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Abstract

Alzheimer's disease (AD) subtypes have been described according to genetics, neuro-

psychology, neuropathology, and neuroimaging. Thirty-one patients with clinically

probable AD were selected based on perisylvian metabolic decrease on FDG-PET.

They were compared to 25 patients with a typical pattern of decreased posterior

metabolism. Tree-based machine learning was used on those 56 images to create a

classifier that was subsequently applied to 207 Alzheimer's Disease Neuroimaging

Initiative (ADNI) patients with AD. Machine learning was also used to discriminate

between the two ADNI groups based on neuropsychological scores. Compared to

AD patients with a typical precuneus metabolic decrease, the new subtype showed

stronger hypometabolism in the temporoparietal junction. The classifier was able to

distinguish the two groups in the ADNI population. Both groups could only be distin-

guished cognitively by Trail Making Test-A scores. This study further confirms that

there is more than a typical metabolic pattern in probable AD with amnestic

presentation.
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1 | INTRODUCTION

Alzheimer's disease (AD) is known as the primary cause of dementia

worldwide. With the growing knowledge of AD biomarkers and physio-

pathology of the disease (Jack Jr. et al., 2016), diagnostic criteria have

evolved to obtain a common and reliable disease definition that can be

used in both research and clinical practice (McKhann et al., 2011). How-

ever, it has also long been known that AD is a composite disease with

heterogeneous subtypes in terms of genetics, with more than 20 loci

described as part of the pathophysiology (Karch & Goate, 2015), with

early and late age at onset, characterized by difference in distribution of

cortical hypometabolism (Frisoni et al., 2005; Kim et al., 2005), and differ-

ent clinical presentations, with amnestic, posterior cortical atrophy, pro-

gressive primary aphasia, and frontal variants (Alladi et al., 2007; Galton,

Patterson, Xuereb, & Hodges, 2000). Even within the typical amnestic

presentation, there is heterogeneity in cognitive profiles (Fisher,

Rourke, & Bieliauskas, 1999; Lambon, Patterson, Graham, Dawson, &

Hodges, 2003; Stopford, Snowden, Thompson, & Neary, 2008; Strite,

Massman, Cooke, & Doody, 1997; Vardy et al., 2013) and patterns of

cortical hypometabolism of patients (Salmon et al., 2009).

Among the many tools used in the diagnosis and classification of AD,

Positron Emission Tomography with [18F]fluorodeoxyglucose (FDG-PET)

is one of the most common neuroimaging technique both in clinical
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practice and in the research field. In AD, cortical metabolism is typically

decreased in the temporoparietal cortex, the precuneus, and the posterior

cingulate cortex (Herholz et al., 2002; Minoshima et al., 1997). These

regions belong to the default mode network (DMN), involved in self-

directed cognition. The DMN has been divided into three subsystems: the

medial-temporal lobe (MTL) subsystem (including the hippocampal and

parahippocampal regions), the Dorsomedial subsystem (including the dors-

omedial prefrontal cortex and the temporoparietal junction) and the Mid-

line Core subsystem (including the precuneus, the posterior cingulate

cortex, and the anteromedial prefrontal cortex; Andrews-Hanna, Reidler,

Sepulcre, Poulin, & Buckner, 2010). In AD, the MTL subsystem is the most

affected in terms of cortical atrophy, with typical hippocampal volume

reduction, whereas hypometabolism is particularly important in the core

subsystem (Grothe, Teipel,, & Alzheimer's Disease Neuroimaging, 2016).

Beside the classical distribution of cortical hypometabolism, heteroge-

neity was frequently reported in FDG-PET among AD patients (Bokde

et al., 2001; Foster et al., 1983; Kim et al., 2005; Salmon et al., 2009).

With this heterogeneity in mind, the goal of the current study was to

characterize a peculiar pattern of FDG-PET hypometabolism where

decreased activity is prominent in the perisylvian area on visual analysis

by comparison to a more typical posterior medial cortical involvement

(typical pattern) in AD patients with an amnestic clinical profile.

The first step in the current study was to study a small sample of

patients from the Memory Clinic, CHU Liege, to statistically confirm the

visual analysis of predominant perisylvian hypometabolic pattern. The

second step was to analyze clinical profiles related to the metabolic sub-

type in a larger group of AD patients, using the ADNI database.

2 | MATERIALS AND METHODS

2.1 | Population 1: GIGA CRC group

2.1.1 | Participants

Subjects referred to our nuclear medicine department for differential

diagnosis of AD type dementia were selected based on FDG-PET

visual inspection.

A first group of 31 patients was gathered because FDG-PET was

characterized by a predominant posterior perisylvian hypometabolism at

visual inspection. Brain CT showed predominant atrophy in the same

regions. A second group (named typical), gathered over 1 year, included

25 subjects with a classical AD-like cortical hypometabolism on FDG-

PET, comprising involvement of the temporoparietal and posteromedial

cortices (Herholz et al., 2002). The later participants were selected to

have similar age and gender compared to the patients with major per-

isylvian involvement (the new temporoparietal junction or TPJ subtype).

The demographic data are represented in Table 1, and t-tests show no

significant difference between the typical and TPJ subtype groups in

terms of age at PET time, age at first symptoms, age at diagnosis, modi-

fied Hachinski ischemic scale (MIHS) score (Hachinski, Oveisgharan,

Romney, & Shankle, 2012) and mini-mental state examination (MMSE)

score (Folstein, Folstein, & McHugh, 1975).

All subjects met National Institute on Aging-Alzheimer's Associa-

tion clinical criteria for possible AD dementia (McKhann et al., 2011).

Due to the retrospective design of this part of the study, biomarker

information was limited to neurodegeneration (variable hippocampal

atrophy) and patients did not have consistent neuropsychological data

to be compared between groups.

For group comparison in SPM12, a control group of 12 healthy

older adults without cognitive complaints consisted in participants

who underwent a cerebral FDG-PET on the same scanner as the

patients. The control subjects were significantly younger than the AD

subjects and age was introduced as a covariate of no interest in the

statistical analysis of FDG-PET.

2.1.2 | PET-scan acquisition and processing

FDG-PET scan was performed 30 min after intravenous injection of

~150 MBq of FDG using a Gemini TF or Gemini TF Big-Bore PET-CT

scanner (Philips Medical Systems, Amsterdam, the Netherlands) with a

18 cm axial field of view and a 4.8 mm resolution in air. Patients had their

eyes closed. A low-dose CT was acquired for attenuation correction,

followed by a 12-min emission scan. The images were reconstructed

using a LOR-RAMLA algorithm and corrections for attenuation, dead-

time, random events, and scatter were applied. Reconstructed images had

2 mm isotropic spatial resolution and a 128 × 128 × 90 matrix size.

Preprocessing and statistical analyses of FDG-PET images were con-

ducted with SPM12 (Wellcome Centre for Human Neuroimaging, UCL,

London, UK). Spatial normalization was first obtained by matching each

subject's PET image to the MNI PET template provided in SPM. Those

normalized images were then averaged to create an FDG-PET group-

specific template smoothed with a Gaussian kernel of 8 mm full width

at half maximum. This group-specific template was then used to spatially

normalize patients and controls' PET images. For this classical statistical

TABLE 1 T test results studying the homogeneity of the “TPJ subtype” group and the typical group in the CRC population

TPJ subtype (CRC) Typical (CRC) N TPJ N typical t value Degree of freedom p–value

Age at PET (years) 78.9 ± 6.7 78.3 ± 8.0 30 25 0.29 53 .77

Age at first symptom (years) 76.4 ± 6.9 75.3 ± 8.4 25 25 0.49 48 .62

Age at diagnosis (years) 78.7 ± 6.4 77.4 ± 8.2 30 25 0.62 53 .54

MHIS 1.33 ± 1.75 1.58 ± 1.56 30 24 −0.58 52 .59

MMSE 23.04 ± 4.18 20.90 ± 4.55 26 21 1.67 45 .10

Note: Values expressed as mean ± SD; MIHS, modified Hachinski ischemic score; MMSE, mini-mental state exam; TPJ, temporoparietal.
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analysis only, normalized images underwent a smoothing with a

Gaussian kernel of 12 mm full width at half maximum.

For statistical comparison, processed FDG-PET images of the three

groups were entered in a General Linear Model in SPM12 using a facto-

rial design to perform statistical comparison between the two patient

groups (TPJ and typical subtypes), and healthy controls using propor-

tional scaling by cerebral global mean values to control for FDG uptake

variability. Age, mean-centered on the overall mean, was entered as a

nuisance variable. The threshold for statistical significance was set at

p < .05 with correction for multiple comparisons (FWER, family-wise

error rate) at the voxel level over the whole brain volume.

2.2 | Population 2: ADNI database

2.2.1 | Selection of subjects

Variability in clinical profile associated with the two FDG-PET (classi-

cal and TPJ) subtypes observed in our initial sample was evaluated in

a larger population well-characterized at the neuropsychological level,

using ADNI (Alzheimer's disease neuroimaging initiative) database of

AD patients (for up-to-date information, see www.adni-info.org).

All included subjects underwent the same neuropsychological tests,

as well as cerebral FDG-PET. We selected all 241 mild AD patients for

which a FDG-PET image was available at baseline in this database. On

visual inspection, thirty-four subjects were discarded because FDG-PET

images were of suboptimal quality. The FDG-PET data (n = 207) cor-

responded to the raw images recorded at their entrance in the study

(ADNI1 and ADNI2 baseline). Beside neuropsychological variables, we

also collected data regarding age at PET scan, gender, level of education

and amyloid burden (estimated with [18F]Florbetapir PET).

Furthermore, similarly to the CRC data, the ADNI were also visu-

ally inspected and manually labeled as showing the classical AD-like

cortical or the new TPJ hypometabolic profile.

2.2.2 | FDG-PET analysis

Raw FDG-PET images from ADNI database were preprocessed in SPM12

following a similar procedure as for Population 1, without smoothing.

The visually labeled data in the CRC dataset were used to construct

a machine learning-based classifier to predict FDG-PET labels in the

207AD subjects from ADNI. A group-selection procedure (Wehenkel,

Sutera, Bastin, Geurts, & Phillips, 2018) with 500 Extra-trees (Geurts,

Ernst, & Wehenkel, 2006) based on the automated anatomical labelling

(AAL) atlas (Tzourio-Mazoyer et al., 2002) was used to reduce the feature

set before learning. Extra-trees are a variant of Breiman's Random for-

ests (Breiman, 2001), which replaces bootstrap sampling in this latter

method by a randomization of the discretization thresholds. This often

results in improved performance (Geurts et al., 2006). The method

depends on two parameters, the number T of trees in the ensemble and

the number K of features drawn at each decision tree node. In all experi-

ments in this article, Twas fixed to 500 and K was set to its default value,

which is the square root of the total number of input features. Our group

selection procedure (Wehenkel et al., 2018) exploits variable importance

scores derived from Random forests models and random permutations

to rank groups of features, corresponding in our case to brain regions

from the AAL atlas (Tzourio-Mazoyer et al., 2002), according to their rel-

evance for predicting the output class. We used the CERr variant of this

procedure with a significance threshold set to 0.05 and, for increased

robustness, we retained the regions that were selected more than half of

the time in 10 repetitions of 10-fold cross-validation.

Performance of the classifier was assessed by cross-validation and

reverse learning. The accuracy of the CRC data based classifier was esti-

mated through a 10 repeated 10-fold cross-validation scheme. After-

ward, ADNI labels inferred from CRC data were compared to those

obtained by visual inspection. Likewise, a new Extra-trees model was

fitted from ADNI with the same parameters and feature reduction, then

this model was tested on the GIGA CRC population. These transfer and

reverse learning procedures, combined with the manually obtained

labels, allowed the evaluation of the performance of the classifiers, while

controlling for the potential subjectivity of human raters.

As the classifier provides class probability estimates, the perfor-

mance was measured by computing the area under receiver operating

characteristic (ROC) curves (AUC).

2.2.3 | Neuropsychological data

From all the information contained in the ADNI database, we selected the

following tests or scales of interest that were available for all participants:

Alzheimer's Disease Assessment Scale (ADAS 13), Neuropsychiatric Inven-

tory (NPI), Clinical Dementia Rating Scale (CDR), Mini Mental State Exam

(MMSE), Rey Auditory-Verbal Learning Test (RAVLT), animal fluency, Trail

Making Test (TMT A and B), Logical Memory immediate and delayed

recall, and the Boston Naming Test (BNT). Data fromDigit Span and vege-

table fluency were not selected because of too many missing values.

Using the labels predicted from the classifier (trained on the first

population to predict the label in the second one), machine learning was

used to construct a new model discriminating between the two AD

groups, based on neuropsychological scores. In order to have good

interpretability of the problem, the model chosen was a Random forests

ensemble (Extra-trees). The analysis of variable importance scores

derived from this model (Louppe, Wehenkel, & Geurts, 2013) enabled

the identification of the most relevant neuropsychological scores to dif-

ferentiate the two groups. Importance scores were averaged over

10 repeats to obtain this ranking. Posthoc Student t-test was used to

confirm between-group differences that had clinical meaning.

2.2.4 | Interregional correlations in FDG-PET data in
the ADNI population

In order to better characterize the cerebral networks affected in the two

groups of subjects, SPM12 multiple regression was used to search for

interregional metabolic correlations, between peak voxel values of the

most discriminant regions obtained in our first population (left precuneus

and left temporoparietal junction reported in Table 2, taken as seed

regions) and FDG-PET metabolism in the other regions of the brain, in

the ADNI population. The threshold for statistical significance was set at
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p < .05 with correction for multiple comparisons (FWER, family-wise

error rate) at the voxel level for the whole brain.

3 | RESULTS

3.1 | FDG-PET statistical analysis in Population
1 (GIGA CRC group)

The results of the SPM12 group comparisons are summarized in Table 2.

When each group was separately compared to the control group, both AD

types showed a significant decrease of metabolic activity in the left

precuneus (Figure 1). The direct comparison between the typical and the

TPJ subtype group (with perisylvian involvement) revealed that the typical

subjects showed significant hypometabolism in the left precuneus and the

right inferior temporal cortex compared to the TPJ subtype, whereas the

TPJ subtype subjects showed a significant decrease of metabolic activity in

the temporoparietal junction compared to typical subjects (Figure 2). This

analysis thereby statistically confirmed and specified the visual inspection.

3.2 | Population 2: Classification of ADNI FDG-PET
data and analysis of clinical profiles

3.2.1 | Classification of subjects

The feature selection procedure highlighted 11 relevant regions of

interest for subsequent classification (the left rolandic operculum, the

TABLE 2 MNI coordinates of the
different regions showing
hypometabolism in FDG-PET

Region x y z Cluster size

1.Typical (<control) Left precuneus −15 −55 73 4,141

2. Atypical (<control) Left precuneus −15 −55 76 1,601

3.Typical (<atypical) Left precuneus −3 −46 46 104

Right latero-inferior temporal cortex 57 −52 −11 30

4. Atypical (<typical) Left TPJ 60 −4 7 229

Note: p < .05 FWER corrected.

F IGURE 1 Representation, on a standard structural magnetic resonance (MR) image, of the cortical regions showing a significant metabolic
decrease (measured with FDG-PET) in the typical group (a) and the TPJ subtype group (b) compared to the control group, using the age as a
nuisance variable. The regions, represented in the MNI space, are mostly posterior associative cortices. Color scale represents t-value ((a, degree
of freedom = 36; b, degree of freedom = 42)

TABLE 3 T test results studying the homogeneity of the “TPJ subtype” group and the “typical” group in the ADNI population

TPJ subtype (ADNI) Typical (ADNI) N TPJ N typical t value Degree of freedom p–value

Age at PET 77.47 ± 7.73 72.84 ± 7.59 78 129 −4.27 202 < .001

Level of education 15.26 ± 3.12 15.47 ± 2.64 0.52 .09

Note: Values expressed as mean ± SD.
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superior parietal gyri, the right angular gyrus, the bilateral precuneus,

the Heschl gyri, the left superior temporal gyrus, the right middle tem-

poral gyrus, and the right inferior temporal gyri), based on the AAL

(Tzourio-Mazoyer et al., 2002). We thus reduced our feature set to

only these regions and fitted an ensemble of 500 Extra-trees on the

learning set. The cross-validation assessment of this selection and

classification on the GIGA-CRC data lead to an area under the curve

of 71.73% (±2.87%).

Using only these regions of interest, the classifier was able to dis-

tinguish two groups in the ADNI population similar to the initial two

subtypes observed in the GIGA CRC data. Out of 207 subjects, the

percentage of TPJ subtype subjects was 38% (78 participants, while

129 subjects FDG-PET were labeled as typical). The comparison

between this prediction and the manually labeled ADNI data showed

an area under the curve value of 82.52% (±0.48%). This shows a good

level of consistency between the two approaches, transfer learning

and manual labelling, even though there is no “ground truth” available.

Using the reverse learning method with the CRC population, the

area under the curves showed 86.11% (± 0.36%) accuracy of our

classifier.

Considering the labels defined by the classifier, the TPJ subtype

subjects from the ADNI population were significantly older than typi-

cal subjects (p < .001) but did not differ in terms of level of education

or MMSE (Table 3). The proportion of amyloid positive PET was simi-

lar in both groups (62% in TPJ, 77% in typical patients, chi-square

2.344, p = .126), with the limitation that only half of the subjects

underwent a [18F]Florbetapir PET.

3.2.2 | Neuropsychological results

Machine learning was used to construct a model discriminating one

group from the other, based on neuropsychological scores. In this model,

the features are the neuropsychological scores and the corresponding

output is the group of the AD patient previously predicted by the classi-

fier model. The only test that consistently occupied the first position

throughout the 10 repeats from the Extra-trees model was the TMT-A

(time of completion). The importance of this test to discriminate between

the subjects was further confirmed with a t-test, and TMT-A response

times was significantly faster in the TPJ subtype group (M = 57.97 s,

SD = 29.2) than in the typical group (M = 73.23 s, SD = 40.17;

t [203] = 2.99, p < .005). This was confirmed when performing correction

for multiple comparisons of the scores selected in Section 2.2.3.

3.2.3 | Interregional correlations in FDG-PET

In the typical group, activity in the left precuneus (seed: x = −3, y = −46,

z = 46) mostly significantly correlated with metabolism in parietal and

premotor regions (Figure 3a). In the TPJ subtype, activity in the left

temporoparietal junction (seed: x = −60, y = −4, z = 7) essentially corre-

lated with metabolism in perisylvian regions (Figure 3b).

4 | DISCUSSION

In this study, we report a new metabolic subtype with decreased glu-

cose metabolism (and atrophy) predominant in the perisylvian region,

F IGURE 2 (a) Representation, on a standard structural MRI, of the cortical regions showing a significant metabolic decrease in the typical
group compared to the TPJ subtype group, using the age as a nuisance variable. The regions, represented in the MNI space, are mostly the
precuneus and the right latero-inferior temporal cortex. (Table 2). (b) Representation, on a standard structural MRI, of the cortical regions showing
a significant metabolic decrease in the TPJ subtype group compared to the typical group, using the age as a nuisance variable. The region,

represented in the MNI space, is mostly the parieto-temporal junction. (Table 2). Color scale represents t-value (degree of freedom = 55)
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that could be referred to as temporoparietal junction (TPJ) subtype.

Initially detected by visual inspection in patients from a clinical sam-

ple, significant differences in metabolic activity between this subtype

(TPJ hypometabolism) and a more typical group with predominant

hypometabolism of the posteromedial cortex were confirmed using

SPM12. A Extra-trees classifier was then constructed based on this

first analysis and was applied to an ADNI population. With this classi-

fier, we were able to label 78 ADNI AD patients as TPJ subtypes out

of 207 subjects with a probable mild AD diagnosis, with high accuracy

level (85.84% of correct labelling with a reverse learning method).

Accordingly, the TPJ subtype observed in about 38% of ADNI

amnestic AD patients appears as a consistent variant of the typical

FDG-PET profile.

Heterogeneity of regional brain pathology is well-documented in

AD. Subtypes have been described from a neuropathological view-

point, with the observation of typical, limbic, and cortical subtypes

(Murray et al., 2011) and with the description of Alzheimer's pathol-

ogy in atypical clinical presentations (Alladi et al., 2007; Galton et al.,

2000). These neuropathological presentations correlate with the het-

erogeneity observed in neuroimaging studies with MRI (Ridgway

et al., 2012; Whitwell et al., 2012) or FDG-PET (Bokde et al., 2001;

Foster et al., 1983; Kim et al., 2005). Based on these findings of het-

erogeneity, AD is currently seen as a wide spectrum with different

clinical and neuropsychological presentations (amnestic, posterior cor-

tical atrophy, progressive primary aphasia, and frontal variants) that

are reflected in imaging and neuropathological studies (Galton et al.,

2000; McKhann et al., 2011; Murray et al., 2011). These correlations

have also been studied in the early onset presentation of the disease:

typical amnestic early-onset AD, logopenic progressive aphasia and

posterior cortical atrophy were associated with disease-specific

reductions in cortical thickness (Ridgway et al., 2012).

Clinical and neuropsychological heterogeneity has also been asso-

ciated with different patterns of cortical hypometabolism. Different

networks are specifically involved depending on the neuropsychologi-

cal presentation. Although the Default Mode Network (DMN) is

involved in all AD subtypes, focal patterns of hypometabolism charac-

terize each variant: the left temporoparietal cortex in the logopenic

variant, the ventral DMN in the early-onset or the bilateral prefrontal

cortex in the executive/frontal variants (Lehmann et al., 2013;

Vanhoutte et al., 2017).

Even if both regions belong to the DMN, predominant TPJ and

posteromedial hypometabolism do not seem to reflect variants of a

same network breakdown. Indeed, with seed-based interregional cor-

relation analysis previously used to reveal metabolic patterns in AD

(Lehmann et al., 2013; Seeley, Crawford, Zhou, Miller, & Greicius,

2009), we found a predominant correlation of the metabolism of the

left precuneus with parietal and premotor regions in the typical group,

and a prominent correlation between the metabolism of the left TPJ

and that of perisylvian regions in the TPJ subtype. The TPJ subtype

was not characterized by severe medial temporal involvement or by

relative sparing of the hippocampus compared to the typical subtype

(Ferreira et al., 2017; Murray et al., 2011). It cannot be considered as

a diffuse involvement of associative cortices (Noh et al., 2014; Park

et al., 2017) or as a group with no atrophy (Ferreira et al., 2017).

ADNI data allowed examining whether these different metabolic

profiles are associated with distinct clinical presentations. Actually,

F IGURE 3 Interregional metabolic correlations, between peak voxel values of the most discriminant regions taken as “seed regions” (obtained
in the GIGA-CRC population) and metabolism in the other regions of the brain, in the ADNI population, with p-value <.05 (FWER corrected). MNI
space. Color scale represents t-value (degree of freedom = 205). (a) In the “Typical” group, activity in the left precuneus correlates with
metabolism in parietal and premotor regions. (b) In the “TPJ subtype” group, activity in the left temporoparietal junction correlates with
metabolism in perisylvian regions
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the two groups (typical and TPJ subtype) could only be distinguished

by age (i.e., TPJ subtype patient being older) and by very few, non-

memory neuropsychological tests such as TMT-A, with faster

response time in the TPJ subtype group compared to the typical sub-

type group. As TMT-A test mainly involves visuomotor and attention

abilities, we could assume that these abilities are more affected in the

typical group. Interestingly, in an fMRI study, brain activity was

observed in motor, premotor, and visual areas in healthy subjects per-

forming a TMT-A task (Karimpoor et al., 2017). Therefore, the meta-

bolic connectivity we described between premotor regions and

metabolically impaired left precuneus in the typical group could partic-

ipate to their lower performance at this test. Nevertheless, apart from

this difference, patients from the two types could not be clearly dis-

tinguished in terms of cognitive or neuropsychiatric profile. Clinically,

they were all found to fulfill the clinical diagnosis of amnestic AD

(McKhann et al., 2011). Moreover, compared to healthy older partici-

pants, they all demonstrated reduced metabolism in the precuneus.

Also, most of the patients had significant amyloid burden on PET in

both groups. Yet, the prominent cortical site of neurodegeneration

varied between them.

5 | CONCLUSION

The current findings suggest that a relatively comparable clinical pre-

sentation in AD can be accompanied by a typical FDG-PET pattern or

by a clearly distinct metabolic TPJ subtype, although one cannot

exclude that current clinical evaluation was not sensitive enough to

differentiate the two groups.
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