based node distance estimation, which benefits from joint
exploitation, at no cost, of the information provided by the adjacent areas and nodes. By exploring new
ways to improve distance estimation, multi-hop methods have been applied to network localization
with success. However, the information from anchors has not been fully used, since their characteristics
do not accord statistical relationship.

Apart from node distance, the positions of the anchors are also essential to estimate a node
position. Typical localization systems for wireless networks employ two types of nodes, i.e., anchors
(infrastructures with known positions) and agents (devices with unknown positions). As the anchors
and agents play different roles, the existing localization methods can be grouped in two broad
categories that may be referred to as non-cooperative localization and cooperative localization. In a
non-cooperative localization network, the agents do not receive the position information from other
agents. Therefore, the working status of the agents will not affect the localization result. The related
methods have been studied in [23–27]. In a cooperative localization network, the agents can obtain
distance measurements from their neighboring agents. The localization method considers not only
the measured positions of the anchors but also the virtual positions of the agents. Because the agent
information is fully utilized in cooperative localization, its performance can be improved.

In the past decade, a plethora of cooperative localization algorithms based on different
position-related signal metrics has been proposed. Wymeersch et al. [28] gave an overview of
cooperative localization approaches and applied them to ultrawide bandwidth (UWB) wireless
networks. They also presented a powerful localization algorithm by mapping a graphical model
for statistical inference onto the network topology, which resulted in a net-factor graph, and by
developing a suitable net-message passing schedule. Shen et al. [29] established the fundamental
limits of wideband cooperative location-aware networks and provided a geometrical interpretation of
equivalent Fisher information (EFI) for cooperative networks. This approach helps succinctly derive
fundamental performance limits and their scaling behaviors and to treat anchors and agents in a
unified way from the perspective of localization accuracy. Chen et al. [30] proposed a new type of
power management strategies where each agent individually minimizes its square position error bound
penalized by its power cost. The strategies operate as solutions to two power management games
that are formulated knowing local information and global information, respectively. Cooperative
localization is an emerging paradigm that circumvents the need for high-power, high-density anchor
deployment and offers additional localization accuracy by enabling the agents to help each other in
estimating their positions. However, most cooperative localization methods only apply to range-based
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situations, since range-based measurements provide higher accuracy. For range-free situations,
the distance measurements have low accuracy, which directly decreases the localization accuracy.
The agents with low localization accuracy do not contribute to improving the localization performance
of the whole network but disrupt the whole localization system and may cause localization breakdown.

In this paper, we propose a cooperative localization model for wireless sensor networks in
range-free situations. In the distance estimation phase, a multi-hop method is introduced to estimate
the node distance. To improve the accuracy of distance estimation, a novel weight allocation way
is proposed to offset the deviation from the multi-hop method based on the neighboring anchors.
In the localization phase, a hard-decision cooperative method is proposed by analyzing the geometric
relationship between agent position and distance. In this way, it is possible to eliminate unreasonable
agents and avoid a large deviation by geometric constraints.

The rest of the paper is organized as follows. Section 2 presents the multi-hop distance estimation
and the error compensation method. Section 3 studies the cooperative localization method with
variational message passing (VMP) rules and derives the geometric constraints and iterative parameters.
Numerical results are demonstrated in Section 4, and conclusions are given in Section 5.

2. Distance Estimation

In this section, we describe an improved distance estimation method which expands the multi-hop
estimation with an exponential distance calibration. The multi-hop estimation regards a localization
scenario as a uniformly distributed network, where node density is fully utilized to estimate neighboring
nodes’ distance in an adjacent area. The sum of neighboring nodes’ distances in the shortest path is
the initial distance of two nodes in the far field and it is divided into even shortest paths and odd
shortest paths, manipulated in different ways. Considering the high uncertainty and randomness of
the multi-hop method, we propose a calibration method to improve localization accuracy. In the sensor
network, a neighboring anchor is very important to locate agents. Here, we evaluate the error range of
the multi-hop method and calibrate the distance estimation between two agents because agent to be
located may share the same shortest path to other node. The calibration refers to all anchors within the
communication range of the agent to be located. According to the estimated distance between anchors
and agent, we propose that the anchors influence the agent in an exponential weight form.

2.1. Multi-Hop Method

Consider a wireless network consisting of M = NA +Na nodes, where there are NA anchors and Na

agents. We denote the position of the m− th node as θm , [xm, ym]
T, m ∈ S∪A, where A = {1, · · · , Na}

stands for the set of the indexes of agents, while S = {Na + 1, · · · , M} is the set of the indexes of anchors.
These sensors are assumed to be uniformly distributed in an area. All anchor and sensor nodes are
assumed to have the same range (i.e., transmission capability), denoted by R. Each node is then able to
directly communicate with any other node located in the disc having that node as a center and R as a
radius, while it communicates in a multi-hop fashion with the nodes located outside it.

We firstly explore the distance estimation between two nodes in a two-hop range. As shown in
Figure 1, the red points are the two nodes to be located. They are beyond communication range but
can communicate through another one node which is denoted by yellow points. F denotes the adjacent
area of the two nodes’ communication range.
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Figure 1. Distance estimation between two nodes in a two-hop range.

As the nodes are assumed to be uniformly distributed, we estimate the area through the node
density ρ. Because a wireless sensor network is a kind of ad hoc network, its sensors can be
self-organized once all sensors are started in the network. For developed hardware, such as CC2530 or
IRIS, each sensor in the network can obtain device information at all times and form an associated
device list. This associated device list includes all nodes which are within the communication range of
the agent to be located. Once one of these nodes joins or quits the network, the associated device list
would be updated. Through the associated device list, sensors can obtain and record their neighboring
nodes information. After the ad hoc network is prepared, the agent to be located sends its neighboring
information to each node of its own associated device list and receives neighboring information from
other sensors. The sensor to be located compares its own neighboring information to that of the
neighboring nodes, so that the common nodes are counted. The number of common nodes is N in the
adjacent area F. The adjacent area can be expressed as

F = N/ρ (1)

Also, we can express the relationship between adjacent area and node distance as

F = φ
(
di j

)
= 2R2 cos−1

( di j

2R

)
−

1
2

di j

√
4R2 − d2

i j (2)

where di j denotes the distance between node i and j, and i, j = 1, · · · , M.
The node distance is obtained by solving the following equation:

d̂i j = ψ
(
F̂
)

(3)

where ψ
(
F̂
)

is the inverse function of φ
(
di j

)
and it is also a decreasing function with respect to the

adjacent area F̂. Because the node distance cannot have a closed-form solution in Equation (3), the
Secant method is introduced to solve the root-finding problem. It is based on

φ̃(x) = φ(x) − F̂ (4)

The node distance is updated by

d̂p+1
i j = d̂p

ij − φ̃
(
dp

ij

) dp
ij − dp−1

i j

φ
(
dp

ij

)
−φ

(
dp−1

i j

) (5)

where p denotes the number of iterations. When the condition p = pmax = infp

{
d̂p

ij = d̂p+s
i j ,∀s ∈ N∗

}
is

met, the iteration stops. To obtain d̂p
ij = d̂pmax

i j , we firstly set d̂0
i j = R, d̂0

i j = 2R.
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The distance estimation above is for two nodes in a two-hop range. When the distance of two
nodes is beyond the two-hop range, it can be estimated by the shortest path. If the hops in the shortest
path are even, the distance is

d̂i j =

nh/2∑
l=1

Ψ
(

Nl
ρ

)
(6)

If the hops in the shortest path are odd, the distance of the last hop needs to be further estimated
as shown in Figure 2.
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Figure 2. Distance estimation between two nodes within communication range.

In the same way, Equation (2) provides a solution for the distance estimation for a single hop. The
adjacent area is estimated by the common node in their communication ranges. When the shortest
path is odd, the node distance is

d̂i j =

(nh−1)/2∑
l=1

Ψ
(

Nl
ρ

)
+ dLast

av (7)

2.2. Distance Calibration

Although the nodes are assumed to be uniformly distributed in the area, homogeneity is not
possible in practice. This assumption leads to the inaccurate estimation of the area, which decreases the
accuracy of distance measurement. Also, the nonlinear shortest path cannot reflect the linear distance
between two nodes, and considering it leads to an error in distance estimation. To alleviate the effect of
these assumptions, we extract path information from the neighboring anchors. The relevance of agent
and neighboring anchors in non-cooperative networks has been investigated in [22]. For a cooperative
network, we should find a better way to calibrate the distance error.

Distance calibration includes two scenarios: distance between agent and anchor, and distance
between agent and agent. For agent A1 and anchor S4, the shortest path is shown in Figure 3. Points
S1, S2, S3 are the neighboring anchors within communication range of agent A1. Because agent A1

and its neighboring anchors S1, S2, S3 may share the same path, the distance between anchors could
provide reference for distance calibration.
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On this basis, we propose the distance calibration formula

ΘA1S4 =
κ∑

i=1

λi(dSiS4 − d̂SiS4) (8)

where ΘA1S4 is the calibration value of agent A1 and anchor S4, dSiS4 is the true distance between
anchors SiS4, d̂SiS4 is the distance estimated by the multi-hop method in Section 2.1, λi is the weight
of each distance, κ is the number of selected anchors, which depends on two factors, one of which
is the neighboring anchors number of agent A1. If this number is small, all the neighboring anchors
contribute to the distance calibration. If the number is large, only part of them contribute to the distance
calibration. The larger the number of neighboring anchors, the larger their over-calibration on distance
estimation. Another factor affecting the selection of anchors is the distance between agent A1 and
neighboring anchor. Usually, the anchor at a lower distance more probably shares the same shortest
path. On this basis, the number κ as well as the weight λi are determined. To characterize the distance
information better, we propose an exponential weight allocation formula

λi = e−
_
d A1Si /

κ∑
i=1

e−d̂A1Si (9)

After calibration, the distance between agent and anchor is

d̃A1S4 = d̂A1S4 + ηA1S4 ΘA1S4 (10)

where ηA1S4 is the calibration coefficient, which is designed to avoid over-calibration. Usually, the
calibration coefficient is set to 0 < ηA1S4 < 1.

For agent A1 and agent A2, the shortest path is shown in Figure 4. Points S1, S2, S3 are the
neighboring anchors within communication range of agent A1. Points S4, S5, S6 are the neighboring
anchors within communication range of agent A2.
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In the same way, the distance calibration formula for agents is

ΘA1A2 =

κi∑
i=1

κ j∑
j=1

λi j(dSiS j − d̂SiS j) (11)

where κi denotes the selected anchors around agent A1, and κ j denotes the selected anchors around
agent A2. Their weights are also allocated by distances. The exponential form of weight is

λi j =

(
e−d̂A1Si + e

−

_
d A2Sj

)
/
κi∑

i=1

κ j∑
j=1

(
e−dA1Si + e

−dA2Sj

)
(12)
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After calibration, the distance between the agents is

d̃A1A2 = d̂A1A2 + ηA1A2 ΘA1A2 (13)

where ηA1A2 is the calibration coefficient, which is usually 0 < ηA1A2 < 1.

3. Cooperative Localization

For range-free localization, a large deviation of distance estimation and position estimation may
often happen, due to scarce information and difficult communication environment. These unwelcome
estimations are called outliers. Especially in cooperative localization, outliers may lead to the failure of
whole network. To alleviate the effect of the outliers, we propose a cooperative localization method with
outlier constraints. Outlier constraints are divided into distance constraints and position constraints,
which both rely on neighboring anchors. The estimated distance and position will not exceed the
communication range of neighboring anchors for both distance constraints and position constraints.
These constraints are represented by the parameters α and β, which condition the cooperative method.
The cooperative method introduces message passing and updates the estimated position through the
variational message passing rule. The final localization result depends on confidence of the agent to
be located.

3.1. Outlier Constraints

For range-based localization, the estimated distances are relatively accurate, so that the localization
of agents is quite precise. For range-free localization, in our paper, the accuracy fails to meet the
requirement of cooperative localization for both node distance and node position. If the outlier distance
and position are regarded as key information of a virtual anchor, this will cause a large derivation in
the subsequent iteration, leading, finally, to disruption of the whole network and localization failure.
To avoid this problem, we propose the outlier constraint method, which includes position constraint
and distance constraint.

It is inevitable to have low accuracy of distance estimation with the multi-hop method. The outlier
distance has a negative effect on cooperative localization, so it is better to exclude the outlier distances.
The outlier distance is excluded by constraints from anchors, as shown in Figures 5 and 6. Figure 5
shows the distance between agent and anchor. Figure 6 shows the distance between agents. For the
distance between agent and anchor, the outlier constraint is

dSS1 −R ≤ d̃A1S ≤ dSS1 + R (14)

where d̃A1S is the estimated distance according to Section 2, S denotes the neighboring anchors within
communication range of A1, dSS1 denotes the true distance between anchor S1 and any anchor in S.
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Hence, we propose a constraint function as

αA1S
(
d̃A1S

)
=

{
1, dSS1 −R ≤ d̃A1S ≤ dSS1 + R
0, others

(15)

For the distance between agents, the outlier constraint is

dSS′ − 2R ≤ d̃A1A2 ≤ dSS′ + 2R (16)

where d̃A1A2 is the estimated distance according to Section 2, S denotes the neighboring anchors within
communication range of A1, S′ denotes the neighboring anchors within communication range of A2,
dSS′ denotes the real distance between any anchor in S and any anchor in S′.

Hence, we propose the constraint function

αA1A2

(
d̃A1A2

)
=

{
1, dSS′ − 2R ≤ d̃A1A2 ≤ dSS′ + 2R
0, others

(17)

In a cooperative network, the outlier position of the agent also has a negative effect on cooperative
localization. It is better to exclude these outlier positions through neighboring anchors. In the network,
agents can communicate with all nodes that are in their communication range. Therefore, distance
between the agent and its neighboring anchor is lower than the communication range:

‖θ̂A1 − θS‖2 ≤ R (18)

where θ̂A1 is the estimated position of agent A1, S denotes the neighboring anchors within
communication range of A1, θS denotes position of any anchor in S.

Hence, we propose the constraint function

βA1

(
θ̂A1

)
=

{
1, ‖θ̂A1 − θS‖2 ≤ R
0, others

(19)

where ‖ · ‖ is the Euclidean norm of estimated position θ̂A1 and true position θS.

3.2. Cooperative Localization

Thanks to the locally factorized structure of the joint likelihood function, the cooperative
localization problem can be addressed under the framework of factor graph. Inference and estimation
tasks are typically carried out on a factor graph by message passing between variable nodes and factor
nodes. Existing methods do not consider the outlier variable nodes and factor, which indicates that
cooperative localization is not suitable for a range-free situation. In the cooperative phase, we explore
a hard decision-based cooperative way for a range-free situation applying outlier constraints.
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We assume that the sensor node i acquires a noisy measurement d̃i j and that i, j ∈ S∪A, which is
the estimated distance from the sensor node j ( j can be either an agent or an anchor). Then, we have

d̃i j = ‖θi − θ j‖+ ei j (20)

where ei j is the measurement noise. Without loss of generality, we assume that measurement noise

obeys a Gaussian distribution, so ei j ∼ N
(
ei j; 0, σ2

i j

)
; σi j is the standard deviation. The probability

density function of node distance is

p
(
d̃i j

∣∣∣θi,θ j
)
=

1
√

2πσi j
exp

−
(
d̃i j − ‖θi − θ j‖

)2

2σ2
i j

 (21)

We define fi j , p
(
d̃i j

∣∣∣θi,θ j
)

and assume that the relative positions are conditionally independent
and only depend on the two nodes involved:

p(D |θ ) =
∏

i∈S∪A

∏
j∈S∪A

p
(
d̃i j

∣∣∣θi,θ j
)

(22)

where θ is defined as the position set θ , {θi : i ∈ S∪A} of all nodes, and D is defined as the distance
set D ,

{
d̃i j : i ∈ S∪A, j ∈ S∪A

}
of all nodes.

Among various message-passing algorithms, belief propagation (BP, also known as sum-product
algorithm, SPA) and VMP are the most widely applied ones. Compared with BP, VMP can often
lead to relatively simple message-passing rules, which roots from the fact that VMP enforces stronger
constraint on the form of trail distributions. Considering the effect of the outliers, we propose a hard
decision-based cooperative method and define a VMP rule with outlier constraints as

m fia→θi(θi) = exp
(∫

αia
(
d̃ia

)
b(θa) ln p

(
d̃ia|θi,θa

)
dθa

)
(23)

m fil→θi(θi) = exp
(∫

αil
(
d̃il

)
βi
(
θ̂i

)
b(θl) ln p

(
d̃il|θi,θl

)
dθl

)
(24)

where m fia→θi(θi), m fil→θi(θi) are the messages from anchor factor fia and agent factor fil, b(θa), b(θl)

are the confidence result in the last iteration, αia
(
d̃ia

)
,αil

(
d̃il

)
are the outlier constraints of the estimated

distance, βi
(
θ̂i

)
is the outlier constraint of the estimated position. Their definition was presented in

Section 3.1. When the estimated distance or position is identified as outlier, the messages are invalid.
This ensures that the outliers do not disrupt the whole network.

An approximation of the posterior distribution is

b(θi) ,
1
Z

∏
a∈S

m fia−θi(θi)
∏
l∈A

m fil−θi(θi) (25)

where Z is a normalization coefficient.
After some manipulation, the confidence of the agent position is

b(θi) ∝ exp

∑
a∈S

αia
(
d̃ia

)
· gia(θi) +

∑
l∈A

αil
(
d̃il

)
· βi

(
θ̂i

)
· gil(θi)

 (26)

where

gia(θi) ,
d̃ia

(σia)
2 ‖θa − θi‖ −

1

2(σia)
2 ‖θa − θi‖

2 (27)
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gil(θi) ,

∫
b̂(θl)

 d̃il

(σil)
2 ‖θl − θi‖ −

1

2(σil)
2 ‖θl − θi‖

2

 (28)

We expand the Euclidean norms in the equations with second-order Taylor expansion. The
Euclidean norms Fia(θi) , ‖θa − θi‖ and Fil(θi,θl) = ‖θl − θi‖ are respectively expanded around θ̂∗i
and

(
θ̂∗i , θ̂

∗

l

)
. Then, equation (26) is transformed as

b̂(θi) ∝ exp
{
−

1
2
(θi)

T
(
V̂i

)−1
θi + (θi)

T
(
V̂i

)−1
θ̂i

}
(29)

where V̂i is defined as variance, and θ̂i is the expectation of the agent position. They are iteratively
calculated by

V̂i =

∑
a∈S

αia
(
d̃ia

)
·

 1

(σia)
2 I −

d̃ia

(σia)
2∇

2
Fia

 +∑
l∈A

αil
(
d̃il

)
· βi

(
θ̂i

)
·

 1

(σil)
2 I −

d̃il

(σil)
2 HFil



−1

(30)

θ̂i = V̂i

(∑
a∈S
αia

(
d̃ia

)
·

(
1

(σia)
2θa +

d̃ia

(σia)
2

(
∇Fia −∇

2
Fia
θ̃i

))
+

∑
l∈A
αil

(
d̃il

)
· βi

(
θ̃i

)
·

(
1

(σil)
2 θ̃l +

d̃il

(σil)
2

(
∇Fil −HFil θ̃i

))) (31)

where θ̃ denotes the estimated position of the last iteration,∇Fia ,∇2
Fia

are the first-order and second-order

gradient of Fia(θi) at θ̂∗i , ∇Fil , HFil is the first-order partial derivative and Hessian matrix with respect to

Fil(θi,θl) at
(
θ̂∗i , θ̂

∗

l

)
.

The network operates in a cooperative way through Equations (30) and (31) until pre-defined
iteration count. The final values of V̂i and θ̂i are the localization results.

4. Results and Discussion

Node locations and populations play a key role in determining the performance of a localization
network due to their stochastic natures which lead to changes of network topology. In this section, we
consider the general behaviors of a stochastic localization network where anchors and/or agents are
randomly distributed in the two-dimensional space. On this basis, the performance of the proposed
algorithm is evaluated through numerical simulations.

4.1. Localization Performance

We first investigate the localization performances of the proposed method and traditional method
in a network with 40 anchors and 160 agents. The communication radius is assumed to be 30 m, and the
distribution area is 100 m × 100 m. The node density is 0.02/m2. The number of iterations for algorithms
is set to 10. The parameters η in Equations (10) and (13) are 0.5. Standard deviations of the estimated
positions are σia = 2 for anchors and σil = 4 for agents. For comparison, we select the least-squares (LS)
method, cooperative localization without outlier constraints (CL), and cooperative localization with
outlier constraints (CLOC). The localization results are depicted by cumulative distribution functions
(CDFs), as shown in Figure 7.

As shown in Figure 7, CLOC outperforms LS and CL in accuracy. The mean-square error (MSE)
of CLOC is 5.225 m, while the MSE of LS and CL are, respectively, 7.665 and 6.92 m. Compared with
LS, CLOC improves the accuracy by about 30%. For CL and CLOC, the localization results are almost
same when the localization error is small, while CLOC outperforms CL when the localization error is
large. The reason for the better performance of CLOC is that the outlier constraints limited the possible
distribution of the estimated position. If outliers are considered, outlier constraints will improve the
localization of the whole network. Therefore, most localization errors in the CLOC method are less
than 4 m. Actually, CL and CLOC are both cooperative methods. LS is a non-cooperative method.
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In Figure 7, cooperative methods show better performance than non-cooperative methods. Because
outliers may lead to the wrong direction of iterative adjustment, the advantage of the cooperative
method is not obvious. As the outliers are considered in the CLOC method, the localization accuracy is
largely improved.Sensors 2019, 19, x FOR PEER REVIEW 11 of 17 
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Figure 7. Comparison of the localization results. LS: least-squares method, CL: cooperative localization
without outlier constraints, CLOC: cooperative localization with outlier constraints.

4.2. Performance of Distance Estimation

Distance estimation is a key step in the localization of a WSN. In this subsection, we investigate
the performance of distance estimation and the effect of the calibration coefficient. We consider a
network where 40 anchors and 160 agents are uniformly distributed in a 100 m × 100 m area. The node
density is 0.02/m2, and the communication radius is 30 m. The calibration coefficient varies from 0 to 1.
When the calibration coefficient is 0, the distance calibration does not affect the distance estimation.
We compare the distance estimation results in different scenarios, as shown below.

As shown in Figure 8, the estimated results present different performances with different calibration
coefficients. The performance is the worst when the calibration coefficient is 0. This indicates that the
traditional multi-hop method does not fully utilize the information from anchors, while its performance
can be improved by neighboring anchors. Other curves show the results after distance calibration.
Actually, the calibration coefficients have different effects on distance estimation. In Figure 8, the
estimation results are better when the calibration coefficient is 0.5, while they are worse when the
calibration coefficient is 1. This indicates that over-calibration is not always good for distance estimation.
Although the error from anchors can provide a reference, it is not completely valid for the agent. If the
calibration value is totally introduced in the distance estimation, it causes over-calibration that may
increase the error in an opposite manner. In the scenario of this subsection, the most suitable value for
the calibration coefficient is 0.5.

To further explore how to set the calibration coefficient, we design several simulations conducted
in different scenarios. The first scenario (Scenario I) considers a network where 80 anchors and
320 agents are uniformly distributed in a 100 m × 100 m area. The node density is 0.04/m, and the
communication radius is 30 m. Scenario II considers a network where 20 anchors and 180 agents are
uniformly distributed in a 100 m × 100 m area. The node density is 0.02/m2, and the communication
radius is 30 m. Scenario III considers a network where 40 anchors and 160 agents are uniformly
distributed in a 100m × 100m area. The node density is 0.02/m2, and the communication radius is 20 m.
Scenario IV considers a network where 40 anchors and 160 agents are uniformly distributed in a 100 m
× 100 m area. The node density is 0.02/m2, and the communication radius is 50 m. For these scenarios,
we also select five calibration coefficient values to compare the localization performance. These values
are 0, 0.2, 0.5, 0.8, and 1. The values with the best localization accuracy are shown in Table 1.
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Table 1. Optimum calibration coefficients in different scenario.

Scenario Optimum Calibration Coefficient

Scenario I 0.5
Scenario II 0.5
Scenario III 0.5
Scenario IV 0.2

Table 1 shows that the optimum calibration coefficient is 0.2 for Scenario IV, whereas it is 0.5 for
all the other scenarios. This indicates in most cases, the localization performance is better when the
calibration coefficient is 0.5. The reason for a different optimum value in Scenario IV is the large ratio
between communication radius and distribution area. When the communication radius is 50 m and
the side of distribution area is 100 m, most sensors have at most three hops to reach other nodes in the
shortest path. Therefore, the theory of sharing the same path can rarely be used in the localization
method. This leads to a small calibration coefficient in the distance calibration phase. In practical
engineering, the calibration coefficient is usually set as 0.5, except in special cases similar to Scenario IV.

4.3. Effect of Network Distribution Setting

For range-free methods, network distribution parameters, such as node density, anchor proportion,
and communication radius, have a big influence on the localization results. In this subsection,
we investigate the effect of these network distribution parameters.

Node density is firstly investigated, with these nodes uniformly distributed in a 100 m × 100 m
area. The communication radius is 20 m, and the anchor proportion is 20%. The number of iterations
for algorithms is set to 10. The parameters η in Equations (10) and (13) are 0.5. The standard deviations
of the estimated positions are, respectively, σia = 2 for anchors and σil = 4 for agents. The total node
number varies from 200 to 500, so the node density varies from 0.02/m2 to 0.05/m2. The localization
results are shown in Figure 9.

Figure 9 shows the comparison of the performance of LS, CL, and CLOC. Due to the outliers,
the accuracy of CL without outlier constraints is close to that of with LS, and both CL and LS
underperform compared with CLOC. The accuracy of the three methods increases with increasing
node density. There are two reasons for their good performance. One is that a high node density
helps estimate the distance, because the nodes are more uniform, and the area range is easier to
differentiate. Another reason is that more anchors and agents can provide more references. Therefore,
CLOC outperforms in localization accuracy, and a high node density contributes to the improvement.
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Figure 9. Comparison of the localization performance with respect to node density.

Anchor proportion also has an effect on the localization performance. To investigate this effect,
200 nodes are uniformly distributed in a 100 m × 100 m area. The node density is 0.02/m2, and the
communication radius is 20 m. The number of iterations for algorithms is set to 10. The parameters η
in Equations (10) and (13) are 0.5. The standard deviations of the estimated positions are σia = 2 for
anchors and σil = 4 for agents. The anchor proportion varies from 20% to 50%. The localization results
are shown in Figure 10.
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Figure 10. Comparison of the localization performance with respect to anchor proportion.

As shown in Figure 10, CLOC outperforms in accuracy for all scenarios compared with LS and
CL. This indicates a good improvement produced by the proposed method, without the addition of
excessive computation. Meanwhile, the accuracy of the three methods increases with an increasing
anchor proportion. This is because the anchors’ positions are more accurately determined, and the
anchors are the reference to localize the agents. Therefore, a high anchor proportion can effectively
decrease the localization error.

We also investigate the effect of the communication radius on the localization performance. Here,
160 agents and 40 anchors are uniformly distributed in a 100 m × 100 m area. The node density is
0.02/m2. The number of iterations for algorithms is set to 10. The parameters η in Equations (10) and
(13) are 0.5. The standard deviations of the estimated positions are σia = 2 for anchors and σil = 4
for agents. The communication radius varies from 20 to 50 m. The localization results are shown in
Figure 11.

Figure 11 shows that CLOC outperforms for any communication radius compared with LS and CL.
However, the localization performance has no relationship with the communication radius. The trend
of localization accuracy does not change with respect to the communication radius. The reasons for
this are as following. Although a larger communication radius can consist of more nodes, the number
of nodes to differentiate the area of distribution is not higher. In the distance estimation phase, a
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larger communication radius does not improve the distance accuracy. In the localization phase, more
agents are included to realize cooperative localization when the communication increases. However,
these agents are unable to provide a precise reference, while the availability of outlier constraints is
weakened. Therefore, the communication radius has little effect on the localization results.
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Figure 11. Comparison of the localization performance with respect to the communication radius.

The proposed method is verified in a simulation environment, using a simple model of wireless
sensor network, which may not reflect real-world scenarios. To simulate a practical network, additional
experiments are performed to demonstrate the advantages of the method for non-homogeneous
distributions of nodes. We consider a network distribution with holes or obstacles, as shown in
Figure 12. In the network, 160 agents and 40 anchors are uniformly distributed in a 100 m × 100 m
area, excluding holes and obstacles. The communication radius is 30 m. The number of iterations for
algorithms is set to 10. The parameters η in Equations (10) and (13) are 0.5. The standard deviations of
the estimated positions are σia = 2 for anchors and σil = 4 for agents. The hole or obstacle is assumed
to be a square with its side varying from 30 to 60 m. the localization results are shown in Figure 13.
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Figure 12. Non-homogeneous distributions with holes or obstacles.

Figure 13 shows the localization results with respect to the side length of holes or obstacles.
Compared with a homogeneous network, LS, CL, and CLOC decrease the localization accuracy.
As the side length of holes or obstacles increases, the localization error increases. Therefore, in
a non-homogeneous situation, the localization performance decreases. However, the effect of a
non-homogeneous distribution is different for LS, CL, and CLOC. As shown in Figure 13, the effect on
LS is the largest. Because holes or obstacles directly cause a large distance estimation error, and no
measures have been taken to alleviate it, LS localization is seriously affected. Compared with LS, CL
and CLOC are both calibrated in the distance estimation phase. Although the shortest path is nonlinear
as a result of holes or obstacles, it is eliminated by neighboring anchors’ calibration. In this condition,
CL and CLOC are less sensitive to variations of the side length of holes or obstacles compared with
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LS. Because outlier constraints are used to improve cooperative localization, CLOC outperforms in
localization accuracy compared with CL.Sensors 2019, 19, x FOR PEER REVIEW 15 of 17 
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Figure 13. Comparison of the localization performance with respect to the side length of holes
or obstacles.

4.4. Communication Overhead

For localization technology in large-scale WSNs, the method is expected to be highly efficient, and
thus it requires a low communication overhead. In this section, CLOC is compared with LS and CL
with respect to the communication overhead. The communication overhead of the three methods is
shown in Table 2.

Table 2. Comparison of the three method with respect to communication overhead.

Algorithm Package

LS O(NANa)
CL O((NA+T)Na)

CLOC O((NA+T)Na)

Table 2 shows the approximate packages for the localization, where NA denotes the number of
anchors, Na denotes the number of agents, and T denotes the iteration. Among the three methods, LS has
the lightest communication load. CL and CLOC have the same communication load. The difference
between LS and the cooperative methods is regards the iterated localization process and depends on
the iteration counts. For CLOC, the constraints process does not increase the communication load.
Considering the improvement of localization accuracy, the communication overhead of the proposed
method is acceptable.

5. Conclusions

In this paper, we established a hard decision-based cooperative localization method for wireless
sensor networks. In the distance estimation phase, a novel calibration formula was defined to improve
the accuracy of the multi-hop method, where the exponential form of weight can better characterize the
distance relationship among nodes. In the cooperative localization phase, a hard decision-based method
with outlier constraints was proposed to solve the problem for range-free estimation. It effectively
avoids large errors in node localization. Simulations were conducted to investigate localization
performance, effect of algorithm parameters, and effect of network distribution. In these scenarios, the
proposed method showed a good performance for localization accuracy and communication overhead,
which promotes the development of low-cost WSN. Further study will focus on the localization capacity
in complex environments.
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