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Abstract

Increasing spatial working memory (SWM) load is generally associated with declines in

behavioral performance, but the neural correlates of load-related behavioral effects

remain poorly understood. Herein, we examine the alterations in oscillatory activity that

accompany such performance changes in 22 healthy adults who performed a two- and

four-load SWM task during magnetoencephalography (MEG). All MEG data were trans-

formed into the time-frequency domain and significant oscillatory responses were

imaged separately per load using a beamformer. Whole-brain correlation maps were

computed using the load-related beamformer difference images and load-related accu-

racy effects on the SWM task. The results indicated that load-related differences in left

inferior frontal alpha activity during encoding and maintenance were negatively corre-

lated with load-related accuracy differences on the SWM task. That is, individuals who

had more substantial decreases in prefrontal alpha during high-relative to low-load

SWM trials tended to have smaller performance decrements on the high-load condition

(i.e., they performed more accurately). The same pattern of neurobehavioral correlations

was observed during the maintenance period for right superior temporal alpha activity

and right superior parietal beta activity. Importantly, this is the first study to employ a

voxel-wise whole-brain approach to significantly link load-related oscillatory differences

and load-related SWM performance differences.
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1 | INTRODUCTION

Spatial working memory (SWM) refers to the temporary online mainte-

nance and/or manipulation of spatial information to be used towards a

specific goal, and is typically divided into three subprocesses: encoding,

maintenance, and retrieval (Baddeley, 1992). Encoding involves the load-

ing of information into working memory (WM), while maintenance

encompasses the active rehearsal of that information for a brief period of

time. Finally, retrieval refers to the recall and application of the informa-

tion to achieve a cognitive goal. Previous functional magnetic resonance

imaging (fMRI) and positron emission tomography (PET) investigations

have demonstrated that a bilateral network of predominantly frontal and

parietal brain regions is implicated in SWM processes, and that activity

within this network tends to scale with WM load (i.e., the number of

items held in WM; Bauer, Sammer, & Toepper, 2015; Blacker & Courtney,

2016; Bollmann et al., 2015; Cabeza & Nyberg, 2000; Curtis, 2006;

Fusser et al., 2011; Glahn et al., 2002; Harrison, Jolicoeur, & Marois,
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2010; Huang et al., 2016; Leung, Seelig, & Gore, 2004; Magen,

Emmanouil, McMains, Kastner, & Treisman, 2009; Nagel et al., 2009; Nee

et al., 2013; Rottschy et al., 2012; Srimal & Curtis, 2008; Todd & Marois,

2004; Toepper et al., 2014). Additionally, studies investigating oscillatory

activity during SWM performance have largely corroborated the afore-

mentioned body of literature by showing the recruitment of a similar net-

work of cortical regions during SWM in the alpha and beta bands, and

activity in these regions is also sensitive to load modulations (Boonstra,

Powell, Mehrkanoon, & Breakspear, 2013; Crespo-Garcia et al., 2013;

Gevins & Smith, 2000; Gevins, Smith, McEvoy, & Yu, 1997; Grimault

et al., 2009; Honkanen, Rouhinen, Wang, Palva, & Palva, 2015;

Medendorp et al., 2007; Roux, Wibral, Mohr, Singer, & Uhlhaas, 2012).

Surprisingly, although load-related differences in task performance

(i.e., poorer performance as SWM load increased) are also generally

reported (Boonstra et al., 2013; Crespo-Garcia et al., 2013; Gevins &

Smith, 2000; Gevins et al., 1997; Roux et al., 2012), few studies have

directly investigated how such behavioral differences are linked to

load-related differences in neural activity. Broadly speaking, fMRI

research has demonstrated that better SWM performance on a single-

load task is tied to the greater recruitment of bilateral prefrontal corti-

ces (PFC), frontal eye fields, and posterior parietal cortices (Bauer

et al., 2015; Curtis, Rao, & D'Esposito, 2004; Leung et al., 2004;

Leung, Oh, Ferri, & Yi, 2007; Nagel et al., 2009; Sakai, Rowe, &

Passingham, 2002), and a magnetoencephalography (MEG) study

found that stronger decreases in beta oscillatory activity within pre-

frontal and superior temporal regions were associated with better

accuracy on a SWM task (Proskovec, Wiesman, Heinrichs-Graham, &

Wilson, 2018). Additionally, using a delayed-recall spatial navigation

task, Crespo-Garcia et al. (2016) found that decreased theta activity

within hippocampal, insular, and occipitotemporal regions during

encoding was related to greater accuracy during recall. Concerning

SWM load effects, there is some evidence that individuals who per-

form better on SWM tasks recruit left prefrontal regions more

strongly as SWM load increases, relative to individuals who perform

worse on such tasks (Bauer et al., 2015; Nagel et al., 2009). However,

only one study has attempted to identify the oscillatory responses

underlying such load-related behavioral differences. Though informa-

tive, this study limited its analyses to gamma activity within two

regions of interest, and showed that the number of behaviorally

relevant items maintained in SWM could be predicted by gamma

activity within the left medial PFC with a 59% probability (Roux et al.,

2012). Overall, these studies have made important contributions to

understanding how neural responses relate to load-related behavioral

differences in SWM performance, but much remains unknown.

The goal of the present SWM study was to identify the relation-

ship between load-related differences in oscillatory activity and

behavioral performance utilizing a whole-brain, multispectral oscilla-

tory analysis approach and MEG. Participants completed a SWM task

that varied in load demand (i.e., two vs. four locations), and it was

hypothesized that performance would be worse on the high-relative

to the low-load variant of the task. Additionally, it was anticipated

that individuals who recruit prefrontal and superior temporal cortices

more strongly during high-relative to low-load SWM trials, as

evidenced by greater decreases in alpha/beta activity, would perform

better (i.e., demonstrate less of a behavioral decrement between

loads) than individuals who exhibit less of a difference in oscillatory

activity between loads.

2 | MATERIALS AND METHODS

2.1 | Subject selection

We studied 22 healthy adults (11 females; mean age: 26.05, SD: 4.02,

range: 21–35) who had normal or corrected-to-normal vision and

were recruited from the local community. Exclusionary criteria

included any medical illness affecting central nervous system function,

neurological or psychiatric disorder, history of head trauma, current

substance abuse, and ferromagnetic implants. After providing a com-

plete description of the study, written informed consent was obtained

from all participants following the guidelines of the University of

Nebraska Medical Center's Institutional Review Board.

2.2 | Experimental paradigm

During MEG recording, participants performed a visual SWM task

(Figure 1) within a magnetically shielded room. Each trial consisted of

the presentation of an empty 7 × 9 grid for 1.5 s, followed by two

(low-load condition) or four (high-load condition) black squares

F IGURE 1 Left panel: Load-varying spatial working memory (SWM) task. Right panel: Behavioral results for the SWM task with accuracy (% correct)
depicted to the left, and reaction time (s) to the right. Performance differed between loads, such that participants were more accurate and faster to
respond during low-load (purple) relative to high-load (red) performance (p < .001) [Color figure can be viewed at wileyonlinelibrary.com]
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displayed within the grid for 1.5 s (encoding), then an empty grid for

2.5 s (maintenance), and finally a probe of either two or four black

squares, respectively, presented within the grid for 1.0 s (retrieval). In

50% of trials, the probe was identical to the previous encoding stimu-

lus, while in the remaining trials the location of one square had moved

within the grid. Participants responded via button press as to whether

the probe was identical to the previous encoding stimulus (yes or no)

using their right index and middle fingers. The two conditions were

presented in separate runs, separated by a brief (~4 min) break, and

the order of conditions was counter-balanced across participants.

Each trial lasted 6.5 s, and there were a total of 128 trials per condi-

tion, resulting in a total run-time of ~14 min per condition.

2.3 | MEG data acquisition

Recordings occurred in a one-layer magnetically shielded room with

active shielding engaged. Neuromagnetic responses were sampled

continuously at 1 kHz, using an acquisition bandwidth of 0.1–330 Hz

and a 306-sensor Elekta system (Elekta, Helsinki, Finland). MEG data

from each participant were individually corrected for head motion and

noise reduced using the signal space separation method with a tempo-

ral extension (Taulu & Simola, 2006; Taulu, Simola, & Kajola, 2005).

2.4 | MEG coregistration and structural MRI
acquisition and processing

Preceding MEG measurement, four coils were attached to the partici-

pant's head and localized, together with the three fiducial points and

scalp surface, with a 3-D digitizer (Fastrak 3SF0002, Polhemus Navi-

gator Sciences, Colchester, VT). During MEG recording, an electric

current with a unique frequency label (e.g., 322 Hz) was fed to each

coil, inducing a measurable magnetic field which allowed each coil to

be localized in reference to the sensors throughout the recording ses-

sion. Since coil locations were also known in head coordinates, all

MEG measurements could be transformed into a common coordinate

system. With this coordinate system, each participant's MEG data

were coregistered with a high-resolution structural T1-weighted tem-

plate brain using BESA MRI (Version 2.0; BESA GmbH, Gräfelfing,

Germany). The structural MRI data were in standardized space and

aligned parallel to the anterior and posterior commissures.

2.5 | MEG time-frequency transformation and
statistics

Cardiac and eye-blink artifacts were removed from the data using

signal-space projection (SSP), which was accounted for during source

reconstruction (Uusitalo & Ilmoniemi, 1997). The continuous magnetic

time series was divided into epochs of 6.5 s duration, with the onset

of the encoding stimulus being defined as 0.0 s and the baseline

defined as the −0.4 to 0.0 s time window. Given our task and epoch

design, maintenance onset occurred at 1.5 s and retrieval onset

occurred at 4.0 s. Epochs containing artifacts were rejected based on

a fixed threshold method, supplemented with visual inspection, and

two participants were excluded from all statistical analyses due to

excessive artifacts in their MEG data. This reduced the final sample

size to 20 participants. Additionally, nonartifactual trials were ran-

domly excluded per participant so that the total number of accepted

trials used in the final analyses did not differ between loads. All trials

where the participant responded incorrectly were also excluded from

analysis. On average, 84.35 (SD = 7.69) and 83.95 (SD = 8.26) trials

per participant were used from the low- and high-load conditions,

respectively, and this was not significantly different between condi-

tions, t(19) = 1.17, p = .26.

Artifact-free epochs were transformed into the time-frequency

domain using complex demodulation with a resolution of 1.0 Hz and

50 ms for frequencies spanning from 4 to 90 Hz. Briefly, complex

demodulation is a windowed Fourier time-frequency analysis that

reduces spectral leakage, is computationally efficient, and thus is often-

times preferable to other transforms (Kovach & Gander, 2016). Essen-

tially, for each frequency of interest, the original signal was multiplied by

a pair of complex sinusoids, and the two resulting signals were low-pass

filtered using a finite impulse response (FIR) filter to recover the real and

imaginary components of the complex signal as a function of time

(Hoechstetter et al., 2004). The resulting power estimations per gradiom-

eter sensor were averaged across all trials (low + high load) to generate

time-frequency plots of mean spectral density (i.e., spectrograms), and

normalized using the mean power during the baseline period. Each data

point per spectrogram was initially evaluated using a mass univariate

approach based on the general linear model (GLM). To reduce the risk of

false positive results while maintaining reasonable sensitivity, a two-

stage procedure was followed. In the first stage, one-sample t-tests were

conducted on each data point and the output spectrogram of t-values

was thresholded at p < .05 to identify time-frequency bins containing

potentially significant oscillatory activity across all participants. In stage

two, time-frequency bins that survived this threshold were clustered

with temporally and/or spectrally neighboring bins that were also signifi-

cant, and a cluster value was computed by summing the t-values of all

data points in the cluster. Nonparametric permutation testing was then

used to derive a distribution of cluster-values and the significance level

of the observed clusters (from stage one) were tested directly using this

distribution (Ernst, 2004; Maris & Oostenveld, 2007). For each compari-

son, at least 10,000 permutations were computed to build a distribution

of cluster values. Based on these analyses, only the time-frequency win-

dows within the encoding and maintenance periods that contained sig-

nificant oscillatory events across all participants and both conditions

were subjected to the beamforming (i.e., imaging) analysis. Thus, a data

driven approach was adopted to identify the significant oscillatory

responses on which to focus the neurobehavioral analysis.

2.6 | MEG source imaging

Cortical networks were imaged for each condition independently

through an extension of the linearly constrained minimum variance

vector beamformer (Gross et al., 2001; Hillebrand, Singh, Holliday,

Furlong, & Barnes, 2005), which calculates source power for the

entire brain volume by employing spatial filters in the time-frequency
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domain. The single images were derived from the cross-spectral densi-

ties of all combinations of MEG gradiometers averaged over the time-

frequency range of interest, and the solution of the forward problem

for each location on a grid specified by input voxel space. The source

power in these images was normalized per participant using a sepa-

rately averaged prestimulus noise period (i.e., baseline) of equal dura-

tion and bandwidth (Hillebrand et al., 2005). MEG preprocessing and

imaging used the Brain Electrical Source Analysis (version 6.1) soft-

ware. Normalized source power per condition was computed for the

selected time-frequency bands over the entire brain volume per par-

ticipant at 4.0 × 4.0 × 4.0 mm resolution. Each participant's functional

images were then transformed into standardized space and spatially

resampled.

2.7 | Neurobehavioral correlation analyses

To identify brain regions in which load-related differences in oscillatory

activity were related to load-related differences in SWM performance,

we utilized the data from the individual whole-brain maps computed in

the previous step. That is, for each participant, we first computed differ-

ence maps for encoding and maintenance separately by subtracting

the baseline-normalized low-load map from the respective baseline-

normalized high-load map. Specifically, load-related difference maps were

computed for “alpha encoding” (8–11 Hz activity spanning from 0.4 to

1.6 s), “alpha maintenance” (8–11 Hz activity spanning from 1.6 to 4.0 s),

“beta encoding” (15–20 Hz activity spanning from 0.4 to 1.6 s), and “beta

maintenance” (15–20 Hz activity spanning from 1.6 to 4.0 s). Addition-

ally, we calculated the load-related difference in accuracy (high – low) for

each participant. Specifically, the percentage of correct trials when per-

forming the low-load condition was subtracted from the percentage of

correct trials when performing the high-load condition. Thereafter, we

performed a series of Pearson correlations using each participant's

difference maps and their respective behavioral difference on the task.

Specifically, we computed whole-brain correlation maps between load-

related differences in SWM accuracy and the alpha encoding difference

maps, and repeated this procedure to compute whole-brain correlations

between load-related accuracy differences and each of the other three

difference maps (i.e., alpha maintenance, beta encoding, and beta mainte-

nance). These whole-brain correlation maps were displayed as a function

of alpha level, and adjusted for multiple comparisons using a cluster crite-

rion (k = 200 contiguous voxels).

3 | RESULTS

3.1 | Behavioral results

Task performance differed between conditions, such that participants

were significantly more accurate when performing the low-load condition

(M = 92.60%, SD = 3.05%) relative to the high-load condition (M = 81.57%,

SD = 7.46%), t(19) = 7.29, p < .001 (Figure 1). Participants also responded

significantly faster during low-load (M = 835.13 ms, SD = 139.93 ms)

relative to high-load trials (M = 895.31 ms, SD = 153.11 ms), t(19) =

−4.67, p < .001.

3.2 | MEG results

Statistical analyses of the sensor-level time-frequency spectrograms

revealed significant clusters of decreased alpha (8–11 Hz) and beta

(15–20 Hz) oscillatory activity in gradiometers near temporal, parietal,

and occipital cortices across all participants and loads (p < .001,

corrected using permutation testing), with the spectrogram from the

peak sensor located near the parietal cortices shown in Figure 2 (see

Figure S1 in the Supporting Information for a grand average spectro-

gram across all relevant sensors). These responses began about 0.4 s

F IGURE 2 Left: Time-frequency spectrogram with time (s) shown on the x-axis and frequency (Hz) denoted on the y-axis. Percent power
change was computed for each time-frequency bin relative to the respective bin's baseline power (−0.4 to 0.0 s). The color legend is displayed to
the right of the spectrogram. Data represent a peak sensor, collapsed across loads and participants, located near the parietal cortices. Strong
decreases in alpha and beta activity were observed following encoding onset, which were sustained throughout the remainder of encoding and
maintenance. The time-frequency windows containing significant oscillatory responses relative to baseline activity (i.e., those selected for
beamforming) are depicted by the white-dashed boxes. Right: A 2D map of the sensor array is shown, with blue sensors denoting those in which
significant decreases in alpha and beta oscillations (i.e., the responses bounded by the white-dashed boxes) were observed. As shown, these
responses were detected in gradiometers near occipital, parietal, and temporal regions. Note that the black sensor was not included in the sensor-
level statistical analysis, as it was noisy in most participants [Color figure can be viewed at wileyonlinelibrary.com]
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after encoding onset, and persisted throughout the remainder of the

encoding and maintenance periods. Significant oscillatory responses

in higher frequencies were not observed (see Figure S1).

To investigate how load-related oscillatory differences related to

load-related behavioral performance differences on the SWM task,

whole-brain correlation maps were computed separately using the

alpha and beta encoding and maintenance difference images (high

load – low load) and accuracy differences between loads. This rev-

ealed that, during both encoding and maintenance, load-related alpha

differences in two regions of the left inferior frontal gyrus (IFG) were

negatively correlated with load-related differences on the SWM task

(Figure 3; p < .01, cluster-corrected). Additionally, during only the

maintenance period, load-related alpha differences in the right supe-

rior temporal sulcus (STS) and beta differences in the right superior

parietal lobule (SPL) were negatively correlated with load-related

accuracy differences (Figure 3; p < .01, cluster-corrected). That is,

throughout encoding and maintenance, the greater the decrease in

left IFG alpha activity during high- relative to low-load SWM trials,

the smaller the difference in accuracy between loads. Similarly, during

the maintenance period, the stronger the decrease in right STS alpha

activity and SPL beta activity during high- relative to low-load SWM

trials, the smaller the decrement in high- relative to low-load accuracy.

4 | DISCUSSION

In this study, we examined whether load-related differences in oscilla-

tory activity were related to differences in SWM accuracy between

loads. Our results demonstrated that stronger decreases in left IFG

alpha activity during encoding and maintenance, as well as greater

decreases in right STS alpha and right superior parietal beta activity

during maintenance, during high- relative to low-load SWM trials

were tied to smaller accuracy decrements between loads. These find-

ings are discussed in further detail below.

Our data indicated that, while individuals generally performed

worse on the high-load variant of the task, those who recruited the

left IFG more strongly as load increased tended to have more pre-

served SWM performance, despite the increasing task difficulty. Pre-

vious studies have implicated the ventrolateral PFC (VLPFC; including

the IFG) in the selection, comparison, and judgment of task-relevant

information (Glahn et al., 2002; Owen, McMillan, Laird, & Bullmore,

2005), and this region is further believed to support storage processes

during WM performance (Bauer et al., 2015; Glahn et al., 2002; Owen,

2000; Owen et al., 1999; Wager & Smith, 2003). Considering these

putative VLPFC functions, and provided that decreased alpha and/or

beta oscillations within a neural region are thought to reflect the

active recruitment of that region in ongoing processes (Jensen &

Mazaheri, 2010; Klimesch, 2012; Klimesch, Sauseng, & Hanslmayr,

2007; Medendorp et al., 2007), the pattern of neurobehavioral corre-

lations that we observed in this region was not surprising, and also

aligned with previous fMRI research (Bauer et al., 2015; Nagel

et al., 2009).

In addition, our findings are the first, to the best of our knowledge,

to suggest that load-sensitive alpha oscillations within superior

temporal cortices and beta oscillations within superior parietal corti-

ces are central to successfully meeting the increased demands of

F IGURE 3 Top: Load-related differences (high–low) in alpha
(8–11 Hz) activity in two regions of the left inferior frontal gyrus (IFG)
during encoding were negatively correlated with load-related differences
in accuracy. A scatterplot representing the relationship is presented to the
right utilizing the data from the peak voxel of the posterior IFG cluster.
The scatterplot of the anterior IFG cluster was very similar. Values on the
x-axis represent the difference between the magnitudes of the response
(expressed in pseudo-t units) during the high-load relative to low-load
condition. Specifically, a negative value denotes a stronger decrease in
alpha activity during the high- relative to low-load condition, while a
positive value denotes a stronger decrease in alpha activity during the
low- relative to high-load condition. Values on the y-axis represent the
difference between the percentages of correct trials (high – low

condition). Specifically, a negative value denotes lower accuracy in the
high- relative to low-load condition. The relationship between activity in
these two IFG clusters and accuracy persisted throughout maintenance
(not pictured). Bottom: Load-related differences in alpha activity in the right
superior temporal sulcus and load-related differences in beta (15–20 Hz)
activity in the right superior parietal lobule during maintenance were
negatively correlated with load-related differences in accuracy.
Scatterplots representing these relationships are presented to the right
utilizing the data from the peak voxels of the whole-brain correlation
maps, and the axis values should be interpreted in the same manner as
that described above. All maps are shown at a threshold of p < .01,
cluster-corrected [Color figure can be viewed at wileyonlinelibrary.com]
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high-load SWM processing. Similar parietal regions have been tied to

the top-down control of spatial attention, and the retention of spatial

features (Corbetta, Kincade, & Shulman, 2002; Honkanen et al., 2015;

Rizzolatti & Matelli, 2003; Rottschy et al., 2013), while comparable

superior temporal regions have been linked to the processing of rela-

tions between simultaneously presented stimuli (Kwok & Macaluso,

2015; Park et al., 2011; Raabe, Fischer, Bernhardt, & Greenlee, 2013).

As previously mentioned, the stronger engagement of prefrontal, pos-

terior parietal, and superior temporal regions during SWM has been

directly tied to better SWM performance in single load paradigms,

and our results extend upon this work by demonstrating that activity

in these regions is critical to maintaining performance with increasing

SWM demands.

Finally, our data have important implications for an influential the-

ory in cognitive neuroscience: the compensation-related utilization of

neural circuits hypothesis (CRUNCH; Reuter-Lorenz & Cappell, 2008).

This theory posits that at low cognitive demands, younger adults will

not engage all of the neural resources which are available to them.

However, with increasing cognitive demands, younger adults will

recruit compensatory neural mechanisms, allowing them to maintain

behavioral performance (Reuter-Lorenz & Cappell, 2008). Our findings

may shed light on some of the oscillatory mechanisms supporting this

hypothesis, as it was the flexible recruitment of inferior frontal regions

throughout encoding and maintenance, via decreased alpha activity,

and superior temporal and parietal regions during maintenance, via

decreased alpha and beta activity, that predicted how well individuals

maintained behavioral performance on the high-load SWM task. It is

important to note that CRUNCH also encapsulates a prominent aging

component (Reuter-Lorenz & Cappell, 2008), and age has been shown

to modulate the oscillatory dynamics serving WM performance

(Proskovec, Heinrichs-Graham, & Wilson, 2016). Thus, while our study

only utilized healthy younger adults, future work should investigate

the interaction between age and load in this context.

In conclusion, the present study offers novel insight into the rela-

tionship between load-related oscillatory differences and load-related

SWM performance differences, and is the first to utilize a multispec-

tral voxel-wise whole-brain approach in this regard. Taken together,

our results implicate the flexible recruitment of a distributed network

of frontal, temporal, and parietal regions in preserving SWM accuracy

in the face of increasing demands, and further reinforce the functional

significance of such regions in visuospatial encoding and retention

processes.
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