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Abstract: The high acquisition speed of state-of-the-art optical coherence tomography (OCT)
enables massive signal-to-noise ratio (SNR) improvements by signal averaging. Here, we
investigate the performance of two commonly used approaches for OCT signal averaging. We
present the theoretical SNR performance of (a) computing the average of OCT magnitude data
and (b) averaging the complex phasors, and substantiate our findings with simulations and
experimentally acquired OCT data. We show that the achieved SNR performance strongly
depends on both the SNR of the input signals and the number of averaged signals when the signal
bias caused by the noise floor is not accounted for. Therefore we also explore the SNR for the
two averaging approaches after correcting for the noise bias and, provided that the phases of the
phasors are accurately aligned prior to averaging, then find that complex phasor averaging always
leads to higher SNR than magnitude averaging.
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1. Introduction

Optical coherence tomography (OCT) [1] performs biomedical imaging at high speed and with
high sensitivity. State-of-the art OCT systems provide data rates of ∼100 million pixels per
second and frame rates of ∼100-200 frames per second and beyond [2,3]. OCT provides a
distinctively high sensitivity of typically ∼100 dB, meaning that backscatter signals as weak as
10−10 of a mirror reflection can still be detected [4–6]. At the same time, OCT enables imaging
with a very high dynamic range spanning several tens of decibels between the strongest and the
weakest signal in the image.

The strong performance of OCT in detecting weak signals can be improved even more by
image processing. Noise in OCT images limits the detection capabilities for weakly scattering
structures, and thus a variety of different approaches for reducing OCT image noise have been
proposed [7–15]. The high acquisition speeds of modern OCT systems enable the improvement
of the signal-to-noise ratio by averaging multiple signals, for instance by fusing OCT frames or
even volumes quickly repeated at the same sample position. In recent years, several methods
were proposed for improving the detection sensitivity of OCT by averaging the complex-valued
OCT signals rather than just averaging their magnitudes [16–20]. In 2013, Szkulmowski and
Wojtkowski published a thorough analysis of signals and noise subject to different averaging
approaches [21]. In their analysis, the authors found a much stronger reduction of the noise floor
by complex averaging as compared to magnitude averaging but also observed a heterogeneous
outcome in terms of signal-to-noise performance for different imaging scenarios.
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In this article, we set out to answer the question: Which signal averaging approach works best
for improving signal-to-noise in OCT images, and when? We first introduce signals and noise in
OCT (section 2.1) based on the analysis in Ref. [21]. We then analyze the signals and noise
after magnitude and complex averaging, respectively, for a given pixel in an OCT image (section
2.2) and present simple expressions for the resulting signal-to-noise ratios. Next, we compare
the somewhat surprising theoretical performance of the averaging schemes for different input
signal levels and for different numbers of averaged signals and introduce a noise bias corrected
signal-to-noise ratio (SNR) analysis (section 2.3). After substantiating our theoretical analysis
with data from simulations (section 3.1) and experimentally acquired OCT data (section 3.2), we
conclude the paper with a brief summary of the findings and their implications on actual OCT
image processing (section 4). An overview of the terminology as well as a brief section on phase
correction required for complex phasor averaging is provided in the appendix.

2. Analysis of signals and noise in OCT

2.1. OCT signals and noise

OCT signals SOCT can be described by complex phasors of the form

SOCT (x, t) = A(x, t) exp [iφ(x, t)] (1)

where A(x, t) denotes the amplitude and φ(x, t) the phase of the OCT signal at location x and time
t. Here the amplitude A(x, t) represents the length of the phasor and the phase φ(x, t) corresponds
to the polar angle in the complex plane. The noise Snoise in OCT images can be specified by
phasors too, namely by random phasors. In the complex plane, the real and imaginary parts of
random phasors, rnoise and inoise, can be described by normal distributions with zero mean and
σ2 variance [22]. Hence, the complex noise signal is characterized by a binormal (or Beckmann)
distibution pri in the complex plane [22,23]:

pri(rnoise, inoise) =
1

2πσ2 exp

[
−

r2noise + i2noise
2σ2

]
. (2)

This 2D Gaussian probability density function (PDF) describes the probability for a noise phasor
of an image pixel to have the real part rnoise and the imaginary part inoise. The probability density
function pA of the noise amplitude Anoise is represented by the Rayleigh distribution (which can
be derived by transforming Eq. (2) to polar coordinates and integrating over all angles φ) [22]

pA(Anoise) =
Anoise

σ2 exp

[
−

A2
noise
2σ2

]
. (3)

Analogous to pri, the PDF of the noise amplitude represents the probability of the noise amplitude
to take specific values Anoise. Figure 1(a-d) shows an example of the complex representation of
noise phasors in an OCT image and the corresponding Beckmann and Rayleigh distributions.
Note that the Beckmann distribution is symmetric and centered at the origin while the Rayleigh
distribution is skewed and only takes positive values. The mean amplitude u and variance σ2

U of
a general PDF pU(u) is given by u =

∫ ∞
−∞

upU(u)du and σ2
U =

∫ ∞
−∞
(u − u)2 pU(u)du, respectively

[22]. The mean amplitude Anoise and the variance σ2
noise of pA can be computed as

Anoise =

√
π

2
σ, (4)

σ2
noise =

(
2 −

π

2

)
σ2. (5)

In every OCT image pixel, the detected signal is a combination of the actual OCT signal
SOCT and the noise Snoise. By choosing the OCT signal to have φ = 0 and thus to point into the
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direction of the positive real axis (Fig. 1(e)) similar to Goodman [22], the PDF of the measured
amplitudes incorporating both signal and noise is represented by a Rice distribution

pA(A,Anoise) =
Anoise

σ2 exp

[
−

A2
noise + A2

2σ2

]
B0

[
AnoiseA
σ2

]
. (6)

where B0 is a modified Bessel function of the first kind and zero order. An example of the PDF
of the signal amplitudes in presence of noise seen in an OCT image is shown in Fig. 1(g). Note
that the signal gives rise to a somewhat spread probability accumulation at a high amplitude level.
The mean amplitude A and variance σ2

A in an image pixel are observed as

A =
√
π

2
σL1/2

[
−

A2

2σ2

]
, (7)

σ2
A = A2 + 2σ2 +

π

2
σL2

1/2

[
−

A2

2σ2

]
, (8)

where L1/2(·) denotes the Laguerre polynomial of degree 1/2. L1/2(−x) yields steadily increasing,
positive values for increasingly negative arguments −x.

OCT amplitude data are usually squared in order to display a quantity proportional to sample
reflectivity, I = A2, henceforth called intensity. Therefore it makes sense to investigate the
behavior of the PDFs of the squared signal and noise amplitude data. For this purpose, a variable

Fig. 1. Complex phasor representation of noise and signals in OCT and their probability
density functions. (a) Cartoon of Beckmann distribution of noise phasors around the origin
of the complex plane. A representative phasor Snoise with real part rnoise and imaginary part
inoise is shown in green. (b) Complex OCT signals of 100 repeated noise measurements
in the same pixel from real-world OCT data. (c) Histogram of noise amplitudes (1000
repeats, gray line) and Rayleigh PDF (red line) computed from the standard deviation σ
of the Beckmann distribution in (b) by Eq. (3). (d) Histogram of the noise intensity (gray
line) and PDF (red line) computed from σ in (b) by Eq. (9). (e) Cartoon of an OCT signal
affected by noise. The green arrow represents the signal phasor. (f) Complex OCT signals of
100 repeated measurements of a weak reflection in the same pixel. (g) Histogram of signal
amplitudes (1000 repeats, gray line) and Rice distribution (blue line) computed from the
mean signal amplitude and σ using Eq. (6). (h) Histogram of the signal intensity (gray line)
and PDF (blue line) computed from the mean intensity and σ by Eq. (10). The + in (b) and
(f) indicates the origin of the complex plane. The PDFs in (c,d,g,h) were scaled to match the
count levels of the respective histograms.
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transform of A =
√

I is performed such that the PDFs are rendered into pI(I) = pA(A =
√

I)| dA
dI |.

The resulting PDFs for noise (pI(Inoise)) and signal intensities (pI(I, Inoise)) are

pI(Inoise) =
1

2σ2 exp
[
−

Inoise

2σ2

]
, (9)

pI(I, Inoise) =
1

2σ2 exp
[
−

Inoise + I
2σ2

]
B0

[√
InoiseI
σ2

]
, (10)

where Inoise = A2
noise. Note that pI(Inoise) is a negative exponential probability function whereas

pI(I, Inoise) is a combination of a negative exponential and a monotonically increasing Bessel
function. Examples of the above PDFs for noise and signal intensities are shown in Figs. 1(d)
and (h), respectively. The mean values and variances for noise and signal intensities, respectively,
are given by

Inoise = 2σ2, (11)

σ2
Inoise
= 4σ4, (12)

I = I + 2σ2, (13)

σ2
I = 4σ2(I + σ2). (14)

By comparing Eqs. (11) and (12), one can observe that the mean noise intensity equals the
standard deviation σnoise. Therefore, for the case of both non-zero signal and noise, the observed
mean intensity corresponds to I = I + Inoise and the intensity variance to σ2

I = Inoise(2I + Inoise).
Next, we will investigate the effect of averaging the magnitudes of the phasors as well as the
effect of averaging the complex phasors on OCT intensity data.

2.2. Averaging magnitudes and phasors

For averaging OCT data, usually the absolute values (magnitudes) of the signals are used. For
some applications, the complex signals have been exploited for adding or increasing image
contrast in one way or another [31–36]. Here, we systematically analyze the effect of averaging
magnitude and complex signals in OCT images.

2.2.1. Magnitude averaging

Magnitude averaging uses the absolute values of N spatially and/or temporally separated signals
(e.g., N pixels in a 2D or 3D kernel or N repeated measurements at the same spatial pixel location
but at different time points):

〈I〉MAG =
1
N

N∑
j=1

Ij. (15)

The PDF representing the average of N data points can be computed numerically by convolving
the PDF of a single data point (N − 1)-times [21]. Unfortunately, no closed form expressions
are available for the distribution describing an N-fold average of the above PDFs and only some
approximations and bounds have been derived [37]. Nevertheless, the mean intensity values and
intensity variances can be calculated for Rayleigh distributed noise and Rician signals affected by
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random noise, respectively, as

〈Inoise〉MAG = 2σ2 = Inoise, (16)

〈σ2
Inoise
〉MAG =

1
N
4σ4 =

1
N
σ2

Inoise
, (17)

〈I〉MAG = I + 2σ2 = I, (18)

〈σ2
I 〉MAG =

1
N
4σ2(I + σ2) =

1
N
σ2

I . (19)

The above expressions show that the mean noise level as well as the observed mean signal level
remain unchanged upon averaging and retain the mean intensity values calculated for single data
points. However, the variances of the observed signal and noise, σ2

I and σ2
Inoise

, are reduced by
1/N and thus reducing the standard deviations σI and σInoise by a factor 1/

√
N.

2.2.2. Complex averaging

In contrast to magnitude averaging, complex averaging also includes the phase information into
the averaging process. This inclusion exploits the fact that the noise phasors (in absence of a
signal) randomly fluctuate about the origin according to a 2D Gaussian PDF with a standard
deviation of σ, see Eq. (2). By averaging N spatially and/or temporally independent complex
noise phasors, the standard deviation σ of the Beckmann distribution in Eq. (2) is reduced by a
factor 1/

√
N [22]. This reduction of the noise amplitude variance translates into a reduction of

both the mean noise intensity as well as of its variance:

〈Inoise〉CPX =
1
N
2σ2 =

1
N

Inoise, (20)

〈σ2
Inoise
〉CPX =

1
N2 4σ

4 =
1

N2σ
2
Inoise

. (21)

Compared to the noise performance after magnitude averaging (Eqs. (16) and (17)), which
maintains the mean noise level and reduces the noise intensity variance by 1/N, complex averaging
leads to a 1/N decrease of the noise floor intensity and to a 1/N2 smaller noise intensity variance.

Recalling that we initially assumed that the signal vector SOCT was pointing in the direction of
the positive real axis (i.e. Fig. 1(e)), the precondition for averaging signals in a complex fashion
is that the phase of SOCT remains constant at φ = 0. (Likewise, a different signal phase φ = φ0
could be chosen, as long as the phases of all signals to be averaged are aligned at the same angle
φ0. The signal phase (φ = 0) is chosen here out of convenience to ensure a purely real signal
which facilitates the calculations described above.) For such perfectly aligned signals in the
presence of random noise, the following mean signal intensity and intensity variance will be
observed:

〈I〉CPX = I +
1
N
2σ2 = I −

N − 1
N

2σ2, (22)

〈σ2
I 〉CPX =

1
N
4σ2(I +

1
N
σ2) =

1
N
σ2

I −
N − 1

N2 σ2. (23)

Unlike magnitude averaging, which maintains the original mean signal intensity I, the mean
signal intensity does not stay constant but is reduced by 2σ2(N − 1)/N after complex averaging.
This signal reduction converges to an amount of 2σ2 for large N. At the same time, also the noise
intensity variance is reduced by an amount σ2(N − 1)/N2 compared to magnitude averaging,
which converges to a reduction by σ2/N for large N.
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2.3. Signal-to-noise performance

The signal-to-noise ratio is the measure of choice to describe the influence of noise on signal
measurements. An overview of methods for determining the SNR and in particular the sensitivity
of an OCT system has recently been published by Agrawal et al. [24]. The SNR in OCT is
typically defined as the ratio of the average signal intensity to the standard deviation of the noise
intensity, SNR = I/σInoise [24–28] (or alternatively 〈I〉/〈σInoise〉 for averaged signals). As shown
in the previous sections and visualized in Fig. 2, the measured signal intensity I is the sum of
the pure signal intensity I and the noise floor Inoise. Historically, the bias caused by the noise
floor is not specifically factored out from the SNR analysis, however some investigations of OCT
image data did exclude the background [29,30]. Because of the multiple approaches for OCT
data processing, it makes sense to ask, "how important is noise bias correction when measuring
SNR?". In the following section, we will investigate the SNR for the total measured signal (i.e.
including the contribution of the noise floor) with and without averaging. Subsequently, we will
account for the signal offset caused by the noise floor and evaluate the SNR with noise bias
correction.

Fig. 2. Intensity signal and noise background in a schematic OCT depth profile. The noise
floor is characterized by its average intensity Inoise and its variance σ2

Inoise
. The measured

OCT intensity signal I consists of the pure signal intensity I biased by the average noise
level Inoise.

2.3.1. Signal-to-noise performance without noise bias correction

Using the signal and noise pairs in Eqs. (13) and (12), (18) and (17), and (22) and (21), and
the relation Inoise = σInoise = 2σ2 in Eqs. (11) and (12), we find the following SNRs for single
signals, N magnitude averaged signals, and N complex averaged signals, respectively:

SNR1 =
I

σInoise

=
I + Inoise

σInoise

, (24)

SNRMAG =
〈I〉MAG

〈σInoise〉MAG
=

I + Inoise
1√
N
σInoise

=
√

N · SNR1, (25)

SNRCPX =
〈I〉CPX

〈σInoise〉CPX
=

I + 1
N Inoise

1
NσInoise

= N · SNR1 − (N − 1). (26)

In short, averaging the magnitudes of N signals improves the SNR by a factor
√

N whereas
complex averaging of N signals changes the SNR by a factor N less (N − 1).
The relative SNR improvements SNRMAG,CPX/SNR1 and SNRCPX/SNRMAG are plotted for N

up to 100 and for typical OCT image dynamics with SNR1 between 5 dB and 20 dB in Fig. 3.
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In particular for small N, complex averaging provides a considerable SNR improvement over
magnitude averaging. At the same time, the SNR1 dependence of complex averaging has a
considerable impact on its performance: While for strong signals with SNR1 � 1, complex
averaging outperforms magnitude averaging by a factor

√
N, the signal-to-noise improvement

becomes much less for weaker input signals.

Fig. 3. Relative SNR improvement by signal averaging for strong input signals (without
noise bias correction). (a) The ratios SNRCPX /SNR1 and SNRMAG/SNR1 are shown for N
from 1 to 100. SNRMAG/SNR1 is plotted as a dash-dotted line, whereas the SNR1-dependent
ratio SNRCPX /SNR1 is plotted in rainbow colors for several SNR1 values between 5 dB
and 50 dB. Note that SNRCPX /SNR1 converges to an N-fold improvement. (b) The ratio
SNRCPX/SNRMAG = (N − (N − 1)/SNR1) /

√
N is plotted for the spectrum of SNR1 values

used in (a). Note that in particular for strong input signals with high SNR1, complex averaging
outperforms magnitude averaging and converges to a

√
N-fold better SNR performance. As

the SNR profiles converge for large SNRs, the curves in (a) and (b) start to overlap for values
greater than 15 dB.

In the next section, we are going to explore the SNR enhancement of the two averaging
approaches particularly for very weak signals on the order of the noise background, however still
without correcting for the signal bias caused by the noise floor. Will magnitude averaging or
complex averaging be superior in terms of recovering such small signals?

2.3.2. Averaging domains and borderline SNR

When the signal bias caused by the noise is not accounted for, the SNR performance averaging
depends on the approach taken. Equations (25) and (26) revealed a dependence on the number of
averaged signals, N, and – for complex averaging – on the SNR of the input signals, SNR1. In
this section, we are investigating this dependence for different numbers of averaged signals, N,
and for a great range of signals – from much smaller than the noise variance to several orders
of magnitude greater. Recalling the identities for the noise variance and the observed signal
intensity in Eqs. (12) and (13), we choose the quantity I/2σ2, which is identical to SNR1 − 1, as
the benchmark for the input signal.

Figure 4(a) shows three plots of the signal-to-noise ratios calculated for magnitude averaging
(red) and complex averaging (blue) where relatively small signals I/2σ2 = 1, 0.5 and 0.1 were
chosen as the respective inputs. Note that for I = 2σ2 (left plot), complex averaging always yields
greater SNR than magnitude averaging for N>1. However, for I/2σ2<1 and a small number of
signals N, magnitude averaging provides a more effective SNR improvement. Figure 4(b) plots
three pairs of SNR profiles for a fixed number of averaged signals (N = 2, 10 and 100), this time
as a function of the relative signal intensity I/2σ2. Again, for weak input signals, the superior
performance of magnitude averaging can be observed, while complex averaging excels beyond a
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crossover point of I/2σ2 = 1/
√

N. This relative borderline signal is plotted for N up to 100 in
Fig. 4(c) alongside the borderline input SNR1

SNR1,borderline = 1 +
1
√

N
(27)

which is the input SNR1 for which magnitude averaging and complex averaging perform equally
well.

Fig. 4. Influence of input signal level and number of averaged signals on the SNR (without
noise bias correction). (a) SNRMAG and SNRCPX after magnitude and complex averaging
of N signals plotted for relative signal levels of I/2σ2 = 1 (left), I/2σ2 = 0.5 (middle), and
I/2σ2 = 0.1 (right), respectively. (b) SNRMAG and SNRCPX after magnitude and complex
averaging of signals I/2σ2 ranging from 0.01 through 10, plotted for averages of N = 2
(left), N = 10 (middle), and N = 100 signals (right), respectively. Green arrows in (a) and
(b) indicate the intercepts of the SNR profiles, i.e. the borderline SNR where magnitude and
complex averaging perform equally. (c) Borderline plots of I/2σ2 = 1/

√
N as well as SNR1

as described in Eq. (27).

An overview of the relative SNR performance SNRCPX/SNRMAG at various inputs I/2σ2 and
N is shown as a heat map in Fig. 5. At first glance, two domains can be differentiated: For
stronger signals I/2σ2 and larger N, complex averaging provides a greater SNR improvement
than magnitude averaging (see the area in blue in Fig. 5). For signals comparable to or smaller
than the noise level, magnitude averaging yields a better SNR enhancement (see the area in red).
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In between these two domains, the borderline with equal SNR performance of the two approaches
is indicated in white, SNRCPX/SNRMAG = 1.

Fig. 5. Relative SNR performance for magnitude and complex averaging (without noise
bias correction). The heat map displays the ratio SNRCPX/SNRMAG in decibels for relative
input signals I/2σ2 ranging from -20 dB to +40 dB and up to a number of averaged signals
N = 100. For small input signals below the noise level, magnitude averaging yields a
better SNR improvement (red range), while complex averaging performs better for greater N
and stronger input signals (blue range). The borderline SNR where SNRMAG = SNRCPX
separates these two domains (white plot).

2.3.3. SNR in absence of a signal (noise floor only)

An interesting scenario is posed by the calculation of the SNR when the signal intensity I is zero.
Then, using the relation Inoise = σInoise = 2σ2 from Eqs. (11) and (12), the SNRs for a single
signal, after magnitude averaging and after complex averaging, respectively, become:

SNR1(I = 0) =
Inoise

σInoise

= 1, (28)

SNRMAG(I = 0) =
Inoise
1√
N
σInoise

=
√

N, (29)

SNRCPX(I = 0) =
1
N Inoise
1
NσInoise

= 1. (30)

An obvious disunity of the SNRs calculated for pure noise signal can be observed. This calls for
a revised definition of the SNR, this time accounting for the signal bias Inoise imposed by the
noise floor.

2.3.4. SNR analysis with noise bias correction

In the limit of a very weak OCT signal, the small meaningful signal contribution sits on top of
a comparatively large noise floor. This noise bias is evident as the term related to Inoise in Eqs.
(24–26) and is also visualized in Fig. 2. Thus, it makes sense to actually consider the impact of
this noise bias in the SNR analysis – in particular for weak signals. In this section, we introduce
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and evaluate an SNR analysis with noise bias correction. A similar approach has for instance
also been used by Makita et al. [39] and recently been modified by our group [40] to correct for
noise contributions in PS-OCT images and improve the computation of the degree of polarization
uniformity for weak signals. To some extent, this SNR with noise bias correction resembles the
SNR definitions in Refs. [29,30] and has formal similarities with previous definitions of the
contrast-to-noise ratios in Refs. [21,27].
The noise bias of the average OCT signals can be removed by subtracting the average noise

intensity (Inoise, 〈Inoise〉MAG, and 〈Inoise〉CPX in Eqs. (11), (16) and (20), respectively) from the
average signal intensity (I, 〈I〉MAG, and 〈I〉CPX in Eqs. (13), (18) and (22), respectively). The
noise bias corrected average signal intensities then read

I ′ = I − Inoise = I + 2σ2 − 2σ2 = I, (31)

〈I〉MAG
′
= 〈I〉MAG − 〈Inoise〉MAG = I + 2σ2 − 2σ2 = I, (32)

〈I〉CPX
′
= 〈I〉CPX − 〈Inoise〉CPX = I +

1
N
2σ2 −

1
N
2σ2 = I. (33)

Note that the three corrected average signal intensities now match the pure signal intensity I.
Further, using the noise variances in Eqs. (12), (17) and (21), the respective noise bias corrected
SNRs can be calculated as

SNR′1 =
I ′

σInoise

=
I

2σ2 , (34)

SNR′MAG =
〈I〉MAG

′

〈σInoise〉MAG
=
√

N
I

2σ2 =
√

N · SNR′1, (35)

SNR′CPX =
〈I〉CPX

′

〈σInoise〉CPX
= N

I
2σ2 = N · SNR′1. (36)

SNR′1 equates the quantity SNR − 1 = I/2σ2 already known from the analyses in the previous
sections. Even more strikingly, the noise bias corrected SNRs after magnitude and complex
averaging now exhibit a simple proportionality of

√
N and N with SNR′1 (Fig. 6), which also means

that SNR′ will be zero if there is no signal for Eqs. (34–36). Using the noise bias correction,
complex averaging thus always yields a

√
N-times better SNR than magnitude averaging, even

for weak input signals and small N.

Fig. 6. Theoretical improvement of the signal-to-noise ratio SNR′ after noise bias correction
plotted on (a) linear scales and (b) log scales. A

√
N- and N-fold improvement of the SNR′

of a single signal can be observed for magnitude and complex averaging, respectively. Note
that, unlike for the noise-afflicted SNR calculations in Figs. 3 through 5, neither of the
averaging approaches depend on the input signal strength.
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3. Experimental validation

3.1. Numerical simulation

OCT signals and noise were simulated according to the probability density functions described in
Eqs. (3) and (6), respectively. For the noise contribution, binormally distributed complex signals
with similar standard deviations σ along both the real axis and the imaginary axis were generated.
For the signal contribution, the binormal distribution was generated around a real-valued signal
A such that the phasor distribution was shifted from the origin of the complex plane to (A, 0) (see
also Fig. 1(e)). A total of M = 100 averaged signals were computed for every simulation run. For
complex averaging, in every run N = 1 to N = 100 complex-valued phasors were averaged. For
magnitude averaging, the absolute values were computed for every single noise and signal phasor
prior to averaging. Finally, the respective SNRs and SNR′s were calculated from the average
signal intensity and the variance of the noise signals for every N.

Results of the simulations performed in MATLAB (R2014a, MathWorks) are shown in Fig. 7.
To showcase the effect of averaging for strong and weak signals, SNR simulations for two
distinct relative signal levels of I/2σ2 = 10 and I/2σ2 = 0.1 are presented in Fig. 7(a) and (b),
respectively. Unlike magnitude averaging, complex averaging markedly decreased the signal
intensity but at the same time also reduced noise much more by averaging. For the standard

Fig. 7. Simulation of the effect of averaging N signals with relative strength I/2σ2 = 10 in
(a) and I/2σ2 = 0.1 in (b). Shown are the averaged signal-to-noise ratios calculated from N
simulated phasors (•) alongside the corresponding theoretical plots (−). The SNRs without
and with noise bias correction are plotted in the left and right panels, respectively. Without
noise bias correction, the SNRCPX shows a better performance for the strong signal in (a),
whereas SNRMAG dominates for N = 1 to 100 both for theoretical calculation and simulation.
With noise bias correction (rightmost column), complex averaging similarly provides an
N-fold improvement of the respective SNR′ = I/2σ2 whereas an

√
N-fold improvement can

be observed for magnitude averaging.
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deviation of the noise fluctuations, a decrease by 1/
√

N and 1/N was observed for magnitude and
complex averaging, respectively. The resulting SNRs are shown in the four panels in Fig. 7. Here,
for averaging up to 100-fold, SNRCPX reveals a better SNR improvement for the strong input
signal (Fig. 7(a)) when the noise bias is not corrected for, while magnitude averaging appears
more effective for the weaker input signal in Fig. 7(b). After noise bias correction, however, no
more dependence upon the input signal level can be observed, and complex averaging provides
an N-fold increase in SNR′ whereas the SNR′ is only enhanced by a factor

√
N after magnitude

averaging.

3.2. Averaging experimental OCT data

For demonstrating the effect of the different averaging approaches on OCT images, we used
a spectral domain (SD) OCT system in our lab [38]. This polarization sensitive SD-OCT
system was used for imaging a stationary eye phantom. This system is based on a multiplexed
superluminescent diode (λ = 840 nm, ∆λ = 100 nm) as a light source, a free-space Michelson-
type interferometer, and a polarization-sensitive detection unit including two spectrometers.
For the investigations presented here, only the co-polarized detection channel was analyzed;
thus the PS-OCT system was reduced to what would be considered a standard SD-OCT with
high-resolution imaging capabilities - 3.6 µm axial resolution (assuming a refractive index of
1.35), 83 kHz A-scan rate - similar to state-of-the-art commercial SD-OCT scanners for retinal
imaging.
The eye phantom, composed of several layers of transparent nail polish on a glass bead to

produce a laminar reflectance pattern [38], was imaged using B-scan and M-scan protocols
at different levels of attenuation (from 0 dB to -40 dB) to observe the effects of averaging in
low-signal conditions. The B-scan protocol scanned a 1 mm lateral range with 100 repeats to
generate cross-sectional images of the phantom (Fig. 8(a-d)). Representative depth profiles are
shown in Fig. 8(e).
The M-scan protocol was used to acquire 1000 repeated A-lines from a fixed position within

the phantom for a precise comparison of averaging methods. The M-scan protocol was chosen to
minimize phase differences between consecutive A-lines and ensure that averaging represents
a best-case real-world scenario. The 1000 A-lines were split into 10 temporally independent
bins of 100 consecutive A-lines each. Complex and magnitude averaging for N up to 100 was
performed on each of the 10 bins and the resulting signal curves were averaged together before
calculating SNR and SNR′ in order to yield more stable SNR curves, particularly for lower
numbers of averages. Here, the noise variances were computed from the noise pixel data of 100
consecutive A-lines, similar to the simulation above. Three characteristic SNR and SNR′ curves
from the magnitude-averaging dominant, borderline, and complex-averaging dominant domains
are shown in Fig. 8(f) and (g). Theoretical SNR profiles based on SNR1 as described in Eqs. (25)
and (26) demonstrate good agreement with the experimental data in Fig. 8(f). These results show
that the theoretical magnitude-averaging dominant domain is reproducible with real world OCT
data when the noise floor induced bias is not accounted for. Similarly, the SNR′ plots from the
experimental data with noise bias correction follow the expected slopes of

√
N and N (Fig. 8(g)).
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Fig. 8. Experimental verification of SNR improvement by the different averaging approaches
in a layered retina phantom. (a) Single B-scan image of the phantom (no attenuation). (b)
Single B-scan image after attenuating the sample beam by 30 dB. (c) B-scan image after
averaging the magnitudes of 100 repeated frames (with 30 dB attenuation). (d) B-scan
image after averaging the phasors of 100 repeated frames (with 30 dB attenuation). Note
that all B-scan images in (a-d) are displayed with identical dynamic ranges of 40 dB where
0 dB refers to the maximum signal intensity in the frame. (e) Depth profiles of a single
A-scan before and after attenuation, 100 magnitude averaged, and 100 complex averaged
A-scans at the locations indicated by the dotted lines in (a-d). Due to a beam offset caused
by the ND filter, the scattering profile of the unattenuated case has a slightly different
structure. Dynamic range as in (a-d). (f) SNR improvement without noise bias correction for
three pixels with weak (left), borderline (middle) and strong signal strength I/2σ2 (right),
respectively. Pixel locations are indicated by orange boxes numbered with 1-3 in panel (d).
SNR curves are shown for magnitude and complex averaging of 1-100 repeated M-scan
signals for the experimental data (•) alongside the corresponding theoretical plots (−). (g)
SNR′ improvement after noise bias correction for the data sets shown in panel (f). Note that
the experimental data (•) slightly fluctuates around the theoretical profiles (−). SNR′ data
fluctuating below SNR′ = 0 is not shown. The axes are scaled as in the respective plots in
(f) in order to enable a direct comparison between the two SNR analyses.
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4. Discussion and conclusion

Signal averaging is one of the most commonly used procedures for OCT image processing. Here,
we investigated the SNR performance of magnitude and complex averaging in theory and backed
our findings with experimental results from simulations and actual OCT image data. We also
studied the effect of the background noise bias on the measured SNR and calculated a noise
bias corrected SNR. In the following paragraphs, the main observations are summarized and
discussed in order to provide a better understanding of the strengths and weaknesses of the two
approaches.

4.1. Impact of averaging on noise and signals

Complex averaging reduces the noise variance by 1/N, and thus provides a much stronger noise
reduction than magnitude averaging, which only reduces the noise by 1/

√
N. At the same time,

complex averaging also reduces the signal – in contrast to magnitude averaging, which maintains
the signal level and only reduces noise. The main cause of the average signal decrease by complex
averaging is the reduction of the average noise level. Both signal and noise characteristics have
to be considered to understand the impact of averaging on OCT data.

4.2. Leaving or removing the noise floor bias for the SNR calculation

The signal-to-noise ratio is a commonly used measure to assess the image quality and to describe
the system performance of OCT machines. Usually, the ratio of the average intensity of a signal
peak and the standard deviation of the noise intensity is used to calculate the SNR [24,28]. While
it is rather clear how to estimate the noise variance (e.g., by considering the noise intensity in a
signal-free image area), the definition of the average intensity is not that obvious. As visualized
in Fig. 2, taking the entire measured signal intensity from the zero line to the (average) peak
intensity I includes two portions, namely the actual signal intensity term I and the background
noise level Inoise.
For relatively strong signals, the measured signal is dominated by the intensity term I and

I ≈ I � Inoise. In contrast, when the actual signal contribution to the measured signal is small (i.e.
I � I), the noise floor bias Inoise prevails. We hence investigated the signal-to-noise performance
of magnitude and complex averaging for (a) leaving the noise floor bias as part of the measured
signal and (b) correcting for the noise bias. As discussed in detail in the following sections,
similar results were observed for both SNR analyses when strong signals were investigated.
However, for rather weak signals, the impact of Inoise manifested in the observation of dissimilar
SNR characteristics.

4.3. Noise-afflicted signal-to-noise ratios after averaging strong and weak signals

For sufficiently large signals I = I + Inoise, the N · SNR1 term in Eq. (26) dominates such that
complex averaging converges on an N-fold SNR improvement, while magnitude averaging only
enhances the SNR

√
N-fold. In contrast, for recovering weak signals comparable to or smaller

than the noise, magnitude averaging appeared to outperform complex averaging – in particular
for small N. When the input SNR1 was just slightly larger than unity (i.e., I/2σ2 just slightly
greater than zero), the right-hand side of Eq. (26) was essentially neutralized such that the
SNR improvement was far less than the

√
N-fold enhancement yielded by magnitude averaging,

especially in the limit of small N. Hence, magnitude averaging could be considered more effective
for boosting small signals as they may be found in the outer nuclear layer in the retina when the
noise floor induced signal bias is not accounted for. However, by taking a look at the SNR in
absence of an actual signal (I = 0), odd SNR characteristics were observed (see section 2.3.3)
which underscored the importance of a noise bias correction.
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4.4. SNR calculations with noise bias correction

When SNRs are calculated in the classical way described in section 2.3.1, the average noise floor
level Inoise contributes to the intensity measured as "signal". This noise bias impacts the measured
SNR, in particular for weak signals. Akin to noise offset removal in PS-OCT processing [39,40],
we performed SNR calculations with noise bias correction in sections 2.3.4 and 3. By using this
modified approach, a superior SNR performance was always observed for complex averaging,
regardless of the input signal strength. Compared to the noise bias corrected SNR of a single
signal prior to averaging, magnitude and complex averaging improved the SNR (after noise
bias correction) by a factor of

√
N and N, respectively. The theoretically predicted performance

agreed well with the performance observed in simulated and experimental OCT data (Figs. 7 and
8). This finding suggests that noise bias correction definitely is an important processing step in
SNR analyses – especially when it comes to averaging weak signals.

4.5. Implications for practical OCT image averaging

State-of-the-art swept source and spectral domain OCT devices deliver complex-valued signals
(see Eq. (1)) right out of the box. Hence both magnitude and complex averaging can be easily
implemented using the image data. For effective complex averaging, it is imperative that the
phases of the signals are accurately aligned before averaging as described in more detail in
Appendix B. While this means additional computational steps, it may be well worth the effort
when the SNR is to be increased in images of scattering structures such as the retina where OCT
has been frequently applied. Retinal OCT images may easily span a dynamic range of 40 dB
with hyperscattering structures such as the nerve fiber layer and the pigment epithelium that can
serve as landmarks for phasor alignment [18]. Other retinal tissues such as the ganglion cell layer
and the outer nuclear layer [41], and also structures in the vitreous, which are usually much less
reflective [42], may then be visualized by averaging multiple OCT images together. Complex
averaging has also been found promising to detect signals in settings with multiple scattering
[20].

Magnitude averaging on the other hand can be implemented at less computational expense and
may be the averaging approach of choice for images containing mostly weak signals of interest,
which would render phase alignment for complex averaging difficult or even impossible. Also in
scenarios where images include a lot of varying motion, e.g. when visualizing weakly scattering
structures such as flow in lymphatic vessels [43], albeit theoretically less effective by

√
N in terms

of SNR improvement, magnitude averaging may likely trump complex averaging.

4.6. Future perspectives

Finally, we would like to point out that, while the analysis presented here particularly focused on
the SNR improvement for different averaging approaches, it may be interesting to also investigate
other image metrics such as their contrast-to-noise characteristics and/or their efficiency in
terms of speckle reduction. For this purpose and to explore scenarios with tissue-like scattering,
recently described OCT signal models could be particularly interesting candidates [28,44–46].
Additionally, OCT images are often displayed on a logarithmic scale in order to compress signals
covering a large dynamic range. The logarithm pulls up weak signals but also the noise floor [21],
such that the SNR performance for averaged logarithmic amplitude data will deviate from that
for uncompressed OCT data discussed here. An in-depth analysis similar to the one performed
for linear data in section 2.2 may provide more insight in the advantages and disadvantages of
magnitude- and phasor-based averaging approaches for enhancing OCT image quality.
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Appendix

Appendix A – Glossary

The table below provides an overview of the variables and symbols used in this article.

Table 1. Overview of variables and abbreviations

Symbol Explanation Equation

A(x, t) Amplitude of phasor representing the OCT signal (1)

A Mean signal amplitude (7)

Anoise Amplitude of complex phasor representing the OCT noise signal (3)

Anoise Mean noise amplitude (4)

∆φ Phase difference (39,42)

I Signal intensity, I = A2

I Mean signal intensity (13)

Ix
′ Ix with noise bias correction, (x =void,MAG,CPX) (31–33)

Inoise Noise intensity, Inoise = A2
noise

Inoise Mean noise intensity (11)

inoise Imaginary part of complex phasor representing the OCT noise signal (2)

N Number of averaged signals

pA(Anoise) PDF describing amplitudes of random phasors (Rayleigh distribution) (3)

p∆φ (∆φ,A) PDF describing distribution of phase differences (43)

pI (Inoise) PDF describing intensities of random phasors (9)

pI (I, Inoise) PDF describing intensities of signals in presence of noise (10)

pA(A,Anoise) PDF describing amplitudes of signal phasors in presence of noise (Rice distribution) (6)

pri(rnoise, inoise) Binormal PDF describing random phasors (2)

P(N) Penalty factor after averaging N signals (37)

PDF Probability density function (2,3,6,9,10)

φ(x, t) Phase of phasor representing the OCT signal (1)

rnoise Real part of complex phasor representing the OCT noise signal (2)

SOCT (x, t) Complex-valued OCT signal (1)

S(moco)
OCT OCT signal after motion correction (moco) (40,41,45)

σ2 Variance of real/imaginary part of pri (1)

σ2
A Variance of signal amplitudes for pA(A,Anoise) (8)

σ2
I Variance of signal intensity for pI (I, Inoise) (14)

σ2
Inoise

Variance of noise intensity for pI (Inoise) (12)

σ2
noise Variance of noise amplitudes for pA(Anoise) (5)

SNR1 SNR of non-averaged signal (24)

SNR1,borderline SNR1 of non-averaged signal for SNRMAG = SNRCPX (27)

SNRMAG SNR after magnitude averaging (25)

SNRCPX SNR after complex phasor averaging (26)

SNR′x SNRx with noise bias correction, (x = 1,MAG,CPX) (34–36)

〈·〉MAG Quantity · after magnitude averaging (16–19)

〈·〉CPX Quantity · after complex averaging (20–23)
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Appendix B – Complex signal averaging in case of axial motion

Effect of axial motion on complex averaging Keeping the signal phase φ constant is
essential for complex signal averaging. If d2φ(x, t)/dxdt , 0, the complex sum of the signal
vectors will have a length smaller than the sum of their absolute values. In other words, if the
phases of the complex signals are not matched prior to averaging, the length of the average
signal vector will be reduced. The condition ∆φ = 0 is fulfilled for simultaneously acquired
signals at the same z-position within the same speckle. When averaging signals among different
speckles acquired at the same time point, first the phase offset between different speckles has to
be eliminated [48]. Similarly, when signals acquired at the same location x but at different time
points t are averaged (e.g., signals from repeatedly acquired OCT images), the influence of axial
motion has to be removed prior to averaging [18].
Axial motion introduces a proportional phase shift in the complex signals (Fig. 9(a)). This

phase shift has been extensively exploited for velocity measurements in Doppler OCT, for
displacement measurements in OCT elastography and, recently most prominently, for some OCT
angiography approaches [32–36]. The phase shift of an OCT signal is proportional to 2k∆z
where k = 2π/λ is the central wavenumber and ∆z is the axial displacement between successive
measurements. When N complex signals with displacements ∆zj relative to the first signal are
averaged in a complex fashion, the resulting relative signal reduction corresponds to the penalty
factor P(N):

P(N) =
1
N

������ N∑
j=1

ei2πWj

������ (37)

where Wj = 2∆zj/λ denotes the displacement of the j-th signal in terms of wavelengths. In case
of constant axial motion, the displacement will increase by (j − 1)∆z for the j-th signal compared
to the first signal. The penalty factor P(N) when averaging N signals with relative separation
Wj = W is

P(N,W) =
1
N

������ N∑
j=1

ei2πWj
����= 1

N

���� sin[πW(N + 1)]
sin[πW]

eiπNW − 1

������ . (38)

Examples for the relative signal intensity decrease due to P(N,W) are shown in Fig. 9(b). For
large W, the upper limit of the rectified sinc-like decrease is given by 1/N.

Compensation of axial motion In order to remove the detrimental effect of axial motion
and thus to fully exploit the SNR advantage of complex averaging, the phases φj of the signals to
be averaged have to be aligned. Ju et al. proposed two approaches: one compensating phase
offsets A-line-wise and another one compensating phase offsets in a pixel-wise fashion [18].
Assuming a constant "bulk" displacement of the simultaneously acquired signals within one
A-scan, the bulk phase shift ∆φbulk between the m-th A-line in a reference frame (ref ) and the
corresponding m-th A-scan in other frames to be averaged can be calculated by computing the
angle of the weighted complex signal average along every A-scan:

∆φ
(m)
bulk = arg

[zmax∑
z=z0

(
Aj

m(z)eiφj
m(z)

) (
Aref

m (z)eiφref
m (z)

)∗]
=

= arg

[zmax∑
z=z0

Aj
m(z)A

ref
m (z)ei[φj

m(z)−φ
ref
m (z)]

] (39)

where m, j, and ∗ denote the A-scan index, the B-scan index and the conjugate complex,
respectively, while z0 and zmax are the axial depth limits. By subtracting the bulk phase shift
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Fig. 9. Phasor rotation by axial motion and signal penalty after complex averaging of axially
displaced signals. (a) Example of a signal phasor trajectory of 1000 repeated measurements
of a weak reflector (an attenuated glass surface). Over 1/70 second, the phasor (blue dots) is
markedly moving around the origin. Corresponding noise signals are shown as red dots. The
main source of displacement in this measurement was air flow from a nearby air condition
outlet. (b) Relative signal intensity decrease caused by complex averaging of N signals
with relative displacements W of 0.5 (solid line), 0.05 (dashed line), and 0.005 (dotted
line). For reference, 1/N is plotted as well. While relative displacements of λ/200 (W =
0.005) between consecutive signals almost do not affect the intensity of the averaged signal,
greater displacements such as λ/20 and λ/2 cause a periodic, significant signal reduction. In
unlucky cases, P(N,W) reaches zero such that the averaged signal is completely annihilated.

vector∆φ(m)bulk from the phases of every transverse line of the OCT image, an axial motion corrected
(moco) image is generated:

S(moco)
OCT (x, z) = Aj

m(x, z) exp
[
i(φj

m(x, z) − ∆φ
(m)
bulk)

]
. (40)

The assumption that displacements are constant along the depth profile does however not hold for
all samples. In particular live biological samples are subject to dynamic deformations, which may
for instance be caused by pulsating blood vessels. Hence, in another complex image averaging
approach, all complex signals of one reference B-scan serve as a 2D baseline image S(ref )

OCT (x, z)
[18]. The phasors in all pixel locations (x, z) of the subsequent frames are then aligned with
respect to those in the reference frame by multiplying them to the conjugate complex of S(ref )

OCT (x, z)
in an amplitude weighted manner,

S(j,moco)
OCT (x, z) =

√
Aj(x, z)Aref (x, z) exp

[
i
(
φj(x, z) − φref (x, z)

) ]
. (41)

Since Eq. (41) does not only align phasors at signal locations but also all noise phasors, complex
averaging of S(j,moco)

OCT (x, z) essentially corresponds to magnitude averaging. This detriment can be
overcome by locally averaging the phase difference values ∆φj(x, z) = φj(x, z) − φref (x, z) prior to
phase balancing and complex averaging. For this purpose, the phase differences ∆φj(x, z) are
first calculated between the j-th frame and the reference frame. In order to minimize the number
of phase wraps in presence of strong axial motion differences, we choose the central frame as
a reference. Second, the j-th phase difference B-scan is averaged using the respective phasors
within a small kernel which may, for instance, be rectangular:

∆φj(x, z) = arg


x+∆x/2∑
x=x−∆x/2

z+∆z/2∑
z=z−∆z/2

Aj(x, z)Aref (x, z) exp
[
i∆φj(x, z)

] . (42)
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Ideally, the kernel size (∆x,∆z) is chosen large enough to include at least a few speckles but small
enough to only cover a patch of similar axial motion. The PDF of the averaged phase difference
∆φj(x, z) centered at zero can be derived from Eq. (2) by performing a variable transform to polar
coordinates and then integrating the PDF over the amplitude space [47], whereby σ∆φ =

√
2σ is

used for the standard deviation:

p∆φ(∆φ,A) =
1
2π

exp

[
−

A2

4σ2
∆φ

]
+

+
A

√
4πσ∆φ

cos∆φ exp

[
−

A2 sin2 ∆φ
4σ2
∆φ

]
erf

[
A

√
2σ∆φ

cos∆φ

] (43)

where erf(u) = 1√
2π

∫ u
−∞

exp
[
−v2/2

]
dv denotes the Gaussian error function. With increasing

A/σ∆φ , the distribution p∆φ becomes more narrow and converges towards a δ-function at ∆φ = 0
[22,47]. For ∆φ , 0, the maximum of the distribution is located at the respective expectancy
value for the phase difference. In absence of a signal A, the somewhat complicated PDF p∆φ
reduces drastically and becomes a uniform distribution on (−π, π),

p∆φ(∆φ,A = 0) =
1
2π

. (44)

Hence, the averaging process in Eq. (42) provides an estimate of the localized phase shift ∆φ
with improved precision in case signal pixels are included within the averaging kernel (∆x,∆z)
but delivers a random ∆φ if the kernel only includes noise.
If now, in a third step, the locally averaged phase difference map (Eq. (42)) is used to correct

the phasors of the j-th frame with respect to the reference frame,

S(j,moco)
OCT (x, z) =

√
Aj(x, z)Aref (x, z) exp

[
i
(
φj(x, z) − ∆φj(x, z)

)]
, (45)

the phasors will only be aligned for signals but will retain their random character for noise regions.
By averaging N such axial motion balanced frames, the full potential of complex averaging can
be tapped without suffering from signal reduction due to local displacement differences.

Funding

Austrian Science Fund (P25823-B24, P26553-N20); H2020 European Research Council (ERC
Starting Grant 640396 OPTIMALZ).

Acknowledgements

The authors would like to acknowledge fruitful discussions with Antonia Lichtenegger, Danielle
J. Harper, Pablo Eugui, Laurin Ginner, and Florian Beer. We would like to express our particular
gratitude to Stanislava Fialova for her contributions to the imaging system and eye phantom. We
also acknowledge the thoughtful feedback and inputs provided by the anonymous reviewers.

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References
1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A.

Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
2. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today:

speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).

https://doi.org/10.1126/science.1957169
https://doi.org/10.1117/1.JBO.19.7.071412


Research Article Vol. 10, No. 11 / 1 November 2019 / Biomedical Optics Express 5774

3. T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Express 8(2), 828–859
(2017).

4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence
tomography,” Opt. Express 11(8), 889–894 (2003).

5. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain
optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).

6. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in
spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).

7. A. Sakamoto, M. Hangai, and N. Yoshimura, “Spectral-Domain Optical Coherence Tomography with Multiple
B-Scan Averaging for Enhanced Imaging of Retinal Diseases,” Ophthalmology 115(6), 1071–1078.e7 (2008).

8. P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in
optical coherence tomography images,” Opt. Express 17(2), 733–746 (2009).

9. W. Wu, O. Tan, R. R. Pappuru, H. Duan, and D. Huang, “Assessment of frame-averaging algorithms in OCT image
analysis,” Ophthalmic Surg. Lasers Imag. Retin. 44(2), 168–175 (2013).

10. C.-L. Chen, H. Ishikawa, G. Wollstein, R. A. Bilonick, L. Kagemann, and J. S. Schuman, “Virtual Averaging Making
Nonframe-Averaged Optical Coherence Tomography Images Comparable to Frame-Averaged Images,” Trans. Vis.
Sci. Tech. 5(1), 1 (2016).

11. D. Xu, N. Vaswani, Y. Huang, and J. U. Kang, “Modified compressive sensing optical coherence tomography with
noise reduction,” Opt. Lett. 37(20), 4209–4211 (2012).

12. M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C.
K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography
by retinal tracking,” Biomed. Opt. Express 5(1), 106–122 (2014).

13. H. Zhang, Z. Li, X. Wang, and X. Zhang, “Speckle reduction in optical coherence tomography by two-step image
registration,” J. Biomed. Opt. 20(3), 036013 (2015).

14. A. C. Chan, K. Kurokawa, S. Makita, M. Miura, and Y. Yasuno, “Maximum a posteriori estimator for high-contrast
image composition of optical coherence tomography,” Opt. Lett. 41(2), 321–324 (2016).

15. B. Tan, A. Wong, and K. Bizheva, “Enhancement of morphological and vascular features in OCT images using a
modified Bayesian residual transform,” Biomed. Opt. Express 9(5), 2394–2406 (2018).

16. P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence
tomography,” Meas. Sci. Technol. 18(11), 3365–3372 (2007).

17. J. W. Jacobs and S. J. Matcher, “Digital phase stabilization for improving sensitivity and degree of polarization
accuracy in polarization sensitive optical coherence tomography,” Proc. SPIE 7889, 788938 (2011).

18. M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced
multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt.
Express 21(16), 19412–19436 (2013).

19. T. Pfeiffer, W. Wieser, T. Klein, M. Petermann, J. P. Kolb, M. Eibl, and R. Huber, “Flexible A-scan rate MHz OCT:
computational downscaling by coherent averaging,” Proc. SPIE 9697, 96970S (2016).

20. L. Thrane, S. Gu, B. J. Blackburn, K. V. Damodaran, A. M. Rollins, and M. W. Jenkins, “Complex decorrelation
averaging in optical coherence tomography: a way to reduce the effect of multiple scattering and improve image
contrast in a dynamic scattering medium,” Opt. Lett. 42(14), 2738–2741 (2017).

21. M. Szkulmowski and M. Wojtkowski, “Averaging techniques for OCT imaging,” Opt. Express 21(8), 9757–9773
(2013).

22. J. W. Goodman, Statistical Optics (John Wiley & Sons, 2000).
23. P. Beckmann, “Statistical distribution of the amplitude and phase of a multiply scattered field,” J. Res. Natl. Bur.

Stand. (U. S.) 66D(3), 231–240 (1962).
24. A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of

optical coherence tomography systems,” Biomed. Opt. Express 8(2), 902–917 (2017).
25. X. Zhu, Y. Liang, Y. Mao, Y. Jia, Y. Liu, and G. Mu, “Analyses and calculations of noise in optical coherence

tomography systems,” Front. Optoelectron. China 1(3-4), 247–257 (2008).
26. J. Izatt and M. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography - Technology

and Applications, (2008), pp. 47–72.
27. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction

of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
28. M. Sugita, A. Weatherbee, K. Bizheva, I. Popov, and A. Vitkin, “Analysis of scattering statistics and governing

distribution functions in optical coherence tomography,” Biomed. Opt. Express 7(7), 2551–2564 (2016).
29. D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new

quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
30. A. Lozzi, A. Agrawal, A. Boretsky, C. G. Welle, and D. X. Hammer, “Image quality metrics for optical coherence

angiography,” Biomed. Opt. Express 6(7), 2435–2447 (2015).
31. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence

tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
32. S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics

8(4), 279–302 (2015).

https://doi.org/10.1364/BOE.8.000828
https://doi.org/10.1364/OE.11.000889
https://doi.org/10.1364/OE.11.002183
https://doi.org/10.1364/OL.28.002067
https://doi.org/10.1016/j.ophtha.2007.09.001
https://doi.org/10.1364/OE.17.000733
https://doi.org/10.3928/23258160-20130313-09
https://doi.org/10.1167/tvst.5.1.1
https://doi.org/10.1167/tvst.5.1.1
https://doi.org/10.1364/OL.37.004209
https://doi.org/10.1364/BOE.5.000106
https://doi.org/10.1117/1.JBO.20.3.036013
https://doi.org/10.1364/OL.41.000321
https://doi.org/10.1364/BOE.9.002394
https://doi.org/10.1088/0957-0233/18/11/016
https://doi.org/10.1117/12.874509
https://doi.org/10.1364/OE.21.019412
https://doi.org/10.1364/OE.21.019412
https://doi.org/10.1117/12.2214788
https://doi.org/10.1364/OL.42.002738
https://doi.org/10.1364/OE.21.009757
https://doi.org/10.6028/jres.066D.027
https://doi.org/10.6028/jres.066D.027
https://doi.org/10.1364/BOE.8.000902
https://doi.org/10.1007/s12200-008-0034-0
https://doi.org/10.1364/OE.20.001337
https://doi.org/10.1364/BOE.7.002551
https://doi.org/10.1136/bjo.2004.059824
https://doi.org/10.1364/BOE.6.002435
https://doi.org/10.1364/OL.27.001415
https://doi.org/10.1002/jbio.201400108


Research Article Vol. 10, No. 11 / 1 November 2019 / Biomedical Optics Express 5775

33. S. Makita, K. Kurokawa, Y.-J. Hong, M. Miura, and Y. Yasuno, “Noise-immune complex correlation for optical
coherence angiography based on standard and Jones matrix optical coherence tomography,” Biomed. Opt. Express
7(4), 1525–1548 (2016).

34. K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],”
Biomed. Opt. Express 8(2), 1172–1202 (2017).

35. J. Xu, S. Song, Y. Li, and R. K Wang, “Complex-based OCT angiography algorithm recovers microvascular
information better than amplitude- or phase-based algorithms in phase-stable systems,” Phys. Med. Biol. 63(1),
015023 (2017).

36. B. Braaf, S. Donner, A. S. Nam, B. E. Bouma, and B. J. Vakoc, “Complex differential variance angiography with
noise-bias correction for optical coherence tomography of the retina,” Biomed. Opt. Express 9(2), 486–506 (2018).

37. S. Nadarajah, “A review of results on sums of random variables,” Acta Appl. Math. 103(2), 131–140 (2008).
38. S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B.

Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high
resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).

39. S. Makita, Y.-J. Hong, M. Miura, and Y. Yasuno, “Degree of polarization uniformity with high noise immunity using
polarization-sensitive optical coherence tomography,” Opt. Lett. 39(24), 6783–6786 (2014).

40. B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K.
Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed.
Opt. 23(08), 1 (2018).

41. Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging ganglion cells in the living human retina,” Proc.
Nat. Acad. Sci. 114(48), 12803–12808 (2017).

42. J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A.-H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J.
G. Fujimoto, “Enhanced Vitreous Imaging in Healthy Eyes Using Swept Source Optical Coherence Tomography,”
PLoS One 9(7), e102950 (2014).

43. C. Blatter, E. F. J. Meijer, A. S. Nam, D. Jones, B. E. Bouma, T. P. Padera, and B. J. Vakoc, “In vivo label-free
measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography,” Sci.
Rep. 6(1), 29035 (2016).

44. M. Almasian, T. G. van Leeuwen, and D. J. Faber, “OCT amplitude and speckle statistics of discrete random media,”
Sci. Rep. 7(1), 14873 (2017).

45. T. B. Dubose, D. Cunefare, E. Cole, P. Milanfar, J. A. Izatt, and S. Farsiu, “Statistical models of signal and noise and
fundamental limits of segmentation accuracy in retinal optical coherence tomography,” IEEE Trans. Med. Imaging
37(9), 1978–1988 (2018).

46. M. Sugita, R. A. Brown, I. Popov, and A. Vitkin, “K-distribution three-dimensional mapping of biological tissues in
optical coherence tomography,” J. Biophotonics 11(3), e201700055 (2018).

47. W. C. van Etten, Introduction to Random Signals and Noise (John Wiley & Sons, 2005).
48. Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement

of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt.
Express 2(8), 2392–2402 (2011).

https://doi.org/10.1364/BOE.7.001525
https://doi.org/10.1364/BOE.8.001172
https://doi.org/10.1088/1361-6560/aa94bc
https://doi.org/10.1364/BOE.9.000486
https://doi.org/10.1007/s10440-008-9224-4
https://doi.org/10.1364/BOE.7.001479
https://doi.org/10.1364/OL.39.006783
https://doi.org/10.1117/1.JBO.23.8.086005
https://doi.org/10.1117/1.JBO.23.8.086005
https://doi.org/10.1073/pnas.1711734114
https://doi.org/10.1073/pnas.1711734114
https://doi.org/10.1371/journal.pone.0102950
https://doi.org/10.1038/srep29035
https://doi.org/10.1038/srep29035
https://doi.org/10.1038/s41598-017-14115-3
https://doi.org/10.1109/TMI.2017.2772963
https://doi.org/10.1002/jbio.201700055
https://doi.org/10.1364/BOE.2.002392
https://doi.org/10.1364/BOE.2.002392

