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Abstract

Benign epilepsy with centrotemporal spikes (BECT) is the most common childhood idio-

pathic focal epilepsy syndrome, which characterized with white-matter abnormalities in

the rolandic cortex. Although diffusion tensor imaging research could characterize white-

matter structural architecture, it cannot detect neural activity or white-matter functions.

Recent studies demonstrated the functional organization of white-matter by using func-

tional magnetic resonance imaging (fMRI), suggesting that it is feasible to investigate

white-matter dysfunctions in BECT. Resting-state fMRI data were collected from

24 new-onset drug-naive (unmedicated [NMED]), 21 medicated (MED) BECT patients,

and 27 healthy controls (HC). Several white-matter functional networks were obtained

using a clustering analysis on voxel-by-voxel correlation profiles. Subsequently, conven-

tional functional connectivity (FC) was calculated in four frequency sub-bands (Slow-

5:0.01–0.027, Slow-4:0.027–0.073, Slow-3:0.073–0.198, and Slow-2:0.198–0.25 Hz).

We also employed a functional covariance connectivity (FCC) to estimate the covariant

relationship between two white-matter networks based on their correlations with multi-

ple gray-matter regions. Compared with HC, the NMED showed increased FC and/or

FCC in rolandic network (RN) and precentral/postcentral network, and decreased FC

and/or FCC in dorsal frontal network, while these alterations were not observed in the

MED group. Moreover, the changes exhibited frequency-specific properties. Specifically,

only two alterations were shared in at least two frequency bands. Most of these alter-

ations were observed in the frequency bands of Slow-3 and Slow-4. This study provided

further support on the existence of white-matter functional networks which exhibited

frequency-specific properties, and extended abnormalities of rolandic area from the per-

spective of white-matter dysfunction in BECT.
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1 | INTRODUCTION

As the most common childhood idiopathic focal epilepsy syndrome,

benign epilepsy with centrotemporal spikes (BECT) is characterized

with the nocturnal epileptiform spikes arising from the rolandic orYuchao Jiang, Li Song, Xuan Li, and Yaodan Zhang contributed equally to this study.
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sensorimotor cortex. Although the epileptogenic zone of rolandic

spikes originates from the rolandic cortex surrounding the central fis-

sure, it can also lead to disturbances of the cortical and subcortical cir-

cuitry (Bouma, Bovenkerk, Westendorp, & Brouwer, 1997; Cao et al.,

2017). As the white matter is the structural basis of the conduction of

rolandic spikes, it can be hypothesized that the rolandic spikes also

damaged the white matter. Recently, Ciumas et al. (2014) demon-

strated aberrant white-matter microstructure in the precentral and

postcentral gyri using the diffusion tensor imaging (DTI). Cao et al.

(2017) indicated reduced white-matter integrity between the corpus

callosum and primary sensorimotor cortex in BECT. These neuroimag-

ing studies provided evidence of structural abnormalities in the white

matter to support this hypothesis. However, they failed to uncovered

dysfunction of the white matter and functional relationship between

white-matter networks in BECT.

To date, DTI has been widely used to characterize the structural

architecture of the white matter; however, it is unsuitable for the

detection of the neural activity and brain functions inside the white

matter. Functional magnetic resonance imaging (fMRI) based on blood

oxygen level-dependent (BOLD) signals is an effective technique to

uncover the neural activity and relevant functions of the gray matter

in neuropsychology and clinical neurological diseases (Chen, Liu, et al.,

2017; Dong et al., 2018; Duan et al., 2015; Jia et al., 2018; Zhong

et al., 2018). Recently, greater attention focused on the detection of

neural activation and functional organization in the white matter by

using the fMRI (Ding et al., 2018; Fabri & Polonara, 2013; Fabri,

Polonara, Mascioli, Salvolini, & Manzoni, 2011; Gawryluk, Mazerolle,

Brewer, Beyea, & D'Arcy, 2011; Gawryluk, Mazerolle, & D'Arcy, 2014;

Jiang, Luo, Li, Li, et al., 2018; Marussich, Lu, Wen, & Liu, 2017; Peer,

Nitzan, Bick, Levin, & Arzyt, 2017). For example, the white-matter

functional activation has been observed in multiple tasks including

perceptual, language, and motor tasks (Fabri et al., 2011; Fabri &

Polonara, 2013; Gawryluk et al., 2011; Gawryluk et al., 2014). Ding

et al.'s (2018) studies indicated that the white matter is involved in

neural coding and information processing. Marussich et al. (2017)

demonstrated that fMRI signals in the white matter contained func-

tional information related to brain activity and connectivity at resting

state. Peer et al. (2017) uncovered the intrinsic functional organization

in the white matter. These studies provided accumulated evidence for

the existence of functional brain activity in the white matter. Further-

more, a recent study found that the functional connectivity (FC) in the

white matter is associated with the underlying pathological mecha-

nisms in schizophrenia (Jiang, Luo, Li, Li, et al., 2018) and Parkinson's

disease (Ji et al., 2019). These studies suggested that it is feasible to

investigate the white-matter dysfunctions in BECT by fMRI.

Although previous research demonstrated the existence of white-

matter functional networks and verified their reliability and reproducibility

(Ding et al., 2018; Gawryluk et al., 2014; Ji, Liao, Chen, Zhang, & Wang,

2017; Marussich et al., 2017; Peer et al., 2017), it may not be sufficient to

fully characterize the white-matter FC. First, the frequency band effect

on white-matter FC remained unclear. Previous studies have demon-

strated that traditional full frequency band (0–0.25 Hz) could be sub-

divided into several bands, and distinct frequency bands may reflect

differential physiological properties and specific-disorder alterations (Cha,

Zatorre, & Schonwiesner, 2016; Duan et al., 2017; Palva & Palva, 2012).

Second, the interactions between gray-matter and white-matter networks

have not been fully characterized. Because different gray-matter areas

are structurally connected by white-matter networks, suggesting that the

relationship between gray matter and white matter may be a multilevel

network architecture (Jiang, Luo, Li, Li, et al., 2018; Zhang et al., 2011).

Thus, except the traditional FC which measures the direct temporal syn-

chronism between two white-matter networks, this study also employed

a novel method of functional covariance connectivity (FCC) to estimate

the covariant relationship between two white-matter networks based on

their correlations with multiple gray-matter regions. We hypothesized

that the FCC can capture a complex information interactions white-

matter and gray-matter regions. Finally, many neurological disorders

including epilepsy, Parkinson's, and Alzheimer's diseases are characterized

by white-matter impairments (Bohnen & Albin, 2011; Caso et al., 2015;

Xue et al., 2014). Thus, investigation of the white-matter functional net-

works in brain disorders may contribute to understanding the pathological

mechanism and white-matter functions.

In this study, resting-state fMRI data were collected from 24 new-

onset drug-naive (unmedicated [NMED]), 21 medicated (MED) BECT

patients, and 27 healthy controls (HC). First, based on voxel-by-voxel

correlation patterns, an identified clustering analysis was performed

within the white matter to obtain several white-matter functional net-

works. Second, we subdivided the full frequency range into four

bands according to previously defined. Subsequently, the traditional

FC and FCC were calculated in each frequency band. Finally, by sepa-

rate comparisons of the white-matter FC among the three groups, we

linked the functional disturbances of white matter with the pathologi-

cal mechanism in BECT.

2 | METHODS

2.1 | Participants

In this study, 24 unmedicated patients with BECT (NMED group,

10 females and 14 males; age: 9.40 ± 2.02 years) were newly diag-

nosed and did not receive antiepileptic drugs. Twenty-one MED

patients with BECT (MED group, 9 females and 12 males; age:

9.64 ± 1.76 years) received monotherapy with valproic acid or

levetiracetam. All patients were recruited from the department of the

Affiliated Hospital of North Sichuan Medical College (from June 2012

to June 2016). The inclusion criteria included: (a) diagnosis as BECT

according to the criteria of the International League Against Epilepsy

(Engel and International League Against Epilepsy, 2001) by pediatric

epileptologists; (b) without other neurologic psychological disorders;

(c) no developmental disabilities; (d) normal routine brain MRI scans.

Routine clinical EEG recordings were obtained for all patients. Left-

sided spikes were observed in 15 patients (six MED and nine NMED),

right-sided spikes were observed in 11 patients (seven MED and four

NMED), and bilateral spikes were observed in 19 patients (8 MED and

11 NMED). A sample of 27 healthy subjects (HC group, 10 females

and 17 males; age: 10.00 ± 3.74 years) were also included in this
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study as a control group. All the healthy subjects confirmed that they

had no history of psychiatric and/or neurological disorders. There

were no significant differences in the age and gender among the three

groups (Table 1). The participant's information were obtained from

subjects and her/his parents. The study was reviewed and approved

by the Ethics Committee of the Affiliated Hospital of North Sichuan

Medical College, and written informed consent was obtained from all

the subjects. Then, 21 of the 45 BECT patients have been previously

reported in a prior article which examined FC between two intrinsic

gray-matter networks of default mode network and task positive net-

work (Luo et al., 2016). And 43 of the 45 BECT patients have been

previously reported in a prior article which investigated the asymme-

try measured by interhemispheric gray-matter functional connection

(Cao et al., 2017). Other than these previous articles, the current

study focused on white-matter dysfunctions measured by a novel

methodology.

2.2 | Image acquisition

Imaging data were collected using a 3-Tesla MRI scanner (GE DISCOVERY

MR750) with an eight-channel standard whole head coil. High-resolution

T1-weighted images were obtained by using a three-dimensional fast

spoiled gradient-echo sequence. The scanning parameters included: repeti-

tion time (TR) = 6.008 ms; echo time (TE) = 1.984 ms; flip angle

(FA) = 90�; field of view (FOV) = 25.6 × 25.6 cm2; matrix size = 256 ×

256; and slice thickness = 1 mm (no gap). Resting-state functional data

were obtained by using a gradient-echo echo-planar imaging sequence.

The main scanning parameters were as follows: TR = 2 s; TE = 30 ms;

FA = 90�; FOV = 24 × 24 cm2; matrix size = 64 × 64; slice thickness =

4 mm (no gap); slice number = 35; and scanning time lasting 410 s

(205 volumes). During scanning, participants were instructed to close

eyes without falling asleep. After scanning, all the subjects confirmed

that they did not fall asleep during scans.

2.3 | Data preprocessing

Similar with our previous study (Jiang, Luo, Li, Li, et al., 2018), the

fMRI preprocessing steps included as follows: (a) the first five volumes

were discarded, (b) slice-time correction, (c) realignment. Subjects with

maximum motion >2 mm or 2� were excluded, (d) linear detrending,

(e) regress out the nuisance signal (including 24-parameter motion

correction and the mean cerebrospinal fluid [CSF] signals), and (f) tem-

porally scrubbing the motion “spikes.” The temporal scrubbing was

performed by using a linear regression model with motion “spike” as

separate regressor. The motion “spikes” were defined as the time

points with a high framewise displacement (FD) > 1. (g) To avoid the

mixture of the white-matter and gray-matter signals, spatially smooth-

ing (full width at half maximum (FWHM) = 4 mm) was performed sepa-

rately within the white-matter or gray-matter masks. In detail, the

individual T1 images were segmented into white matter, gray matter,

and CSF in native space. The resulting T1 segmentation images were

coregistered to the functional space for each participant for the identifi-

cation of white-matter or gray-matter masks (the threshold was set at

0.5). The individual functional images were smoothed (FWHM = 4 mm)

separately within the two masks. (h) Normalization to the standard MNI

template. Preprocessing was conducted within the toolkits of the

SPM12 (www.fil.ion.ucl.ac.uk/spm) and DPABI (http://rfmri.org/dpabi).

As FC is sensitive to head motion, we analyzed the group-level head-

motion differences among the three groups using analysis of variance

(ANOVA). Seven indices (x, y, and z mean translation and rotation and

mean FD) were used to measure the head motion. Results showed no

differences of head motion among three groups.

2.4 | Clustering analysis on the fMRI data to obtain
the white-matter networks

The clustering strategy refers to our previous study and had three

steps (Jiang, Luo, Li, Li, et al., 2018) (Figure 1a).

The first step was to obtain an unified group-level white-matter mask

based on high-resolution T1-weighted images. In detail: (a) for each sub-

ject, the T1-weighted image was segmented into white matter, gray mat-

ter, and CSF, and then normalized to the MNI template. (b) For each

voxel, it was identified as white matter, gray matter, or CSF according to

its maximum probability from above segmentation results. This gener-

ated three masks of white matter, gray matter, and CSF for each subject.

(c) We averaged these masks across all the subjects, and thus obtained a

percentage of subjects that were classified as white matter or gray mat-

ter. A threshold of percentage >60% was used to identify a group-level

white-matter mask. (d) The subcortical areas of thalamus, putamen,

globus pallidus, caudate, and accumbens from the Harvard–Oxford Atlas

TABLE 1 Demographic and clinical information of subjects

NMED BECT (N = 24) MED BECT (N = 21) HC (N = 27) p-Value

Gender (female/male) 10/14 9/12 10/17 0.922a

Age (year) 9.40 ± 2.02 9.64 ± 1.76 10.00 ± 3.74 0.732b

Age at onset (year) 8.81 ± 1.88 8.04 ± 2.10 – 0.203c

Epilepsy duration (month) 8.33 ± 9.47 21.14 ± 12.01 – <0.001c

Abbreviations: ANOVA, analysis of variance; BECT, benign epilepsy with centrotemporal spikes; HC, healthy control; MED, medicated; NMED,

unmedicated.
aChi-square test.
bANOVA.
cTwo-sample t test.
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(threshold = 25%) were removed from the group-level white-matter

mask to further correct the deep brain structures (Lorio et al., 2016; Peer

et al., 2017; Wonderlick et al., 2009). (e) Finally, the group-level white-

matter mask was coregistered to the functional space and resampled a

same voxel size with fMRI images. This white-matter mask consisted of

17,716 voxels. In addition, a gray-matter mask was also obtained using

the same procedures. There was no overlapped area between white-

matter mask and gray-matter mask.

The second step applied the K-means clustering algorithm to

obtain white-matter spatial networks. (a) To reduce the computational

complexity, the 17,716 voxels within the white matter were

subsampled to 4,426 nodes based on an interchanging grid strategy

(Craddock, James, Holtzheimer, Hu, & Mayberg, 2012). (b) For each

subject, the Pearson's correlation coefficient between each voxel and

each node was calculated, and this resulted in an 17,716 × 4,426 cor-

relation matrix. (c) These correlation matrices were averaged across all

the subjects. (d) A K-means clustering analysis (distance metric corre-

lation, 10 replicates) was performed on the averaged correlation

matrix. This step clustered all the white-matter voxels into K-

independent spatial networks.

The third step is used to evaluate the stability of the K (the num-

ber of clusters). (a) We randomly divided the averaged connectivity

F IGURE 1 Framework of white-matter functional network clustering analysis (a). First, the raw T1 was segmented into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF), and then normalized to the MNI space. The subject-level GM, WM masks were obtained based
on maximum probability of each voxel and subsequently averaged to identify a group-level WM mask. Second, raw fMRI were preprocessed, and
time series of 17,716 voxels were extracted from WM mask. Third, 17,716 voxels were subsampled to 4,426 nodes to reduce computational
complexity. Pearson's correlation coefficient between each voxel and each node was calculated, and this resulted in a 17,716 × 4,426 correlation
matrix for each subject. A K-means clustering analysis (distance metric correlation, 10 replicates) was performed on the averaged correlation
matrix across all subjects. Finally, we randomly divided the averaged connectivity matrix (17,716 × 4,426) into four folds (17,716 × 1,106). The
same clustering computation was performed on each fold separately. This resulted in four clustering results. By measuring the similarity of the
clustering results between any two folds using Dice's coefficient, the stability of clusters were evaluated. (b) Calculation of functional covariance
connectivity (FCC). Based on the idea of “correlation of correlations,” FCC was used to estimate the covariant relationship between two WM
networks based on their correlations with multiple GM regions [Color figure can be viewed at wileyonlinelibrary.com]
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matrix (17,716 × 4,426) into four folds (17,716 × 1,106). (b) The same

clustering computation was performed on each fold separately. This

resulted in four clustering results. (c) To measure the similarity of the

clustering results between any two folds, an adjacency matrix was cal-

culated for each clustering result from each fold, and these adjacency

matrices were then compared using Dice's coefficient. The averaged

Dice's coefficient was used to evaluate the stability of clusters.

(d) Multiple K (the numbers of clusters ranged from 2 to 22) was con-

sidered in this study. For each K, the clustering computation was per-

formed separately and obtained a Dice's coefficient to reflect its

stability.

2.5 | Decomposing the BOLD time series in different
frequency bands

Previous studies have shown that the low frequency range could be

subdivided into several bands and specific frequency bands may carry

specific properties or physiological functions (Cha et al., 2016; Duan

et al., 2017; Palva & Palva, 2012). Here, we subdivided the low fre-

quency range into four bands according to previously defined

(Buzsaki & Draguhn, 2004; Zuo et al., 2010): Slow-5 (0.01–0.027 Hz),

Slow-4 (0.027–0.073 Hz), Slow-3 (0.073–0.198 Hz), and Slow-2

(0.198–0.25 Hz). In addition, we also examined the full frequency

range (0–0.25 Hz).

2.6 | FC of white-matter networks

Conventional FC was used to measure the relationship between two

white-matter networks. For each subject, the Pearson's correlation

coefficient between the average time courses of any two white-

matter networks was computed and transformed to the Fisher

z score.

In addition, we employed an FCC method, which is based on the

idea of “correlation of correlations,” to estimate the covariant relation-

ship between two white-matter networks based on their correlations

with multiple gray-matter regions. First, gray-matter regions (n = 96)

were defined according to the Harvard–Oxford gray-matter atlas

(Desikan et al., 2006). The gray-matter mask was used as a restriction

for gray-matter voxels. Only the time series within the inter-

section between gray-matter mask and Harvard–Oxford atlas were

extracted. Second, the Pearson's correlations were calculated

between each white-matter network and each gray-matter region,

and this obtained a K × 96 correlation matrix (K is the number of

white-matter networks). Third, the FCC was estimated between any

two white-matter networks, and this generated a K × K FCC matrix.

The FCCij is defined as follows:

FCCij = corr FCi,FCj

� �

where FCi represents the vector of FC values between the white-

matter network i and all 96 gray-matter regions; FCj is the vector of

FC values between the white-matter network j and all 96 gray-matter

regions; and FCCij is the Pearson's correlation between FCi and FCj.

The FCC value was further transformed to the Fisher z score. A flow-

chart of FCC calculation is shown in Figure 1b.

In addition, the differences between FCC and FC may be several

points. First, a fundamental difference may come from its definition.

Since FCC is the correlation of FC profiles, it may magnify the subtle

differences, and contribute to the distinction between healthy and

diseases (Zhao, Zhang, Rekik, An, & Shen, 2018). Second, the FC is the

correlation between BOLD signals of two regions, so it could only

reflect information from two limited regions (i.e., one-to-one informa-

tion flow). In contrast, by integrating the information from many

regions, the FCC carries complex information interaction (i.e., one-to-

many-to-one information flow). Third, since FCC is calculated indi-

rectly rather than directly using BOLD time series, FCC may be not

easily altered by noise and artifacts (Zhang et al., 2016). Because in

FCC calculation, this noise contaminated FC may be only one element

of the FC profiles. In spite of these advantages of FCC, we also recog-

nized that FC is one of the most useful methods for fMRI studies. We

considered that FCC and FC are complementary and contributed to

the interpretation in fMRI studies. In this study, for each subject and

each frequency band, both FC and FCC were calculated and used for

the following statistical analysis.

2.7 | Statistical analysis

One-sample t tests were first performed to determine the significant

FC and FCC for each group and each frequency band. The Bonferroni

correction was used for the multiple comparisons correction. Subse-

quently, for these significant FC and FCC, ANOVA and post hoc anal-

ysis were used to compare the differences among the NMED, MED,

and HC groups, with the Sidak correction for the multiple compari-

sons correction (Abdi, 2007).

3 | RESULTS

3.1 | White-matter functional networks

In this study, we evaluated the stability of the number of white-matter

networks by the Dice's coefficient. The results showed that the

K = 13 is the largest number with a high stability (Dice's coefficient

>0.85) (Figure 2); thus, 13 white-matter networks were used in subse-

quent analysis. According to the spatial location of network, these

networks could be named as: WM1 (ventral frontal network), WM2

(posterior temporal network), WM3 (corona radiate network), WM4

(dorsal frontal network), WM5 (occipital network), WM6 (anterior

temporal network), WM7 (orbitofrontal network), WM8 (inferior lon-

gitudinal fasciculus network), WM9 (temporoparietal network),

WM10 (cerebellar network), WM11 (posterior corpus callosum net-

work), WM12 (RN), and WM13 (precentral/postcentral network,

PCN) (Figure 2 and Table 2). Interestingly, the WM12 located at the

bilateral superficial white-matter area under the rolandic cortex.

JIANG ET AL. 3117



3.2 | Differences of FC in each frequency band
among NMED, MED, and HC

In the full frequency band, two FCs (WM2–WM12 [F = 6.34,

p = 0.0029] and WM4–WM12 [F = 5.09, p = 0.0086]) showed signif-

icant group effects among the NMED, MED, and HC groups by the

ANOVA (Figure 3a). The post hoc analyses further revealed that

the NMED had a higher FC of the WM2–WM12 than the MED and

the HC group (Figure 3a0). In addition, the NMED exhibited a reduced

FC in the WM4–WM12 than the MED group (Figure 3a0).

In the band Slow-2, no significant group effect was observed by

the ANOVA (Figure 3b).

In the band Slow-3, the ANOVA found two FCs (WM2–WM12

[F = 5.66, p = 0.0053] and WM10–WM12 [F = 7.76, p = 0.00091])

with significant differences among the three groups (Figure 3c). In

detail, an increased FC of WM2–WM12 was observed in the NMED

group compared with the other two groups (Figure 3c0). Additionally,

the MED group showed a decreased FC of the WM10–WM12 than

both groups of the NMED and the HC (Figure 3c0).

In the band Slow-4, significant group effects were observed in the

three FCs of the WM2–WM12 (F = 5.50, p = 0.0061), WM3–WM13

(F = 6.20, p = 0.0033), and WM4–WM12 (F = 5.64, p = 0.0054)

(Figure 3d). The NMED exhibited a higher FC in the WM2–WM12

than the other two groups and a higher FC of the WM3–WM13 than

F IGURE 2 White-matter (WM) functional networks and stability of clustering for different numbers of clusters, measured by Dice's coefficient.
WM1 (ventral frontal network, VFN), WM2 (posterior temporal network, PTN), WM3 (corona radiate network, CRN), WM4 (dorsal frontal network,
DFN), WM5 (occipital network, ON), WM6 (anterior temporal network, ATN), WM7 (orbitofrontal network, OFN), WM8 (inferior longitudinal
fasciculus network, ILFN), WM9 (temporoparietal network, TPN), WM10 (cerebellar network, CN), WM11 (posterior corpus callosum network,
PCCN), WM12 (Rolandic network, RN), andWM13 (precentral/postcentral network, PCN) [Color figure can be viewed at wileyonlinelibrary.com]
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the HC (Figure 3d0). In addition, compared with the NMED and the

HC, the MED showed an enhanced FC in the WM4–WM12

(Figure 3d0).

Finally, in the band Slow-5, only one FC (WM3–WM4 [F = 5.02,

p = 0.0092]) showed a significant group difference (Figure 3e). Com-

pared with the HC, both the NMED and the MED groups showed

reduced FC (Figure 3e0).

3.3 | Differences of FCC in each frequency band
among NMED, MED, and HC

In the full frequency band, the ANOVA indicated the significant group

effects in the three FCCs of the WM2–WM12 [F = 6.35, p = 0.0029];

WM3–WM4 [F = 5.51, p = 0.0060]; and WM8–WM13 [F = 6.26,

p = 0.0032] (Figure 4a). Specifically, post hoc analyses showed that

the NMED had an increased FCC of the WM2–WM12 than the other

two groups (Figure 4a0). In addition, compared with the HC group, the

NMED group exhibited a reduced FCC in the WM3–WM4 and an

enhanced FCC in the WM8–WM13 (Figure 4a0).

In the band Slow-2, only one FCC (WM4–WM7 [F = 5.05,

p = 0.0089]) showed significant difference among the three groups

(Figure 4b). The post hoc analysis manifests that the NMED had a

higher FCC than both groups of the MED and the HC (Figure 4b0).

In the band Slow-3, there were four FCCs (WM2–WM12 [F = 6.41,

p = 0.0028]; WM2–WM13 [F = 5.64, p = 0.0053]; WM3–WM4

[F = 5.82, p = 0.0046]; and WM4–WM12 [F = 6.72, p = 0.0021]) with

significant group effects by the ANOVA (Figure 4c). In detail, compared

with the MED and the HC, the NMED exhibited increased FCCs in the

WM2–WM12 and theWM2–WM13 and a decreased FCC in the WM4–

WM12 (Figure 4c0). Additionally, the NMED showed a reduced FCC of

the WM3–WM4 than the HC group (Figure 4c0).

In the band Slow-4, three FCCs (WM2–WM12 [F = 4.94,

p = 0.0099]; WM3–WM13 [F = 6.39, p = 0.0028]; and WM8–WM13

[F = 6.21, p = 0.0031]) showed significant group differences (Figure 4d).

The post hoc analyses further indicated that the NMED had a higher

FCC of the WM2–WM12 than the MED and increased FCCs in the

WM3–WM13 and theWM8–WM13 than the HC (Figure 4d0).

Finally, in the band Slow-5, only one FCC of the WM3–WM4

(F = 5.45, p = 0.0063) showed a significant group effect (Figure 4e).

The NMED exhibited a reduced FCC than the HC (Figure 4e0).

4 | DISCUSSION

Consistent with previous studies (Jiang, Luo, Li, Li, et al., 2018; Peer

et al., 2017), we obtained spatially independent functional networks

within white matter by using an identified clustering analysis on

resting-state fMRI data. By the evaluation of the FC and FCC in differ-

ent frequency bands and the comparisons among the NMED, MED,

and HC groups, we found that: () compared with the HC, the NMED

showed increased FC and/or FCC in the white-matter RN and PCN,

and decreased FC and/or FCC in the white-matter dorsal frontal net-

work, which normalized in the MED group. (b) These alterations

exhibited frequency-specific properties. Specifically, only two alter-

ations (WM2–WM12 and WM3–WM4) were shared in at least two

frequency bands. Most of these alterations were observed in the

frequency bands of Slow-3 and Slow-4. (c) Consistent findings of dif-

ferences in WM2–WM12, WM3–WM13, WM3–WM4, and WM4–

WM12 were detected by using the FC and FCC. However, the utiliza-

tion of FCC excavated additional changes in the WM8–WM13,

WM4–WM7, and WM2–WM13. In general, these findings provided

further support on the existence of white-matter functional networks,

and extended the understanding of white-matter impairments and

pathological mechanism in BECT.

Previous studies provided both structural and functional evi-

dences of the abnormalities in the rolandic and sensorimotor areas in

BECT. For example, larger cortical gray matter volumes of sensorimo-

tor cortices were observed in children with BECT compared to HC

(Kim et al., 2015; Luo et al., 2015). DTI studies found reduced frac-

tional anisotropy in the bilateral primary sensorimotor regions (Cao

et al., 2017; Ciumas et al., 2014). Resting-state fMRI studies also

reported reduced FC in the Rolandic areas (Luo et al., 2015). Ji, Yu

et al. (2017) found decreased connectivity strength and regional effi-

ciency in the peri-Rolandic areas by applying graph theoretical analysis

on fMRI. Recently, Li et al. (2017) reported decreased functional vari-

ability in the sensorimotor-related circuitry by a dynamic FC analysis.

The current study supported and extended previous findings of the

abnormalities in the rolandic from the perspective of the white-matter

dysfunction. The enhanced FC in the white matter may suggest an

excessive information transmission within the white matter and may

be a possible basis that explains the deficits of the rolandic cortex in

BECT. In addition, we observed a reduced FC in the white-matter dor-

sal frontal network, which may be responsible for the cognitive

impairments emerged in BECT patients (Adebimpe, Bourel-Ponchel, &

Wallois, 2018).

Although previous studies have provided valuable findings on

brain abnormalities in children with BECT, most of these studies rec-

ruited chronic and MED patients with BECT, which may introduce

TABLE 2 White-matter functional networks

Number White-matter network Abbreviation

WM1 Ventral frontal network VFN

WM2 Posterior temporal network PTN

WM3 Corona radiate network CRN

WM4 Dorsal frontal network DFN

WM5 Occipital network ON

WM6 Anterior temporal network ATN

WM7 Orbitofrontal network OFN

WM8 Inferior longitudinal fasciculus network ILFN

WM9 Temporoparietal network TPN

WM10 Cerebellar network CN

WM11 Posterior corpus callosum network PCCN

WM12 Rolandic network RN

WM13 Precentral/postcentral network PCN
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F IGURE 3 Differences of functional connectivity (FC) among the unmedicated benign epilepsy with centrotemporal spikes (NMED BECT), medicated
BECT (MED) and healthy controls (HC), measured by analysis of variance (ANOVA) and post hoc analyses for the (a) full frequency band: 0–0.25 Hz, and
four frequency sub-bands of (b) Slow-2:0.198–0.25 Hz; (c) Slow-3:0.073–0.198 Hz; (d) Slow-4:0.027–0.073 Hz; and (e) Slow-5:0.01–0.027 Hz. The three
under circular graph represents the significant FC in the NMEDBECT,MEDBECT, and HC, measured by one-sample t test. The upper circular graph
represents the differences of FC among the NMED,MED, and HC groups, measured by ANOVA. The post hoc analyses are shown in the (a0–e0) [Color
figure can be viewed at wileyonlinelibrary.com]
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F IGURE 4 Differences of functional covariance connectivity (FCC) among the unmedicated benign epilepsy with centrotemporal spikes
(NMED BECT), medicated BECT (MED), and healthy controls (HC), measured by analysis of variance (ANOVA) and post hoc analyses in the (a) full
frequency band: 0–0.25 Hz, and four frequency sub-bands of (b) Slow-2:0.198–0.25 Hz; (c) Slow-3:0.073–0.198 Hz; (d) Slow-4:0.027–0.073 Hz;
and (e) Slow-5:0.01–0.027 Hz. The three under circular graph represents the significant FC in the NMED BECT, MED BECT, and HC, measured
by one-sample t test. The upper circular graph represents the differences of FC among the NMED, MED, and HC groups, measured by ANOVA.
The post hoc analyses are shown in the (a0–e0) [Color figure can be viewed at wileyonlinelibrary.com]
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confounding factors of antiepileptic treatment or long illness duration.

Previous studies have demonstrated cumulative medication exposure

could significantly affect brain activation and connectivity in both ana-

tomical and functional neuroimaging studies (Datta et al., 2013; Yang

et al., 2012; Yang et al., 2013; Zeng et al., 2015). Hence, investigation

on the new-onset drug-naive NMED patients and MED patients can

provide naive information to the neurobiology of BECT and can also

evaluate the effect of anti-epilepsy drugs. Similar with a previous

study investigating the local regional homogeneity changes in new-

onset versus chronic BECT (Zeng et al., 2015), the current study found

that most changes in the new-onset drug-naive NMED BECT patients

were normalized in the MED group, suggesting that antiepileptic med-

ication may reverse this aberrant connectivity and even reach a nor-

malized level when compared with healthy subjects. However, these

interpretations from cross-sectional findings required further confir-

mation in future longitudinal research.

Frequency-specific functional alterations within gray matter have

been widely observed in cognitive processes and brain diseases

(Martino et al., 2016; Wang et al., 2017; Yu et al., 2014). In the current

study, the frequency effect of the white-matter dysfunction associ-

ated with BECT could be understood from three points. First, the fre-

quency sub-bands contained all of the BECT alterations in the full

frequency band but characterized more differences (Jiang, Luo, Li, Li,

et al., 2018). This suggested that the application of frequency division

could excavate more disease-related functional information within

white matter. Second, most of alterations were not shared across sub-

bands, which implied a frequency-dependent dysfunction connectivity

of brain white matter in each sub-band (Wang et al., 2018). Third,

more differences were observed in the frequency band of Slow-3 and

Slow-4, suggesting a correspondence between specific frequency and

certain disease (Zhao, Tang et al., 2018; Zhou, Huang, Zhuang, Gao, &

Gong, 2017). These inferences still need to be verified in future stud-

ies to elucidate frequency-specific network organization mechanism.

Overall, these frequency-specific findings were consistent with recent

perspective of brain networks had distinctive intrinsic frequency

(Gohel & Biswal, 2015; Siegel, Donner, & Engel, 2012), which provide

a new perspective to decoding complicated brain network from the

way of frequency.

While considerable research has used temporal coupling of BOLD

signals (i.e., FC) to reveal information exchange among brain areas

(Jiang et al., 2017; Jiang, Luo, Gong, Peng, et al., 2018; Zhu et al.,

2018), rich high-order information interactions such as dynamic

(He et al., 2018; Hutchison et al., 2013; Klugah-Brown et al., 2018),

causal (Chen, Jiang, et al., 2017; Jiang, Luo, Li, Duan, et al., 2018), hier-

archical (Smith et al., 2013), and many-to-many (Pessoa, 2014) have

not been fully explored yet. To characterize a complex relationship

between white-matter and gray-matter regions, this study measured

the functional resemblance between any two white-matter networks

based on their connectivity profiles with gray-matter regions. Using

the straightforward approach, we further found new disease-related

alterations such as WM2–WM13, WM8–WM13, and WM4–WM7.

Since FCC focuses on the topographical FC patterns rather than origi-

nal BOLD temporal correlations, potential information could be

revealed (Zhang et al., 2016). This result suggested that the similarity

of the topographical FC profiles may provide effective detection of

additional biomarkers in clinical neuroscience applications.

Several limitations should be considered when interpreted these

findings. First, although it remains unknown about what functional

organization in the white matter represents in terms of physiological

signification (Gawryluk et al., 2014), these findings from white matter

may add an additional route to uncover the brain mechanism in health

and diseases. Second, since the foundations of white-matter fMRI are

unclear, some methodological issues such as head motion, respiration,

and other artifacts should be further addressed in future work. Third,

another shortage of this study includes the relative small sample size

and the difference of the illness duration between two patient groups.

A larger sample is needed to verify the reliability and reproducibility in

the future. Fourth, additional neuropsychological tests are needed to

evaluate the association between the white-matter alterations and

cognitive impairments.

5 | CONCLUSION

This study extended abnormalities of rolandic area from the perspec-

tive of white-matter dysfunction in BECT. The increased white-matter

FC may suggest an excessive information exchange under the rolandic

area and the reduced FC in frontal area may be responsible for the

cognitive impairments. Furthermore, most changes in the new-onset

drug-naive NMED BECT patients were normalized in the MED group,

suggesting that antiepileptic medication could reverse aberrant con-

nectivity and even reach a normalized level. In addition, disease-

related white-matter FCs exhibited frequency-specific properties,

which suggests a correspondence between specific frequency and

certain disease. Finally, a straightforward metric by measuring the sim-

ilarity of the topographical FC profiles could provide more effective

detection of additional brain dysfunctions in BECT. In general, these

findings provided further support on the existence of white-matter

functional networks, and extended the understanding of white-matter

impairments and pathological mechanism in abnormal brain.
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