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Abstract

Cortical atrophy and degraded axonal health have been shown to coincide during

normal aging; however, few studies have examined these measures together. To lend

insight into both the regional specificity and the relative timecourse of structural deg-

radation of these tissue compartments across the adult lifespan, we analyzed gray

matter (GM) morphometry (cortical thickness, surface area, volume) and estimates of

white matter (WM) microstructure (fractional anisotropy, mean diffusivity) using tra-

ditional univariate and more robust multivariate techniques to examine age associa-

tions in 186 healthy adults aged 20–94 years old. Univariate analysis of each tissue

type revealed that negative age associations were largest in frontal GM and WM tis-

sue and weaker in temporal, cingulate, and occipital regions, representative of not

only an anterior-to-posterior gradient, but also a medial-to-lateral gradient. Multivari-

ate partial least squares correlation (PLSC) found the greatest covariance between

GM and WM was driven by the relationship between WM metrics in the anterior

corpus callosum and projections of the genu, anterior cingulum, and fornix; and with

GM thickness in parietal and frontal regions. Surface area was far less susceptible to

age effects and displayed less covariance with WM metrics, while regional volume

covariance patterns largely mirrored those of cortical thickness. Results support a

retrogenesis-like model of aging, revealing a coupled relationship between frontal

and parietal GM and the underlying WM, which evidence the most protracted devel-

opment and the most vulnerability during healthy aging.
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1 | INTRODUCTION

The healthy adult brain is susceptible to structural degradation of both

gray and white matter tissue throughout the aging process. To under-

stand the relative timecourse and anatomical specificity of volumetric

decline, much effort has been directed toward associating loss of

structural integrity, as observed through various magnetic resonance

imaging (MRI) modalities, with increasing age. The majority of these

aging studies utilized a univariate approach to assess gray matter

(GM) and white matter (WM) tissue compartments separately for their
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sensitivity to the effects of time. Cumulatively, these studies demon-

strated the differential age-sensitivity of regional GM and WM prop-

erties, but leave unclear how these tissue compartments influence

each other and age together. Given that these structural measure-

ments reflect components of one cellular unit—the neuron, with

somatic, dendritic, and axonal components, it makes sense that aging

of these biological components must be linked. However, few studies

have considered this dependency by examining the joint contribution

of both GM and WM tissue to investigate how alterations in both

aspects of brain structure are related across the lifespan. In contrast

to univariate approaches, multivariate analysis techniques are per-

fectly poised to address this issue. As demonstrated by Groves et al.,

2012, information from multiple imaging modalities can be analyzed

together to assess the combined effect of structural integrity loss

using multivariate analysis techniques. Treating complementary com-

ponents of the neuronal unit as a whole, as opposed to independent

features with orthogonal contributions, allows for a more complete

representation of imaging data. Multimodal analyses such as these,

which synthesize interdependent data, are necessary to advance

understanding of the progression of structural decline and the influ-

ence on cognition throughout the lifespan.

Advances in MRI pulse sequences, and subsequent imaging analy-

sis processing tools, allowed for an abundance of research identifying

age-related associations in both cortical morphometry and WM

health. Regional differences in cortical morphometry associated with

age (Raz, 2000; Raz & Rodrigue, 2006) generally show measurement

peaks during childhood (Tamnes et al., 2009), followed by an anatomi-

cally and chronologically divergent pattern of decline during senes-

cence (Fjell et al., 2013; Shaw et al., 2008). Regional analyses revealed

age-related atrophy in frontal (Allen, Bruss, Brown, & Damasio, 2005;

Bartzokis et al., 2001; Fjell et al., 2009; Grieve, Clark, Williams,

Peduto, & Gordon, 2005; Jernigan et al., 2001; Lemaitre et al., 2012;

Manard, Bahri, Salmon, & Collette, 2016; Resnick, Pham, Kraut,

Zonderman, & Davatzikos, 2003; Sowell et al., 2003; Zimmerman

et al., 2006), parietal (Fjell et al., 2009; Grieve et al., 2005; Sowell

et al., 2003), and select temporal (Bartzokis et al., 2001; Fjell et al.,

2009; Sowell et al., 2003) regions of GM, yet relatively no association

with limbic cortices (Grieve et al., 2005). Biological mechanisms

underlying regional vulnerability to aging include loss of synaptic

density and/or dendritic arborization (Raz, 2001; Salat et al., 2004),

alterations in small diameter or thinly myelinated intracortical WM

(Eickhoff et al., 2005; Walters et al., 2003; Westlye et al., 2010;

Ziegler et al., 2010), neuronal shrinkage (Sowell et al., 2004), and/or

loss of neuropil (Lemaitre et al., 2012; Pakkenberg et al., 2003; Ziegler

et al., 2010). Measures of WM health across the lifespan often dem-

onstrate an inverted U-shaped curve with peak levels of estimated

integrity during early adulthood (Raz, 2000; Westlye et al., 2009).

After a short plateau period, the fourth or fifth decade of life initiates

an acceleration of age-related structural loss, which continues

throughout senescence (for review see Bennett & Madden, 2014).

Macroscale aspects of cortical morphometry have been shown to

represent unique contributions to age-related atrophy, for example

age-related differences in volume appear to be differentially driven by

its two components, cortical thickness and cortical surface area with

surface area remaining relatively age-invariant and cortical thickness

demonstrating particular vulnerability to the aging process (Lemaitre

et al., 2012; Panizzon et al., 2012). Differences observed among these

measures are likely to be driven by cyto- and myelo-architectonic dif-

ferences across cortical tissue and the way in which different esti-

mates account for the ratio of WM and GM within regionally distinct

laminar structure (Lemaitre et al., 2012; Paus, Keshavan, & Giedd,

2008; Raz, 2001; Storsve, Fjell, Yendiki, & Walhovd, 2016).

Quantification of regional specificity in age-related structural brain

decline prompted the development of different theories of brain aging

to explain the reported patterns of cross-sectional age-related differ-

ences and longitudinal decline (Salat, 2011). For example, typically,

WM of the frontal lobes shows greater loss of integrity than do more

posterior regions (Bennett, Madden, Vaidya, Howard, & Howard,

2010; Kennedy & Raz, 2009; Madden, Bennett, & Song, 2009;

Salat et al., 2005). This gradient-like relationship has been observed

throughout the WM of the cortex and has been described as a frontal

vulnerability, or as an anterior-to-posterior gradient (Davis et al.,

2009; Head, et al., 2004; Pfefferbaum, Adalsteinsson, & Sullivan,

2005; Ziegler et al., 2010). Other directional age-gradients may exist,

including increased age-vulnerability in superior WM compared to

inferior and greater vulnerability in lateral versus medial WM (Sexton

et al., 2014; Sullivan, Rohlfing, & Pfefferbaum, 2010). In addition,

regionally specific structural losses in aging have been proposed to

mirror evolutionary and developmental trajectories through a

retrogenesis or “last-in, first-out” framework of decline (Raz, 2000).

Many of the later myelinating association fibers that connect higher-

order cognitive association centers, exhibit greater age-related integ-

rity loss than fibers in earlier developing limbic or primary visual,

sensory, or motor areas (Salat et al., 2005; Ziegler et al., 2010).

Although MRI measures serve only as a proxy for the underlying

cellular architecture, it seems apparent that these measured MRI sig-

nals track alterations to the neuronal components. Given the intimate

connection among cell body, axons, and dendrites, aging should lead

to nonindependent alterations to these MRI-based GM and WM met-

rics (Gao et al., 2018; Groves et al., 2012; Salat et al., 2004; Storsve

et al., 2016). Specificity in this coupled aging include proposed lead–

lag relationships such that cortical thinning via cell body damage leads

to axonal alteration and decreased WM health (e.g., Wallerian degen-

eration), or that decreased axonal health propagates from the axon to

produce alterations in the cell body (e.g., transneuronal atrophy)

(Kochunov et al., 2011; Storsve et al., 2016). Given this GM–WM

dependency, studies have begun to incorporate the idea of coupled

age-differences (Brickman, Habeck, Zarahn, Flynn, & Stern, 2007) and

coupled decline (Brickman et al., 2007; Raz et al., 2005). Univariate

correlational analyses revealed associations between aging trajecto-

ries of cortical morphometry and indices of WM health (such as frac-

tional anisotropy (FA), which is sensitive to the directionality of water

flow, or mean diffusivity (MD), which measures the overall rate of dif-

fusion) (Kochunov et al., 2011; Storsve et al., 2016) and the underlying

intracortical myelin (He, Chen, & Evans, 2007; Vidal-Pineiro et al.,

2016). Additionally, multivariate frameworks can be utilized to make

5316 HOAGEY ET AL.



accurate predictions of age when accounting for age-related patterns

of covariance among multiple tissue types (Groves et al., 2012). While

current in vivo human neuroimaging techniques are not yet capable of

fine-grained analyses at the neuronal level, improved statistical tech-

niques, which properly account for the relatedness of these neuronal

proxies, can and should now be employed to examine the coupled

relationship of neuronal component data. This approach could shed

light on regional differences in how neuronal components age

together across the cortex and will bridge gaps in our knowledge of

how this structural covariance varies with aging.

The current study aims to first utilize univariate analyses of each

tissue type in an attempt to replicate and enhance previous lifespan

aging work, examining linear and quadratic age associations with GM

cortical thickness, volume, and surface area, as well as with WM FA

and mean diffusivity; and second to utilize multivariate analyses

(partial least squares correlation; PLSC) combining, in turn, measures

of GM thickness, surface area, and volume, with WM FA and MD to

evaluate covariance patterns. We then consider the results from these

approaches in the context of two major theoretical models of brain

aging: the last-in first-out retrogenesis pattern and directional/spatial

age-gradients patterns (e.g., anterior-to-posterior). We predict that

univariate analyses will demonstrate a last-in first-out trend where

the association cortices, and separately, their underlying connections,

are associated with the strongest age differences as opposed to pri-

mary and secondary sensory cortex. Further, we predict that a multi-

variate analysis will expand on these findings and reveal regionally

differential coupled GM–WM associations, such that higher order

association cortices and their underlying WM fibers, will show the

greatest coupling of structural age-differences.

2 | MATERIALS AND METHODS

2.1 | Participants

Participants included 190 cognitively normal healthy adults sampled

across the adult lifespan ranging in age from 20 to 94 years of age

recruited by flyers and media ads from the Dallas-Fort Worth

Metroplex. Participants were screened to be free from a history of

neurological, cardiovascular, metabolic, or psychiatric problems, head

trauma involving loss of consciousness, substance abuse, or cognitive

altering medications. Participants were also free from MRI contraindi-

cations, such as metallic implants and claustrophobia. Further inclu-

sion criteria required mini-mental state exam (MMSE) scores >25

(Folstein, Folstein, & McHugh, 1975) and Center for Epidemiologic

Studies Depression Scale (CES-D) scores <16 (Radloff, 1977). Before

entering the study, each participant provided written informed con-

sent, in accord with the local Institutional Review Boards. Participant

demographic data are summarized in Table 1, broken down by arbi-

trary age groups. In total, four participants were excluded from data

analysis: low MMSE score (n = 1), incorrect neuroimaging data acquisi-

tion (n = 1), abnormalities in brain structure (n = 2), yielding a total

N = 186 (mean age = 53.71 years; 110 women).

2.2 | MRI protocol

All participants were scanned on the same 3-Tesla Philips Achieva scan-

ner with a 32-channel head coil using SENSE encoding (Philips

Healthcare Systems, Best, Netherlands). Diffusion weighted images

were acquired using a single shot EPI sequence with the following

parameters: 65 axial slices with voxel size of 2 × 2 × 2.2 mm3

(reconstructed to 0.85 × 0.85 × 2.2 mm3), 30 diffusion weighted direc-

tions (b-value = 1000s/mm2) with 1 non-diffusion weighted b0 (0 s/ mm2),

TR/TE = 5,608/51 ms, FOV = 224 × 224, matrix = 112 × 112,

4:19 min. High-resolution T1-weighted images were acquired using

MPRAGE with the following parameters: 160 sagittal slices, voxel

size 1 × 1 × 1 mm3, flip angle = 12�, TR/TE/TI = 8.1/3.7/1100 ms,

FOV = 256 × 204 × 160, matrix = 256 × 256, 3:57 min. T2 FLAIR

images were collected using the following parameters: 64 axial

slices, voxel size 0.449 × 0.449 × 2.5 mm3, flip angle = 90�, TR/TE/TI =

11,000/125/2800 ms, FOV = 230 × 230, matrix = 512 × 512, 3:40 min.

2.3 | MRI data processing

After visual inspection for subject movement distortions and acquisi-

tion artifacts, cortical reconstruction and volumetric segmentation

was completed using Freesurfer v5.3 image analysis suite (Dale, Fis-

chl, & Sereno, 1999; Fischl & Dale, 2000). Freesurfer includes motion

correction and tissue segmentation procedures allowing isolation and

quantification of tissue properties such as volume, thickness, and sur-

face area. Furthermore, Freesurfer includes tools to segment regions

TABLE 1 Sample demographics
Age group
(range)

Sample
size (M/F)

Age
mean ± SD

Education
mean ± SD

MMSE
mean ± SD

YA (20–34) 43 (19/24) 27.58 ± 4.37 15.63 ± 2.12 29.16 ± 0.94

MA (35–54) 46 (21/25) 45.72 ± 5.36 15.26 ± 2.51 29.28 ± 0.80

OA (55–69) 48 (17/31) 61.23 ± 3.66 15.58 ± 2.34 28.85 ± 0.82

VOA (70–94) 49 (19/30) 76.75 ± 5.87 15.65 ± 2.77 28.80 ± 0.70

Total (20–94) 186 (76/110) 53.70 ± 18.77 15.53 ± 2.46 29.02 ± 0.70

Note: Age groups are arbitrarily provided to illustrate sample distribution; however, all analyses used age

as a continuous variable.

Abbreviation: YA, younger adults; MA, middle-aged adults; OA, older adults; VOA, very old adults;

M, male; F, female; Education, years of education; MMSE, mini-mental state exam; SD = standard deviation.
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of interest (ROI) which allows for alignment of a predefined atlas to

the anatomy of an individual's T1 image. Dura removal and control

point edits were manually performed by trained researchers to opti-

mize results and reliability. A standard atlas of cortical parcellation

(Desikan et al., 2006) was used to extract the morphometric measures

(cortical thickness, surface area, volume) from 34 distinct parcellations

in each hemisphere for all participants.

Diffusion images were preprocessed using the DTIPrep v1.2.4

quality control software suite to detect acquisition artifacts including

susceptibility, eddy current, and subject movement distortions (Liu

et al., 2010). Using the default settings, slice-wise, and gradient-wise

artifacts, appearing as intensity distortions, were corrected by remov-

ing associated gradients from analysis. On average, less than four gra-

dients were removed per subject. Appropriate corrections were

applied to minimize the effects of distortions, including those caused

by head motion in the scanner, by removing gradients determined to

be of insufficient quality, at the default threshold levels, and by regis-

tering all remaining gradients to the nonweighted b0 image. Diffusion

directions were adjusted to account for independent rotations of any

gradient relative to the original encoding direction (Leemans & Jones,

2009). Diffusion tensors were calculated using the DSI Studio soft-

ware package build released September 26, 2014 (Yeh, Verstynen,

Wang, Fernández-Miranda, & Tseng, 2013). Diffusion metrics of FA

and MD were calculated at each voxel. Finally, a study-specific tem-

plate was created from all FA images to align all voxels using advanced

normalization tools (ANTs) template creation and image registration

tools (Avants, Tustison, & Song, 2009). This template aligned all voxels

across all participants to allow analyses to be spatially equivalent. To

further refine our analyses to voxels that are equivalent across the

sample we restricted the template to only contain voxels with FA

values > 0.15 for all participants. Any voxel with a value below 0.15

was not considered to be WM and was removed from all analyses.

The final WM space contained 138,283 voxels. A similar procedure

was applied to the whole brain MD images, but we used the same

voxels derived from the refinement procedure described above to cre-

ate an identical template.

The influence of WM hyperintensities (WMH), and any potential

bias they could introduce to our analyses, was of concern given previ-

ous research (Jones et al., 1999; Vernooij et al., 2008). In our sample

of healthy adults, 108 participants were identified as having WMH.

The median participant from this subsample only had WMH in

541 voxels of all WM voxels, or 541 of the total 138,283 voxels in

the template (0.39% of voxels). Despite this low number, we ran all

analyses twice; once with WMH included, and once with WMH

excluded in such a way that any voxel containing a WMH for any par-

ticipant was removed for all participants to ensure that every partici-

pant had data at every voxel. There were no differences between the

two methods and thus no bias of WMH under this analysis method.

Given the ultra-conservative nature of removing any WMH voxel

from all participants and the discontinuity it creates in our WM tem-

plate; we present the data that include WMH voxels.

2.4 | Data analysis procedures

2.4.1 | Univariate analyses

Separate univariate analyses were conducted to estimate the effect of

age on both GM and WM tissue. The three GM morphometry mea-

sures (thickness, volume, and surface area) were extracted for each

ROI and averaged across hemispheres within each individual. Statisti-

cal models were conducted using R statistical software (R Core Team,

2016) within RStudio (RStudio Team, 2016) to estimate the linear and

quadratic effects of age (as continuous variables) on regional cortical

thickness, surface area, and volume, covarying for sex. To test for sta-

tistical significance, permutation resampling without replacement was

used to build a null distribution of t-values for each region. Nonpara-

metric p-values were calculated by dividing the number of permuted

t-values that were less than the observed t-value by the total number

of permutations conducted (i.e., permuted < observed/10,000). WM

voxels were analyzed using FSL's permutation-based general linear

model program randomize (Winkler, Ridgway, Webster, Smith, &

Nichols, 2014) to test the linear and quadratic effect of age (as a con-

tinuous variable) on FA and MD, covarying for sex. Family-wise error

corrected p-values were calculated at each voxel after 10,000 (Dickie

et al., 2015) permutations were conducted with threshold-free cluster

enhancement.

2.4.2 | Multivariate analyses

Data were combined and analyzed using the multivariate technique

Partial Least Squares Correlation (PLSC) (McIntosh, et al., 1996; Wold,

1982) to estimate possible covariance with GM properties and the

distinctive aspects of each WM metric. To examine the GM–WM

covariance patterns, six separate PLSC analyses were conducted: one

for GM thickness and its relation to WM FA, one for GM thickness

and its relation to WM MD, and the same for surface area and FA and

MD, and volume and FA and MD. Because volume is composed of

both thickness and surface area, we chose to focus on each aspect of

volume in this report, with volume-FA and volume-MD multivariate

results presented as Supplementary Information. Separate data matri-

ces were created; one for each diffusion metric (FA and MD), as well

as one for each GM property (GM thickness, surface area or volume).

By submitting one data matrix composed of WM values, extracted

from the standardized diffusion images, and a second data matrix of

GM thickness, surface area or volume, extracted from the Freesurfer

cortical parcellations, covariance between the two structural imaging

techniques emerge. The table composed of WM metrics was created

by registering each individual's diffusion images to a standardized

WM space, followed by reorganizing of the 3D matrix into a vec-

torized whole brain. Once combined across participants, the data

matrix consisted of 186 participants organized in rows with vectorized

whole brain voxels in columns. This allowed each column within the

data matrix to represent the same point in the brain for each partici-

pant. The table composed of GM thickness (or surface area or volume)

consisted of the same 186 participants organized in rows with GM
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thickness (or surface area or volume) for each ROI organized along the

columns. Additionally, the potential effects of sex were residualized

from each data table before analysis.

Once raw data values were organized in their respective tables,

columns were centered and normalized such that the sum of squares

within a column was equal to one. A correlation matrix was computed

from the normalized columns of the data tables and orthogonal

factors were decomposed using singular value decomposition. This

resulted in a matrix of left singular vectors (or saliences) for the WM

data, a matrix of right singular vectors for the GM data, and a diagonal

matrix of singular values (Abdi & Williams, 2013; Krishnan, Williams,

McIntosh, & Abdi, 2011). The original observations were then projec-

ted onto their respective saliences to observe their contribution to

the derived components. These linear combinations of the original

variables form the latent variables, which express the covariance

between the two data tables (Krishnan et al., 2011).

To test for statistical significance of the derived components, per-

mutation resampling was used to create new, rearranged matrices

from our original data that were then submitted to PLSC. Specifically,

10,000 permutations were run to reorganize the participants (data

rows) while holding the brain variables (data columns) constant.

Submitting the permuted data to PLSC results in a distribution of new

singular values, which are used as a null hypothesis to test against the

original singular values (Krishnan et al., 2011; McIntosh & Lobaugh,

2004). To test the reliability of the data elements (GM ROIs and WM

voxels) an inferential bootstrap technique was used to create entirely

new sets of data by sampling with replacement. Through bootstrap

resampling, bootstrap ratios (BSR) were derived by dividing the mean

of the distribution by its SE. The larger the BSR the more it is signifi-

cantly stable (Abdi & Williams, 2013; Ferreira et al., 2016; McIntosh &

Lobaugh, 2004). Bootstrap ratios function similar to z-scores and are

considered significant when the ratio is greater than 1.96, which

equates to a p-value of .05. Due to the large number of voxelwise

comparisons computed in this data set, we selected a more conserva-

tive BSR threshold of ± 3, which equates to a p-value of .0027, as a

cutoff to interpret stability of the observed saliences. Because many

of our findings survived the inferential analysis, interpretations rely

instead on the magnitude of the BSR relative to other data points.

The PLSC analysis was run using TExPosition, part of the ExPosition

analysis package (Beaton, Fatt, & Abdi, 2014) within RStudio, while

the inferential analysis was run using in-house code (MATLAB 2012b,

The MathWorks Inc., Natick, MA) based on the Welford/Knuth algo-

rithm (Welford, 1962).

3 | RESULTS

3.1 | Univariate

Univariate analyses demonstrated that much of the GM and WM tis-

sue is susceptible to the effects of aging, beyond the effects of sex.

GM measure age results are summarized by region in Figure 1 and

WM diffusion metric age results are illustrated by voxelwise plots in

Figure 2.

3.1.1 | Gray matter measures

Standardized parameter estimates for age effects on volume, cortical

thickness, and surface area are plotted together by region in

Figure 1. Each model included both a quadratic and linear age term

to test for a nonlinear effect of age. In cases where the nonlinear

term was not significant it was removed and only the linear effects

were modeled. There was a significant, negative, linear effect of

increasing age on volume in all GM regions measured (illustrated by

the first bar in each ROI in Figure 1). For three of these regions (pos-

terior cingulate, temporal pole, and transverse temporal) the age

effects were significantly better modeled with a quadratic fit. For all

three GM metrics a significant quadratic fit is indicated with an

asterisk in Figure 1. Similarly, increasing age was associated with sig-

nificantly thinner cortex in all GM regions, except for the caudal

anterior cingulate gyrus (illustrated by the middle bars in Figure 1).

This relationship was linear in most regions, but quadratic in the cau-

dal anterior cingulate, entorhinal, inferior temporal, lateral occipital,

medial orbitofrontal, superior parietal, and temporal pole. In contrast,

surface area measurements were found to be significantly smaller

with increasing age in 28 of the ROIs, but not for the other six

(insula, paracentral, entorhinal, rostral anterior cingulate, medial

orbitofrontal, and superior temporal), suggesting that regional sur-

face area is more resilient to the effects of aging (see last bar in each

ROI in Figure 1). Only the lingual gyrus and transverse temporal

regions fit a quadratic age trajectory better than a linear. Comparing

across the standardized parameter estimates also reveals regional

trends among GM measures. The strongest linear effects of age on

both cortical thickness and volume were found in frontal lobe

regions, most notably the parstriangularis, parsopercularis, and supe-

rior frontal gyrus, followed closely by parietal regions: precuneus,

supramarginal gyrus, and angular gyrus, and some temporal regions

(superior temporal, middle temporal, and fusiform gyri). Very few

occipital and cingulate regions showed strong age effects for volume

or thickness measures. In contrast, when comparing surface area

measures, the fusiform, posterior cingulate, middle temporal, banks

of the superior temporal sulcus, and the parahippocampal gyrus were

all among the most highly negatively associated with age.

3.1.2 | White matter measures

Both WM FA and MD measures indicated extensive age-related

decreases in WM health throughout the brain (see Figure 2). Over

86.2% of WM voxels analyzed evidenced a negative association

between age and FA, and over 80.5% showed a positive association

between age and MD. Only the center and occipital projections of the

splenium of the corpus callosum and the inferior-most projection

fibers extending into the cerebellum and spinal cord from the

brainstem showed no relationship with age in either WM metric (see

green voxels in Figure 2). Unique effects of age on FA (i.e., not found

on MD) were seen in the cerebellum, hippocampal projection of the

cingulum, posterior cingulum bundle, projections into the superior-

most parts of the frontal, and parietal gyri from both the U-fibers of
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the corpus callosum and the corticospinal tract, and the posterior-

most projections of the inferior longitudinal fasciculus, inferior-frontal

occipital fasciculus, optic radiations, and splenium (see Figure 2, panel

a). These unique effects with FA were mixed between linear (yellow

voxels) and quadratic (blue voxels for quadratic, and pink voxels for

linear/quadratic overlap) effects with no obvious regional specificity

to the shape differences noted. Unique effects of age on MD (i.e., not

seen for FA) were observed in medial portions (viewed sagittally) of

the corona radiata and corticospinal tract, and the cingulum bundle

body (see Figure 2, panel b), most of which demonstrated a quadratic

association with age (illustrated in blue/pink voxels). The remaining

portions of the cerebral WM exhibited significant age-related associa-

tion with both FA and MD measures including the superior longitudi-

nal fasciculus, superior frontal occipital fasciculus, inferior longitudinal

fasciculus, large anterior, and posterior portions of the inferior frontal

occipital fasciculus, remaining portions of the corpus callosum, unci-

nate fasciculus, and fornix (see Figure 2, panels a and b). Most of these

regions demonstrated a quadratic relationship with age (blue/pink

voxels), especially between MD and age (panel 2b), while FA showed

a linear relationship in medial parts of the corpus callosum, the center

and anterior projections of the genu, and in some of the U-fibers

projecting to the frontal lobe gyri (yellow voxels in panel 2a).

3.1.3 | Spatial gradient patterns

To systematically depict any gradient patterns of age effects on FA

and MD, the strength of the association between age and each WM

metric is plotted across the slices of the brain in Figure 3. Examination

of the plots in Figure 3 suggests that traversing in either the

posterior-to-anterior direction or the inferior-to-superior direction

there is a strong age gradient effect demonstrated by the increasingly

strong association between both age and FA (in Figure 3, top panel)

and age and MD (in Figure 3, bottom panel) when moving anteriorly

and moving superiorly across the brain. Interestingly, there is also a

strong medial-to-lateral gradient in the relationship between age and

MD that decreases when moving from mid-sagittal toward the lateral

most slices, which is reversed with FA (Figure 3).
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F IGURE 3 Strength of relationship between age and white matter (WM) metric plotted across brain slices illustrating spatial age gradients.
The top panel plots fractional anisotropy-age correlations and the bottom panel mean diffusivity-age correlations across slices in four directions.
There is a strong, posterior–anterior and inferior–superior gradient increase in the strength of the effect of age on both FA and MD. There is also
a medial-to-lateral (sagittally from midsagittal to parasagittal across both hemispheres) gradient of age effect on MD and FA. Hemispheric
(laterality) differences, sagitally from right to left, were minimal

F IGURE 2 Univariate results
for age differences in white
matter FA (a) and MD (b). Panel a
depicts regions with significant
effects of age projected onto
sagittal slices. Linear effects of
age on fractional anisotropy
(FA) are depicted in yellow,
quadratic effects of age in blue,
and their overlap in pink. Panel b
depicts regions with significant
age effects on mean diffusivity
(MD) following the same voxel
color scale as for FA in panel
a. Plotted voxels represent
significant voxels from threshold-
free cluster enhancement (TFCE)
raw test statistics that survived
permutation correction. In both
panels, green voxels represent
regions of age invariance
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3.2 | Multivariate

Separate partial least squares correlation analyses were applied to exam-

ine how estimates of neuronal degradation were associated across the

adult lifespan: two each (one for FA and one for MD) for each of the GM

regional measures (cortical thickness, surface area, volume) for a total of

six analyses. The univariate findings suggested that age-related variance

in volume was driven primarily by thickness values, and that surface area

was relatively age-invariant. Therefore, the presentation of multivariate

results is primarily focused on cortical thickness with surface area and

volume PLSC results presented as Supplemental Material.

3.3 | Cortical thickness

3.3.1 | Inferential analysis

The first set of two analyses combined GM thickness and WM FA

(PLSC-FA), while the other combined GM thickness and WM MD

(PLSC-MD). Each analysis revealed a single significant component that

explained 94.42 and 91.48% of the variance in the data, respectively

for PLSC-FA and PLSC-MD, at a p-value of p < .0001. No other compo-

nents resolved, from either analysis, explained a significant amount of

variance. An inferential battery was performed on the saliences of each

component to establish reliability of these results. After averaging

across each hemisphere, all GM regions, in both analyses, survived a

bootstrap ratio cutoff of ± 3 (p = .0027), except for the entorhinal cor-

tex in PLSC-FA, pericalcarine cortex in PLSC-MD, and caudal anterior

cingulate and parahippocampal gyrus in both analyses (Figures 4a,b).

In PLSC-FA, the most stable GM saliences were those of the pari-

etal regions, which all obtained BSR > 6 (p < .0001). All frontal regions

obtained BSR > 5 (p < .0001), with the lone exception being the fron-

tal pole. Additionally, while most temporal, occipital, and cingulate

regions were the least stable, the lingual, superior temporal, and lat-

eral occipital gyri all obtained high bootstrap ratios demonstrating

high importance in the analysis (Figure 4a). Similar to GM thickness,

most FA voxels survived an inferential bootstrap ratio cutoff of three,

with the few exceptions being medial portions of the corticospinal

tracts, projections from the brainstem, and the splenium of the corpus

callosum (Figure 4a). The most significant FA voxels, obtaining a BSR

≥5, were WM connections typically thought to traverse frontal and

parietal regions. These include the projections from the genu and

body of the corpus callosum including the U-fibers extending into

frontal and parietal gyri, anterior portions of the SLF and superior

frontal occipital fasciculus, and the fornix. In this analysis, both GM

and WM exhibit negative BSRs, which indicates a positive association

between the two tissues—as thickness in frontal and parietal cortex

decreased, FA in largely frontal and parietal WM decreased.
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F IGURE 4 Bootstrap ratios for PLSC-FA (a) and PLSC-MD (b). Barplots show bootstrap ratios for GM regions, while brain images show
bootstrap ratios for WM voxels. Bootstrap ratios below an absolute value of three (which corresponds to p < .0027) are considered nonsignificant
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In PLSC-MD, the most stable GM saliences were both the frontal

and parietal regions as all regions obtained a BSR around five or above

(p < .0001), except for the frontal pole. Similarly, most temporal, occipi-

tal, and cingulate regions were among the least stable. However, the

fusiform, superior temporal, lateral occipital, and lingual gyri were each

important contributors to the analysis (Figure 4b). Results with WM

MD were similar to those with WM FA. The most stable WM voxels

were those of both the frontal and parietal regions, although most fron-

tal and parietal regions showed less stability with MD than they did

with FA. Interestingly, many temporal and cingulate regions were

shown to be more stable with MD than with FA. The most significant

MD voxels, obtaining a BSR > 5, (p < .0001), were the centers of the

genu and body of the corpus callosum as opposed to the projections

and U-fibers observed with FA (Figure 4b). Additionally, the medial por-

tions of the corona radiata (superior to the thalamus but inferior to the

cortical gyri), the anterior thalamic radiations, and the fornix, also were

shown to share the most variance with GM thickness. Opposite signs

of the GM and WM BSRs in this analysis indicates a negative relation-

ship between the two measures—as GM thickness decreased in frontal

and parietal cortex, MD increased in medial WM regions.

3.3.2 | Latent analysis

PLSC provides “brain scores” for each participant which describe the

degree to which an individual expresses the WM and GM latent vari-

ables from the model (Krishnan et al., 2011). A brain score near zero

indicates that the variance attributed to the model from a given data

point contributed less informative or influential information to resolv-

ing the component, or was highly similar to the mean participant for

that measurement. In contrast, the greater the magnitude of the brain

score the more influential a given data point were in the overall

covariance structure. Figure 5, panel a illustrates how the observa-

tions (each participant in the sample) contributed to GM thickness (y-

axis) and WM FA (x-axis) of component 1 while Figure 5, panel d

shows these same observations and the contributions of GM thick-

ness (y-axis) and WM MD (x-axis) of component 1. Observations are

colored by age group, for visualization purposes, to illustrate how

component 1 can be interpreted in the context of an age gradient.

Plotting the WM and GM brain scores together shows how the age

of the participants describes the resolved component as there is a rela-

tively linear progression from the youngest adults (the darkest blue), to

the oldest adults (the lightest blue), across the first component in each

PLSC. Additionally, the brain score magnitude of both young adults and

very old adults (i.e., the distance from the origin), shows that they are

driving the variance and contributing to the significance of the compo-

nent. To test this relationship more directly, regression curves are

depicted demonstrating the association between GM (Figure 5 panels

b, e) and WM (Figure 5 panels c, f) brain scores from each PLSC and

participant age. There is a significant linear effect of each brain score

and age; PLSC-FA: WM � Age (F[1,184] = 111.7, p < .001), GM � Age

(F[1,184] = 143.9, p < .001); PLSC-MD: WM � Age (F[1,184] = 106.4,

p < .001), GM � Age (F[1,184] = 141.1, p < .001). Given the strength of
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F IGURE 5 Latent variable projections and the relationship of each brain score with age for (a–c) PLSC-FA and (d–f) PLSC-MD. For the
PLSC-FA analysis, gray matter (GM) brain scores decrease linearly with age demonstrating that data from younger adults drive the positive side of
component 1, while data from older adults drive the negative side of component 1 (illustrated in panel b). This association is also evident for
white matter (WM) brain scores in a nonlinear fashion (i.e., decelerates with age; panel c). For the PLSC-MD analysis similar linear (for gray matter
in panel e) and quadratic (for WM in panel f) relationships with age are found. Scatter dots represent individual participants, triangles represent
the mean of an age “group,” and blue color fades from dark to light blue represents younger to older adults, respectively to illustrate the age
effect. Both linear and nonlinear regression lines are illustrated on the scatterplots, with the more significant fit denoted with bold solid lines, and
the lower fitting line denoted by faded dashed lines. Note: YA, younger adults; MA = middle-aged adults; OA = older adults; VOA = very old
adults
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these associations, the PLSC results can be interpreted relative to age

by combining information from the two-salience plots with the chrono-

logical information provided from the latent mapping of the brain

scores. Interestingly, there is also a significant quadratic effect of age

for each WM brain score; PLSC-FA: WM � quadratic Age (F[2,183] =

64.72, p < .001); PLSC-MD: WM � quadratic Age (F[2,183] = 81.14,

p < .001), but not for GM brain scores.

The PLSC-FA saliences for both the GM ROIs and the voxel-wise

WM FA estimates are on the same side of the component structure

(evidenced by the negative saliences leading to negative BSRs in

Figure 4a), suggesting a positive relationship between GM thickness

and WM microstructure (e.g., as thickness increases, FA values

increase). The plot of brain scores for this analysis reveals that older

adults, plotted in the bottom left quadrant (i.e., negative brains scores

for both GM and WM latent variables), demonstrate a negative rela-

tionship with the coupled variance of GM thickness and WM struc-

tural measures (Figure 5a). In contrast, the youngest adults fell to the

upper-right quadrant of the first component demonstrating a positive

relationship with the coupled variance of GM thickness and WM

structural measures. Together, these results indicate that the age gra-

dient aligns with the coupled variance in structural measures such that

the youngest adults exhibit the expected positive association between

GM thickness and FA estimates, while older adults are better charac-

terized by coupled decreases in structural integrity.

In PLSC-MD, a similar pattern emerges among the coupling of

structural integrity measures and age. The saliences for the GM ROIs

are along the left side of the component structure (leading to negative

BSRs in Figure 4b), while the saliences for the voxel-wise WM MD

are along the right (leading to positive BSRs in Figure 4b), suggesting a

positive relationship between GM thickness and WM microstructure

(Figure 5, panel d). This is due to the fact that higher MD is typically

associated with poorer structure in healthy adults, thus a sort of

“double-negative” association emerges between the two structural

measures. When examining WM and GM brain scores, the oldest

adults are projected to the upper right quadrant of the first compo-

nent which is characterized by positive GM brain scores (opposite the

negative GM saliences) and positive WM brain scores (same as the

positive WM saliences) (Figure 5d). This demonstrates a negative

relationship with the coupled variance in structural decline of GM

thickness and WM structural measures. Taken together, these results

also indicate that the age gradient aligns with the coupled variance in

structural measures (i.e., the youngest adults exhibit a positive rela-

tionship, while older adults exhibit a negative relationship).

Anatomical specificity is evident due to the magnitude of the

saliences and latent projections, or the distance each data point is

from the origin. In the PLSC-FA analysis, GM thickness measures in

the parietal and frontal regions, specifically the superior frontal, par-

striangularis, precuneus, angular gyrus, and supramarginal gyri are

driving the observed variance (Figure 4a). In other words, the largest

covariance between thickness and WM FA, or greatest coupling,

appears in these association cortices. Similarly, the WM saliences for

FA, which show the greatest coupling with GM thickness, are the

voxels in the brightest blue (Figure 4a). These consist of a large

amount of frontal voxels such as the genu and body of the corpus cal-

losum, anterior portions of the cingulum bundle, U-fibers extending

from anterior portions of the corpus callosum to frontal and parietal

gyri, the superior longitudinal fasciculus, and the fornix. In contrast,

thickness values from the parahippocampal and entorhinal regions in

the temporal lobe share little variance with FA values, while the cau-

dal anterior cingulate shares no variance with FA values. WM FA of

the more posterior and inferior regions, including the splenium of the

corpus callosum, projections from the corticospinal and corona

radiata, anterior thalamic radiation, projections into the occipital lobe

and the brainstem, and cerebellar fibers share very little variance with

measures of thickness.

The PLSC-MD analysis reveals that GM thickness measures in the

parietal and frontal regions, specifically the superior frontal, caudal

middle frontal, angular gyrus, precuneus, and supramarginal, are driv-

ing the observed covariance (see Figure 4b). Similarly, the WM

saliences for MD, which show the greatest coupling with GM thick-

ness, are composed of numerous frontal voxels such as the genu and

body of the corpus callosum, U-fibers extending from anterior por-

tions of the corpus callosum to frontal gyri, medial portions of the

corona radiata and corticospinal tract, and the fornix (Figure 4b). In

contrast, thickness values from the parahippocampal, pericalcarine,

and caudal anterior cingulate, share little variance with MD values.

WM voxels of the more posterior and inferior regions, including the

splenium of the corpus callosum, the inferior longitudinal fasciculus,

projections into the occipital lobe and the brainstem, and the cerebel-

lum, share little variance with measures of thickness.

3.4 | Surface area

3.4.1 | Inferential statistics

PLSC models were also conducted for regional surface area and FA

and MD. Surface area demonstrated fewer and less robust covariance

with WM, as surface area is less susceptible to the effects of aging,

compared to cortical thickness. Surface area PLSC results are provided

as Supplemental Information. Figure S1, panel a illustrates that there

is significant covariance with FA and surface area in rostral and caudal

middle frontal and superior frontal gyri, in all parietal regions but para-

central, in middle temporal, banks of the superior temporal, and fusi-

form gyri, in all occipital regions, and in only the posterior portion of

the cingulate gyrus.

Figure S1a also illustrates the WM voxels where FA covaries with

surface area. These voxels are sporadic, but tend to cluster in the pro-

jections of the corpus callosum, including the genu and u-fibers exten-

ding from the body of the corpus callosum to frontal and parietal gyri,

as well as the frontal projections of the IFOF, the cingulum body, the

SLF, and fornix.

For the covariance between surface area and WM MD, Figure S1

panel b illustrates significance in the caudal and rostral middle frontal

and superior frontal gyri, in postcentral, supramarginal, and precuneus,

in fusiform, middle temporal, transverse temporal, and banks of the

superior temporal gyri, in all of occipital regions, and in the posterior
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portion of the cingulate gyrus. Figure S1b also illustrates the WM MD

voxels where there is significant covariance with surface area. These

voxels are even more sporadic than in the surface area analysis with

FA, including the genu and some projections of the corpus callosum

to the frontal lobes, as well as the fornix and anterior IFOF.

3.4.2 | Latent analyses

Figure S2A provides “brain score” plots for the covariance between

surface area and WM FA in terms of latent components. As in the cor-

tical thickness results shown in Figure 5, the first component is inter-

preted as age. Figure S2b,c illustrates the strength of the brain score

for GM and WM, respectively, and age. Figure S2d–f displays the

same information for WM MD.

3.5 | Gray matter volume

3.5.1 | Inferential statistics

We also include as supplemental information the PLSC results for the

covariance between GM volume andWM FA and MD. Because volume

is the product of surface area and cortical thickness, it makes sense that

its covariance would be similar to one of its driving components.

Indeed, the covariance patterns for volume appear similar to the corti-

cal thickness covariance and distinct from the surface area pattern.

Figure S3 provides regional volume BSR plots and WM maps for FA

(Figure S3a) and for MD (Figure S3b). Significant covariance between

GM volume and WM FA was observed in every region except the cau-

dal portion of the anterior cingulate gyrus. GM volume and WM MD

covariance was also significant for every region except caudal anterior

cingulate. In addition, significant WM voxels mirrored the regional dis-

tribution in the thickness results with large areas of frontal and parietal

WM dominating the covariance for both FA and MD.

3.5.2 | Latent analyses

“Brain score” plots for the covariance between cortical volume and

WM FA in terms of the first latent component, with age coded across

the plot are shown in Figure S4a. The relationships between each

brain score and age are shown in Figure S4b,c while the results for

volume and WM MD covariance are provided in Figure S4d–f.

4 | DISCUSSION

Neuronal degradation in the aging brain is a complex biological pro-

cess involving changes in both gray and WM tissue. MRI metrics, serv-

ing as a proxy for these tissue compartments, show differential

effects of normal aging and are generally investigated separately.

Here, we report traditional univariate findings of normal aging effects

on GM thickness, surface area, and volume as well as FA and MD dif-

ferences in WM across the adult lifespan. We replicate previous find-

ings to demonstrate how each tissue type is associated with age. We

then report results using a multivariate technique to investigate the

effects of aging on both tissue types simultaneously to demonstrate

how regional tissue degradation has both shared and unique aspects

across the adult lifespan, elucidating this relationship in a way univari-

ate methods cannot. We found that variance in the data follows an

aging trajectory evidenced by intact structure in early adulthood,

followed by differential degradation, in regard to both tissue type and

anatomy, throughout mid- to late-adulthood.

4.1 | Univariate findings

Previous research illustrated that age-related declines in GM follow a

“patchwork” pattern of regional specificity that roughly follows a “last-

in first-out” gradient of vulnerability such that structures that evolve

and/or mature earliest are the most resilient to the processes of aging,

and likewise, those with the most protracted development are the most

vulnerable to the aging process (Raz, 2000; Salat et al., 2004). Although

we did not explicitly test this hypothesis by directly comparing early

and late developing regions, the univariate results in the current study

largely replicate and expand upon this idea. The cortical thickness and

volume measures with the highest aging parameter estimates are all

located in the frontal lobe. Other high parameter estimates were those

of the parietal regions, while the only temporal regions with high esti-

mates were that of the superior and middle temporal gyri, which are

known for contributions to higher order cognitive processing and dem-

onstrate susceptibility to aging (Fjell et al., 2009; Van Petten et al.,

2004). A regional gradient is evident such that the frontal regions have

higher parameter estimates than the majority of the occipital, temporal,

and cingulate regions, meaning that these association cortices explain

significantly more age-related variance. Interestingly, surface area mea-

sures with the highest age-related parameter estimates include occipital

and temporal regions, some of which are reportedly more highly associ-

ated with age than with thickness or volume (Dickerson et al., 2009).

However, age-related parameter estimates of surface area are modest

relative to volume and thickness, suggesting that while surface area

does show differences with age, it is not nearly as age-vulnerable as

other measurements (Lemaitre et al., 2012). As suggested by Lemaitre

et al., it might be the case that surface area measurements are more

sensitive to the loss of intracortical WM.

Alternately, cortical thickness has been suggested to reflect, during

development, dendritic arborization and pruning in GM (Huttenlocher,

1990), and myelination differences at the interface of GM and WM tis-

sue compartments (Sowell et al., 2004). During development, surface

area is related to the maintenance and division of progenitor cells

(Chenn & Walsh, 2002). However, both cortical thickness and surface

area development are related to neuronal migration and minicolumn

organization (Rakic, 1988). Surface area may reflect the density of mini-

columns in cortex (Rakic, 1988), whereas cortical thickness reflects the

size and density of cells, including those that make up minicolumns

(Rakic, 1988), at least in animal models of development. Cortical thick-

ness appears to be most impacted developmentally by alterations in

myelin, reduction in size or number of neurons, and changes to the syn-

aptic environment (Sowell et al., 2003; Sowell et al., 2004), which are
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the hallmarks of age-related decline, suggesting a biological basis for a

retrogenesis-like recapitulation of development in aging.

In univariate analyses, measures of WM FA and MD also show

strong associations with age. Analyses revealed linear gradients of

age-differences across much of the myelinated area, indicating that

regional specificity might be more complex than a simple anterior-to-

posterior gradient or last-in first-out framework. While anterior

regions did evidence strong age-related associations for both FA and

MD compared to posterior regions (lower FA and higher MD while

moving toward anterior voxels), there were also strong medial-to-

lateral effects such that MD evidenced weaker age associations while

moving from mid-sagittal to more lateral slices. Age-related associa-

tions with FA appear to reflect an overall disruption in WM micro-

structure at the tract centers, which remained stable in large WM

bundles such as the corpus callosum, yet declined in smaller offshoots

that approach lateral gyri. This finding corresponds with the idea that

more primitive brain regions, which typically myelinate earliest in

development and are more centrally located in medial portions of the

brain, are typically more preserved in aging; as opposed to later

myelinating association fibers, which connect cognitive centers across

the superior and lateral surfaces, and exhibit greater age-related struc-

tural loss (Salat et al., 2005; Ziegler et al., 2010). Indeed, the latest

myelinating regions are superiorly positioned—the supramarginal,

superior frontal, and superior parietal—followed by inferior temporal,

middle temporal, and superior temporal gyri, and the precuneus

(Deoni, Dean III, Remer, Dirks, & O'Muircheartaigh, 2015; Leipsic,

1901). In comparison, middle-development is characterized by mye-

lination of the corpus callosum, and the earliest to develop are the

projection fibers (Brickman et al., 2012; Stricker et al., 2009). On the

other hand, decreasing MD appears to be more specific to the edges

of each tract, possibly representative of myelin degradation with age

as larger WM bundles become less dense along the periphery. Demy-

elination and changes to myelin density might have an exacerbated

effect on larger fiber bundles. Therefore, MD might be less sensitive

to regional phylogeny or ontogeny and more sensitive to the size

and/or density of fiber bundles. More research is needed regarding

myelin density and how it is affected within individual tracts across

developmental and aging processes.

4.2 | Multivariate findings and comparison to
univariate results pattern

Because the different processes of the neuron (cell body, axons, den-

drites) likely age in conjunction, we sought to use multivariate ana-

lyses to expand upon current and previous univariate aging brain

findings with a more biologically relevant guiding model which simul-

taneously takes data from proxies of both the neuronal axon and cell

body into account to gauge, at least with cross-sectional estimates,

how these brain compartments may age together. Specifically, we uti-

lized a partial least squares statistical technique to demonstrate how

variance among GM and WM estimates of neuronal integrity covary

across the brain; and how this covariance varies across the adult

lifespan. Comparisons between the two types of analyses show that

multivariate techniques emphasize a coupled relationship of GM and

WM decline which is not evident from univariate analyses alone.

While univariate analyses show the strongest effects of age and thick-

ness to be in the frontal cortices, the covariation with WM FA reveals

that the greatest coupled association is actually in frontal and parietal

cortices and the frontal WM connections. Additionally, occipital

regions, which in the univariate analyses were among the least associ-

ated with age, are more highly associated with WM metrics and aging

once both tissues are considered together. In particular, aging of the

lingual and lateral occipital cortices thickness show a strong coupling

with both FA and MD in the multivariate analyses. In contrast, cingu-

late regions, which were only weakly affected by age in the univariate

analysis, showed lesser association with both WM FA and MD when

analyzed together. Frontal regions, which were the most highly associ-

ated with age in the univariate analyses, still demonstrate high cou-

pling with WM and age, albeit less than many parietal regions. These

findings reveal that considering structural brain aging as a whole,

and the coupling among GM and WM tissue, leads to different conclu-

sions than an analysis that considers the neuronal processes as two

unrelated tissue types. Previous studies suggest that correlations

between cortical thickness across brain regions may be related to the

function of the networks the regions participate in and to the underly-

ing WM connectivity (He et al., 2007; Lerch et al., 2006). This type of

connectivity could then serve as a plausible explanation of how aging

of one component of one region might affect downstream regions;

however, this speculation requires longitudinal design to fully test.

4.3 | Regional timecourse specificity: Gray and white
matter coupling

The current study not only demonstrated a coupled association of tis-

sue integrity in a lifespan sample of healthy aging adults, but it also

suggests a differential timecourse of aging within each tissue type, in

accord with other cross-sectional studies (Fjell et al., 2013; Raz &

Rodrigue, 2006; Ziegler et al., 2010). As discussed above, the relation-

ship between structural measures is described by age such that the

projection of the latent variable contributions map onto an age trajec-

tory. However, despite this strong coupling of structural measures,

regional aspects of GM cortices and WM voxels differentially contrib-

uted to the age effects. Thus, it appears that different tissues types,

despite their connectedness within a neuron, degrade at different

points in the lifespan. This distinction is most notable in the relation-

ship between frontal and parietal structural measures. In comparisons

with WM FA, parietal GM thickness measures were at the extreme

end of the component. Therefore, the age-related thickness of the

parietal cortices is not only sharing the most variance with estimates

of WM FA, but is also driven by the oldest adults. Frontal cortices also

contributed heavily to this relationship and the component structure

as a whole, but shares less variance with WM FA than parietal regions.

Interestingly, in analyses with WM MD, this relationship is similar

such that, as a whole, WM MD shares the most variance with thick-

ness measures of frontal cortices, followed by thickness measures

from parietal regions. Therefore, there is an overall coupling of aging
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of GM thickness in the frontal and parietal regions with estimates of

WM microstructure, although regional specificity may be evidenced

depending on which WM metric is evaluated. Temporal and occipital

regional thickness were even less represented in analyses with either

WM FA or MD, reflecting less coupling with age, except for lingual

and superior temporal cortices.

Our results indicate that similar regionally specific features of WM

voxels emerge in both analyses. Frontal WM voxels shared the most

variance with age-related GM thickness in both analyses, specifically,

WM voxels spanning between frontal and parietal cortices such as the

genu and body of the corpus callosum, the projections from the corpus

callosum, and the anterior portions of the cingulum bundle. Compari-

sons between the two WM metrics revealed that FA demonstrated

greater covariance (via higher bootstrap ratios) with GM thickness in

some of the largest association fiber bundles, such as the anterior pro-

jections of the corpus callosum into frontal and parietal lobes, the

frontal–parietal portion of the SLF, the cingulum bundle, and posterior

projections of the splenium, ILF, and IFOF, compared to

MD. Reshaping of the diffusion ellipsoid within these voxels, due to the

loss of more thinly myelinated axons, without compromising the overall

magnitude of water flow is plausible in these association fibers. In con-

trast, MD evidenced stronger age-related coupling with GM thickness

in medial portions of the brain such as the corona radiata, cortical spinal

tract, and anterior thalamic projection fibers. This could be the result of

thickly myelinated, medially located bands of WM, allowing for more

water flow (due to less displacement) with aging, yet not necessarily

reshaping the directionality of this flow (as would be measured by FA).

This anatomical dissociation of tissue compartments is important with

regard to age-related tissue alterations, as it suggests that certain tissue

types are more susceptible to the aging process than others (Bartzokis

et al., 2004; Bartzokis et al., 2012), and could yield insight as to how

regionally differential neurons degrade according to different trajecto-

ries. Although longitudinal imaging data with finer resolution than cur-

rently available at the cellular or neuronal level would be necessary to

validate these ideas, one possibility based on the current results is that

parietal neurons degrade from cell body to axons (e.g., as in Wallerian

degeneration) whereas frontal neurons degrade from cell axons to body

(e.g., transneuronal atrophy).

While the results from cross-sectional studies are limited in their

ability to elucidate age progression within individuals, it is interesting to

note that our findings are consistent with the general patterns of longi-

tudinal studies (Rast et al., 2017; Raz et al., 2005). We found that GM

regions that contribute the most variance, and display a negative trajec-

tory with age, are parietal and frontal regions, while those regions con-

tributing the least to this relationship with age are occipital and

cingulate regions. This framework in which heteromodal, association

cortices (forming higher-level cognition centers) evidence early decline

and are associated with deteriorating cognition, with a relative preser-

vation of primary sensory areas has been a proposed mechanism

underlying cognitive decline patterns in healthy aging (Raz, 2000). Simi-

larly, the strongest relationships in WM degradation were evidenced by

the negative age trajectory with areas throughout the anterior and

superior WM, typifying anatomical association connections between

higher-order cognitive centers of frontal and parietal GM. Furthermore,

the few WM regions showing a positive relationship with age, in poste-

rior and inferior portions of the brain, are located in visual, spatial, and

motor areas, which show little to no decline with aging. Despite the

strong evidence we have presented showing the differential timecourse

of structural decline across the adult lifespan, these data were collected

in a cross-sectional design and thus represent between-participant dif-

ferences as opposed to reflecting change over time within an individual.

Longitudinal data are essential to investigate whether these differences

develop and progress as individuals age, and that aging of the GM and

WM are coupled over time, and follow-up is currently underway for

this sample.
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