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Abstract
Neuroimaging studies have shown that spontaneous brain activity is characterized as changing

networks of coherent activity across multiple brain areas. However, the directionality of func-

tional interactions between the most active regions in our brain at rest remains poorly under-

stood. Here, we examined, at the whole-brain scale, the main drivers and directionality of

interactions that underlie spontaneous human brain activity by applying directed functional con-

nectivity analysis to electroencephalography (EEG) source signals. We found that the main

drivers of electrophysiological activity were the posterior cingulate cortex (PCC), the medial

temporal lobes (MTL), and the anterior cingulate cortex (ACC). Among those regions, the PCC

was the strongest driver and had both the highest integration and segregation importance, fol-

lowed by the MTL regions. The driving role of the PCC and MTL resulted in an effective

directed interaction directed from posterior toward anterior brain regions. Our results strongly

suggest that the PCC and MTL structures are the main drivers of electrophysiological spontane-

ous activity throughout the brain and suggest that EEG-based directed functional connectivity

analysis is a promising tool to better understand the dynamics of spontaneous brain activity in

healthy subjects and in various brain disorders.
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1 | INTRODUCTION

In the last two decades, functional magnetic resonance imaging (fMRI)

has shown that spontaneous brain activity is characterized by coher-

ent and correlated fluctuations of activity in specific sets of brain

areas (Biswal, Yetkin, Haughton, & Hyde, 1995; Damoiseaux et al.,

2006; Raichle et al., 2001). The areas showing increased and corre-

lated activations at rest are known as resting-state networks (RSN)

and correspond spatially to networks associated with specific tasks

(somato-motor, visual, cognitive, etc). Functional RSN patterns are

correlated with structural connectivity patterns (Honey et al., 2009).

One particular RSN is the default-mode network (DMN), which has

the highest activity in resting wakefulness and includes the posterior

cingulate cortex (PCC), the medial prefrontal cortex, the medial tem-

poral regions, and the inferior parietal cortex (Buckner, Andrews-

Hanna, & Schacter, 2008; Greicius, Krasnow, Reiss, & Menon, 2003;

Greicius, Supekar, Menon, & Dougherty, 2009). Although RSNs were

initially studied with techniques that assume stationarity across time,

we now know that these networks are highly dynamic (de Pasquale,

Corbetta, Betti, & Della Penna, 2017), their predominance alternates

in time (Chang & Glover, 2010; Zalesky, Fornito, Cocchi, Gollo, &

Breakspear, 2014) and RSNs can overlap both in spatial layout and in

temporal dynamics (Karahanoglu & Van De Ville, 2015).

Better knowledge about the main drivers of spontaneous brain

activity and the directionality of interactions is crucial to better under-

stand the core organization of spontaneous brain activity and how it

differs in neurological disorders. Several fMRI studies have investi-

gated directional influences among DMN nodes using both Granger

causality and dynamic causal modeling (DCM), but inconsistent results

have been found (Deshpande, Santhanam, & Hu, 2011; Di & Biswal,

2014; Jiao et al., 2011; Li, Wang, Yao, Hu, & Friston, 2012; Razi,

Kahan, Rees, & Friston, 2015; Uddin, Kelly, Biswal, Castellanos, &†These authors contributed equally to this work.
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Milham, 2009; Yan & He, 2011; Zhou et al., 2011). EEG and magneto-

encephalography (MEG) could be key to gain important additional

insights into whole brain resting-state directed functional connectiv-

ity, because they provide a more direct measure of neuronal activity

than fMRI, and have a much higher temporal resolution (Lopes da

Silva, 2013). RSNs have individual complex electrophysiological signa-

tures (Brookes, Hale, et al., 2011a; de Pasquale et al., 2010; Laufs

et al., 2003; Mantini, Perrucci, Del Gratta, Romani, & Corbetta, 2007)

and networks obtained from MEG and EEG recordings were shown to

be similar to the fMRI RSNs (Britz, Van De Ville, & Michel, 2010;

Brookes, Woolrich, et al., 2011b; Chen, Ros, & Gruzelier, 2013; Liu,

Farahibozorg, Porcaro, Wenderoth, & Mantini, 2017; Maldjian, Daven-

port, & Whitlow, 2014). These studies, however, looked at spatial cor-

relations with EEG and not at the temporal properties of these

networks. Moreover, they used seed-based correlation or indepen-

dent component analysis that could not inform about the directions of

information transfer in spontaneous activity.

Here, we combined EEG and multivariate Granger causality analy-

sis (Astolfi et al., 2006; Baccala & Sameshima, 2001; Plomp, Quairiaux,

Michel, & Astolfi, 2014) to investigate which brain regions consis-

tently influence activity in other regions. Granger causality is a

directed functional connectivity measure based on the relative pre-

dictability of recorded signals (Bressler & Seth, 2011; Granger, 1969)

that has been formally validated in epicranial EEG recordings from rats

[Plomp et al., 2014]. Directed functional connectivity analyses based

on Granger causality have previously been used to study sensory pro-

cessing using EEG (Astolfi et al., 2007; Plomp, Hervais-Adelman,

Astolfi, & Michel, 2015) and MEG (Michalareas et al., 2016), and the

pathological spread of activity in epilepsy (Coito et al., 2015; Ding,

Worrell, Lagerlund, & He, 2007).

To address which regions are the major drivers of ongoing large-

scale spontaneous activity dynamics, we applied Granger causality

analysis to high-density EEG source signals recorded from 35 healthy

subjects at rest, followed by graph analysis to study network proper-

ties. The results shed light on which brain regions drive resting brain

activity, and could potentially lead to better biomarkers of brain

disorders.

2 | METHODS

2.1 | Subjects, high-density EEG recording and
preprocessing

Thirty five healthy subjects (mean subject age 30 � 9 years-old,

18 women) underwent a 10–15 min of resting-state eyes-closed high-

density EEG recording (256 electrodes, Electrical Geodesics Inc.,

Eugene, OR) while instructed to remain awake. Their wakefulness was

confirmed a posteriori during EEG inspection. We removed the facial

and neck electrodes as those are usually contaminated with muscle

artifacts, ending up with 204 electrodes for analysis. All subjects were

right handed except one. Impedances were kept as low as possible for

all the electrodes (<30 kΩ). The sampling frequency of all recordings

was 1,000 Hz and data sets were downsampled offline to 250 Hz. All

signals were filtered between 1 and 100 Hz using a Butterworth non-

causal filter.

Because the signal-to-noise ratio (SNR) of spontaneous EEG is

limited on the single epoch level, we sampled randomly in the whole

recording 60 nonoverlapping artifact-free epochs of 1 s from each

subject, thus focusing our analysis on directed interactions that are

present across mental states. We visually inspected each epoch's EEG

signals and voltage topographies for bad channels, which were inter-

polated using the three-dimensional (3D) splines method, and made

sure that the analyzed epochs were free of eye movement, muscle, or

other artifacts.

2.2 | Electrical source imaging and selection of
regions of interest

Electric source imaging (ESI) applied to high-density EEG recordings is

a clinically validated technique to estimate neuroelectrical activity of

cortical regions (Brodbeck et al., 2011; Darvas, Pantazis, Kucukaltun-

Yildirim, & Leahy, 2004; Megevand et al., 2014; Michel et al., 2004;

Rikir et al., 2014). Here, we applied ESI to reconstruct the source

activity that underlay the maps of scalp potentials. We computed indi-

vidual forward models using a simplified realistic head model with

consideration of scalp, skull, and brain thicknesses (locally spherical

model with anatomical constraints, LSMAC [Brunet, Murray, & Michel,

2011]). A 3D grid of equally distributed solution points (between

3,000 and 5,000) was placed in the gray matter, obtained from the

segmented individual T1-weighted MRI (1 × 1 × 1 mm3). We used a

linear distributed inverse solution with biophysical constraints (local

auto-regressive averages, LAURA [Grave de Peralta Menendez, Mur-

ray, Michel, Martuzzi, & Gonzalez Andino, 2004]) to calculate the 3D

current source density. The current source density was computed for

each time point of each epoch.

For each subject, the gray matter was parceled in 82 regions of

interest (ROIs) using the automated anatomical labeling (AAL) digital

atlas (Tzourio-Mazoyer et al., 2002) coregistered with the inverse seg-

mentation matrix obtained in SPM8 (www.fil.ion.ucl.ac.uk/spm). The

full list of all 82 regions can be found in the Supporting Information.

The solution point closest to the centroid of each ROI was considered

to represent the source activity of the ROI. The 3D orientation of the

source dipoles was taken into account, by projecting them on the pre-

dominant dipole direction of each ROI across time and epochs (Coito

et al., 2015; Plomp, Leeuwen, & Ioannides, 2010).

Given that connectivity algorithms take scalar time-series as their

input, and as ESI outputs 3D time-series (amplitudes in the x, y, and

z direction), we then determined the predominant dipole orientation

for each epoch and projected the x, y, and z time-series onto this

dipole to obtain a scalar time-series, in the same way that we have

previously described (Coito, Michel, van Mierlo, Vulliemoz, & Plomp,

2016; Sperdin et al., 2018). Following previous work, we first com-

puted an average dipole direction considering only the 10% strongest

norms of the dipoles across time and epochs. Second, we flipped the

sign of all dipoles whose direction was negative with respect to the

average direction. Final, each 3D dipole was projected onto this

flipped direction to obtain a scalar value, using the dot product of the
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XYZ coordinates of each dipole to the XYZ coordinates of the

positive-signed direction (Coito, Michel, et al., 2016).

EEG and ESI analysis were carried out using the freely available

software Cartool (https://sites.google.com/site/cartoolcommunity/)

and custom-made Matlab scripts.

2.3 | Power spectral density and weighted partial
directed coherence

For each subject and epoch, we computed the spectral power of the

source signals at each ROI. To get an accurate frequency representation

and avoid the problem of frequency doubling when the fast Fourier

transform (FFT) is computed in the source activity domain, we first

computed the FFT for each scalp electrode. We then computed the ESI

in the real and imaginary part of the FFT separately and then combined

them, obtaining the spectral power at each source point, for each epoch

(Koenig & Pascual-Marqui, 2009; Yuan, Doud, Gururajan, & He, 2008).

The mean spectral power for each patient was computed and normal-

ized (0–1) across regions, time and frequencies (1–40 Hz) by subtract-

ing the minimum power and dividing by the range.

To investigate the directionality of functional brain connections,

Granger-causality (Granger, 1969), can be reliably applied to electrophys-

iological signals in a data-driven approach (Lopes da Silva, 2013). To esti-

mate the directed functional connections between source regions, we

used a variant of the partial directed coherence (PDC), a multivariate

Granger-causality approach in the frequency domain (Astolfi et al., 2006;

Baccala & Sameshima, 2001; Granger, 1969; Plomp et al., 2014) named

weighted partial directed coherence (wPDC) (Coito, Michel, et al., 2016;

Plomp et al., 2014). This multivariate analysis refers to the simultaneous

investigation of the pairwise directed relationships between all signals.

Granger-causal modeling using EEG relies on the temporal precedence

between signals and has been well-validated, showing reliable and infor-

mative connectivity patterns obtained from electrophysiological record-

ings (Bastos et al., 2015; Bressler & Seth, 2011; Brovelli et al., 2004;

Michalareas et al., 2016; Plomp et al., 2014; Saalmann, Pinsk, Wang,

Li, & Kastner, 2012). Using human EEG recordings, we have previously

estimated directed functional connectivity of cortical sources in patients

with temporal lobe epilepsy and found connectivity alterations concor-

dant with cognitive deficits during transient epileptic activity as well as

striking network alterations even in the absence of detectable epileptic

activity (Coito et al., 2015; Coito, Genetti, et al., 2016a). PDC is derived

from multivariate autoregressive models (MVAR) that are fit to the data

with an appropriate model order. Here, we used a model order of 10, cor-

responding to 40 ms of the signal, in line with our previous work (Coito,

Genetti, et al., 2016a). PDC values were scaled (in the same way as the

spectral power) and multiplied by the spectral power of the source

region (weighted PDC, wPDC [Plomp et al., 2014]):

wPDCij fð Þ¼ Aij fð Þ�� ��2

PK

m¼1
Aim fð Þj j2

∙SPj fð Þ ð1Þ

where j is the source region, i is the sink region, K is the number of

regions, SPj is the spectral power of the source region j and AROIs×ROIs(f )

is the ROIs × ROIs matrix of MVAR model coefficients transformed to

the frequency domain. These coefficients were estimated using the

Nutall-Strand algorithm (Marple, 1987; Schlögl, 2006). According to

(Blinowska, 2011), the number of data points should be higher than the

number of parameters: K*N > K*K*p, where: K is the number of

regions, N is the number of data points and p is the model order). Here,

we obtain 82*(250*60) > 82*82*10, or 18 times more data points than

parameters. The normalization of the MVAR coefficients in (1) is done

at each discrete time point and independent of the model order used.

The MVAR coefficients at each time point reflect processes that go

back 10 steps.

For each subject, we obtained a four-dimensional asymmetrical con-

nectivity matrix (ROIs × ROIs × frequency × epochs), which represents

the flow from one ROI to another in a certain frequency and for each

epoch. We then averaged this matrix across epochs. Averaging of single

trial wPDC is similar to the approach used in (Ghumare, Schrooten, Van-

denberghe, & Dupont, 2015), where the single trial model parameters

are averaged. In a recent work, it was shown that such an approach in

real data often performs better than the traditional approach of creating

one MVAR model of the ensemble of trials (Pagnotta & Plomp, 2018).

Connectivity analyses were carried out inMatlab (MATLAB and Statistics

Toolbox Release 2012b). For some figures, we modified scripts from the

e-connectome toolbox (He et al., 2011).

2.4 | Surrogate data generation and statistical
analysis

To statistically evaluate the reliability of the connectivity results, we

generated a surrogate data set by randomizing the phases of all

82 source signals of each subject and computed then the wPDC in this

surrogate data set. We used the phase-randomization surrogate data

technique described by Theiler, Eubank, Longtin, Galdrikian, & Doyne

Farmer, 1992 (Theiler et al., 1992). In this method, the surrogate data is

generated by randomizing the phases of the signal while keeping the

amplitude spectra of the original signal. For each original data set,

50 surrogates were generated. wPDC was computed for each surrogate

epoch and averaged across epochs. Although scaling with the spectral

power could introduce systematic variations in surrogate outflow, we

did not find such positive dependency in the generated surrogate data,

nor in the real data (Supporting Information Figure S1).

All comparisons between real and surrogate connectivity results

were carried out using a nonparametric statistical test (Mann–Whit-

ney–Wilcoxon). To correct for multiple testing, the false discovery rate

(FDR) approach was used (Benjamini & Hochberg, 1995) (p < .05).

2.5 | Network topology

Directed functional connectivity yields directed and weighted graphs

in which each edge value corresponds to the strength of the connec-

tion (wPDC). This is therefore a fully connected network with wPDC

values as edge weights. We computed the sum of the outflows from

each region to all others (the summed outflow) at each frequency bin

(Bullmore & Sporns, 2009; Coito et al., 2015). The summed outflow of

a source region j (sofj) at a given frequency f is given by:

sofj fð Þ¼
XK

i
wPDCij fð Þ ð2Þ

COITO ET AL. 881

https://sites.google.com/site/cartoolcommunity/


The summed outflow reflects the driving importance of a region

in the network (Bullmore & Sporns, 2009; Coito et al., 2015). We refer

to the regions with strongest summed outflow as “main drivers”, as

those are the ones with highest information outflow and therefore

driving importance toward other regions. To assess the reliability of

the identified main drivers across subjects, we calculated for real and

surrogate data the number of subjects whose strongest outflow was

from the identified main drivers.

To investigate clusters of interconnected brain regions, and there-

fore have an insight into functional brain segregation, we computed

the clustering coefficient. It represents the number of connections

that exist between neighbors of a node as a proportion of all possible

connections (Bullmore & Sporns, 2009). To identify the central nodes

of the network, that is, nodes crucial for functional integration, and

thus, information transfer in the network, we computed the between-

ness centrality. It quantifies the number of shortest paths between all

node pairs that pass through that node (Bullmore & Sporns, 2009).

We computed another measure of functional integration: the effi-

ciency. It is the inverse of the shortest path length, which is the aver-

age minimum number of nodes that have to be crossed to go from

one node to any other (Bullmore & Sporns, 2009). We computed

these measures for each subject's real and surrogate connectivity

matrix using the weighted directed functions available in the Brain

Connectivity Toolbox (Rubinov & Sporns, 2010). We then statistically

compared the groups (Mann–Whitney–Wilcoxon, p < .05, FDR

correction).

3 | RESULTS

3.1 | PCC is the main driver of spontaneous activity

Inspecting the frequency distribution of total summed outflow, we

found a clear peak around 10 Hz (Figure 1a). We therefore restricted

the subsequent analyses to the alpha band (7–12 Hz). We identified

the regions with statistically significant higher summed outflow in real

than in surrogate data (Figure 1b). The regions with highest summed

outflow were the bilateral PCC, hippocampus, parahippocampal gyrus,

amygdala, anterior cingulate cortex (ACC), and olfactory cortex (all

p < 10−10, FDR corrected) (Figure 1b). To further assess the reliability

of the identified main drivers across subjects, we calculated, for real

and surrogate data, the number of subjects whose strongest driver

was the PCC (i.e., the strongest driver was either the left or the right

PCC), one of the regions of the medial temporal lobe (MTL,

i.e., amygdala or hippocampus or parahippocampal gyrus), the ACC

(i.e., the strongest driver was either the left or the right ACC), or any

of the other 72 regions, using a chi-square test (Figure 2). We found

that in 18/35 subjects and 3/35 surrogates, the strongest summed

outflow was from the PCC (p < 10−4), 12/35 subjects and 1/35 surro-

gates from the MTL (p < 10−3), 2/35 subjects, 14/35 surrogates from

the ACC (p < 10−3), and 3/35 subjects and 17/35 surrogates from

other regions (p < 10−3). This confirms on the individual subject level

that PCC and MTL areas are the two most important drivers of spon-

taneous brain activity.

We found that the strongest outflows, among those with statisti-

cally significant increases in real versus surrogate data, originated pre-

dominantly from the PCC and were directed toward widespread brain

areas (p < 10−11, FDR corrected, for all PCC outflows) (Figure 3).

The regions with the highest clustering coefficient, betweenness

centrality and efficiency, that were significantly different in real versus

surrogate data, were bilateral PCC, hippocampus, parahippocampal

gyrus, amygdala, and olfactory gyrus (all clustering coefficient and effi-

ciency comparisons showed p < 10−10; betweenness centrality

showed overall p < .005, FDR corrected). The bilateral ACC also had a

high clustering coefficient and efficiency that was significantly differ-

ent in real versus surrogate data (in all, p < 10−10, FDR corrected).

These areas are illustrated in Figure 1c–e.

3.2 | Directed interactions among the main drivers

Having identified the main driving regions from EEG recordings and

the PCC as the major driver, we then asked whether PCC's driving

role effectively resulted in a directed interaction patterns from poste-

rior to anterior DMN regions. For this analysis, we selected the

10 strongest drivers, which showed close correspondence to the typi-

cal DMN regions (Figure 4), and subtracted backward connections

from forward connections and divided by the total summed outflow.

We found that 27 of the 35 subjects had stronger net forward con-

nections (p < .018, chi-square test; null hypothesis: number of sub-

jects with more forward and with more backward connections is the

same) (Figure 4). Using the same approach for interhemispheric con-

nections, we found no evidence for a left–right asymmetry in the

directed interactions between these 10 core regions (20 of the

35 subjects had more left to right connections, n.s.).

4 | DISCUSSION

We investigated the directed interactions that underlie spontaneous

brain activity using whole-brain directed functional connectivity analy-

sis and network topology based on high-density EEG. From the 82

brain regions analyzed, we identified the PCC, MTL regions (hippo-

campus, parahippocampal gyrus, amygdala), ACC, and the orbitofron-

tal cortex (olfactory gyrus) as the main drivers of resting-state activity

as well as important nodes accounting for integration, segregation and

information transmission in the large-scale brain network. This mani-

fested itself as a high summed outflow from these regions as well as a

high betweenness centrality, clustering coefficient, and efficiency. All

of these measures were significantly increased in real versus surrogate

data sets. Our results suggest that the dynamics of spontaneous brain

activity is predominantly driven by the PCC as well as by MTL struc-

tures. Furthermore, we found that interactions were directed more

strongly from posterior toward anterior than the other way.

4.1 | Main drivers identified from EEG analysis
overlap with the default mode network

Using a data-driven EEG-based directed functional connectivity

approach, we here show that most of the strongest drivers of
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electrophysiological activity in the resting brain represented a network

concordant with the DMN (PCC and medial temporal lobe regions)

consistent with fMRI and DTI studies (Buckner et al., 2008; Greicius

et al., 2003; Greicius et al., 2009). These regions are among the most

globally connected regions in the brain (Buckner et al., 2009; Cole,

Pathak, & Schneider, 2010; Hagmann et al., 2008) and are consistent

major functional cortical hubs of spontaneous activity, as evidenced

by fMRI (de Pasquale et al., 2017).

RSNs measured using fMRI can be paralleled by EEG or MEG

data. Power in the delta, theta, alpha, beta and gamma frequency

bands measured with M/EEG has been shown to be correlated with

BOLD signals or with the RSNs depicted by fMRI (Brookes, Hale,

et al., 2011a; de Pasquale et al., 2010; Laufs et al., 2003; Mantini

et al., 2007). In addition, the networks derived from MEG (Brookes,

Woolrich, et al., 2011b; Maldjian et al., 2014), low-density EEG data

(19 electrodes) (Chen et al., 2013), or high-density EEG (Britz et al.,

2010; Liu et al., 2017) were similar to RSNs derived from fMRI.

The PCC's key role in resting-state activity is well-established

(de Pasquale et al., 2017; Vogt & Laureys, 2005). The PCC has been

consistently found as a functional and structural key region of the

DMN (Fransson & Marrelec, 2008; Hagmann et al., 2008; van den

Heuvel, Kahn, Goni, & Sporns, 2012; van Oort, Cappellen van Wal-

sum, & Norris, 2014) with connections to the medial temporal and

FIGURE 1 Network topology results. (a) Summed outflow across frequencies (4–40 Hz) for all 82 ROIs. (b) Alpha-band statistically significant increases

in summed outflow (spheres) relative to surrogate data obtained from phase-shuffling of the original data. The size of the sphere reflects summed
outflow. (c) Alpha-band significant clustering coefficient (spheres). (d) Alpha-band significant betweenness centrality (spheres). (e) Alpha-band significant
efficiency (spheres). The bigger the sphere, the higher the topology value in that region [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Comparison of the number of subjects and surrogate data

whose strongest outflow was the PCC, medial temporal lobe regions
(MTL, i.e., either amygdala or hippocampus or parahippocampus),
ACC, or any of the remaining 72 regions (“other ROIs”) [Color figure
can be viewed at wileyonlinelibrary.com]
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frontal lobes (Buckner et al., 2008; Greicius et al., 2009; Hagmann

et al., 2008; van den Heuvel, Mandl, Luigjes, & Hulshoff Pol, 2008).

Likewise, regions of the DMN, including the PCC, are densely inter-

connected by white-matter tracts that form part of the core structural

network of the brain (Hagmann et al., 2008). An fMRI study, using also

a data-driven approach, observed strong interactions between the

PCC and all the other regions of the DMN, suggesting that the PCC is

a key structure mediating activity in this network (Fransson & Marre-

lec, 2008). Other studies have also corroborated this finding, as

reviewed in de Pasquale et al. (2017). At rest, the metabolic activity in

the PCC was shown to be higher than in other regions in humans

(Gusnard & Raichle, 2001). The PCC was also found to have a higher

neuronal firing rate at rest than during tasks in macaques (Hayden,

Smith, & Platt, 2009), providing further physiological evidence of the

importance of the PCC for the resting-state. It is also known from

anatomical studies in primates that the PCC is interconnected (sends

and receives projections) with MTL regions (parahippocampal regions)

and the frontal lobe, namely the mid-dorsolateral prefrontal cortex

and ACC (Parvizi, Van Hoesen, Buckwalter, & Damasio, 2006).

Using directed functional connectivity analysis, we here found that

the PCC is the strongest driver of spontaneous activity in healthy

humans with the strongest connections initiating from this region and

directed toward the medial temporal and frontal lobes. Moreover, we

showed that the PCC had the highest betweenness centrality and effi-

ciency, corroborating its crucial importance in mediating functional inte-

gration, the ability to combine specialized information from distributed

brain regions, as shown by previous fMRI and DTI studies (Achard, Sal-

vador, Whitcher, Suckling, & Bullmore, 2006; van Oort et al., 2014).

The PCC also had a high clustering coefficient, suggesting that the PCC

also plays a role in functional segregation, that is, the ability for special-

ized processing to occur in densely interconnected clusters of regions

(Rubinov & Sporns, 2010). Our results also showed that MTL regions

were strong drivers of spontaneous activity, possibly reflecting the

noted presence of autobiographical memories in spontaneous thought

processes (Christoff, Irving, Fox, Spreng, & Andrews-Hanna, 2016). The

fact that the strongest driver in 30 out of 35 subjects was either the

PCC or the MTL, compared to only 4 out of 35 surrogates, indicates

that our results are highly unlikely to have occurred by chance.

FIGURE 4 (a) Strongest outflows between the default-mode network regions (percentile for showing outflows: 70%). (b) Differences between

forward and backward, and left and right outflows [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Statistically significant outflows (arrows) (only the 0.5% strongest outflows are shown) between real and surrogate data. The right

column indicates the top 10 strongest significant outflows [Color figure can be viewed at wileyonlinelibrary.com]
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Taken together, our findings suggest that PCC and MTL regions

segregate information and relay it forward to more anterior regions

(functional integration), resulting in predominant interactions from

posterior toward anterior brain areas during spontaneous brain activ-

ity. We did not see any evidence of a lateralization of functional con-

nections, which suggests that the global left and right outflows in the

DMN seem to be balanced.

Our analysis was carried out in the alpha band because a spectral

peak was clearly observed in this frequency band, which is mandatory

for the identification of a brain oscillation (Lopes da Silva, 2013). In

addition, the peak driving was found in this frequency band. EEG

activity in the alpha band represents the hallmark of resting-state

brain activity in healthy subjects. Oscillations in the alpha frequency

range are considered as optimal to gate information transfer across

specific populations (Lopes da Silva, 2013). It is well-accepted that

alpha rhythm does not represent an “idling” state of the brain, but

plays a pivotal role in attention, perception, cognition, and motor con-

trol (Laufs et al., 2003; Pfurtscheller & Lopes da Silva, 1999; Thut,

Schyns, & Gross, 2011), so that a large body of brain connectivity

studies have focused and reported on interactions in the alpha band.

4.2 | Comparison with fMRI studies

Relatively few fMRI studies have investigated the directional influence

among the DMN nodes, using either Granger-causality (Deshpande

et al., 2011; Jiao et al., 2011; Uddin et al., 2009; Yan & He, 2011;

Zhou et al., 2011) or DCM (Di & Biswal, 2014; Li et al., 2012; Razi

et al., 2015). However, there remains considerable inconsistency

between studies independently of the technique used. For instance, in

Di & Biswal (2014), it was reported that interactions were directed

from the medial prefrontal cortex to the PCC, while other studies,

reported a causal influence from the PCC toward the medial prefron-

tal cortex (Li et al., 2012) and (Razi et al., 2015).

Despite large concordance, some spatial differences were noted

between our results and fMRI studies regarding the DMN. The inferior

parietal cortex has been reported by fMRI studies as being part of the

DMN (Buckner et al., 2008; Horn, Ostwald, Reisert, & Blankenburg,

2014), but it was not identified here as one of the most important

nodes of the resting-state using EEG-based resting-state connectivity.

This could be due to the fact that recordings were performed with eyes

closed, and that the parietal cortex is known to be involved in visual

attention and directing eye-movements (Corbetta & Shulman, 2002).

Previous DCM fMRI studies did not include the MTL, although they

have also been shown to be part of the DMN (Buckner et al., 2008;

Greicius et al., 2003; Greicius et al., 2009). Our results suggest that

MTL structures are also important nodes of the resting brain. The

strong outflow from the orbito-frontal cortex (olfactory cortex) in our

study could be due to the very close proximity to the medial prefrontal

cortex part of the DMN regions found in fMRI studies. The relatively

low spatial resolution of ESI in basal frontal areas makes it difficult to

confirm this interpretation. Beyond differences related to directed ver-

sus undirected measures, it is important to note that the Granger-causal

modeling approach used here is a multivariate analysis simultaneously

investigating the relationships between all signals, whereas fMRI analy-

sis is most often bivariate. The use of multivariate connectivity methods

has been shown to be superior to bivariate measures for assessing

causal relationships and directions (Blinowska, 2011; Kus, Kaminski, &

Blinowska, 2004). A limitation of multivariate methods is the high

dimensionality of model parameters and it has been recommended that

the number of data points exceeds the number of parameters by at

least a factor of 10 to assure reliable results (Blinowska, 2011).

Although our data-parameter ratio of 18 is adequate, we also controlled

for spurious findings by using phase-shuffled surrogate data (Lizier,

Heinzle, Horstmann, Haynes, & Prokopenko, 2011).

Other functional RSNs have consistently been reported in

resting-state fMRI studies, such as the motor network, the visual net-

work, two lateralized networks consisting of the superior parietal and

superior frontal regions, and a network consisting of bilateral tempo-

ral/insular and ACC regions (Biswal et al., 1995; Damoiseaux et al.,

2006; De Luca, Beckmann, De Stefano, Matthews, & Smith, 2006). In

our findings, the nodes as well as the connections belonging to these

networks were not among the strongest drivers of the resting-state.

This could be due to the fact that they have a lower whole-brain out-

flow, although they may have a high local outflow or inflow to or from

certain regions, as well as methodological differences due to the signal

origin (electric vs. metabolic). Nevertheless, the same approach could

be applied to specifically study directed functional connectivity in pre-

defined sets of regions corresponding to other RSNs.

4.3 | Potential applications to neurological and
psychiatric disorders

The investigation of the strength and directionality of interactions in

the resting human brain could help to better understand cognitive defi-

cits associated to network disruption in certain neurological disorders,

and provide new biomarkers of these disorders. We have previously

applied this methodological approach in temporal lobe epilepsy (TLE),

to study both interictal spikes (Coito et al., 2015) and resting-state

(Coito, Genetti, et al., 2016a). In the latter study, the predominance of

the PCC and MTL structures was consistently observed in all groups

(left TLE, right TLE, and controls), but the connection strengths were

significantly weaker in both TLE groups compared to the healthy sub-

jects group. The resting-state connectivity patterns were also different

in patients compared with healthy controls, as the latter showed that

the strongest driving occurred from the PCC, while in both TLE groups,

the strongest driving was from the hippocampus ipsilateral to the epi-

leptic focus (Coito, Genetti, et al., 2016a). EEG-based connectivity mea-

sures appear promising to investigate alterations of directed

connectivity in other neurological and psychiatric conditions (Greicius,

2008; Greicius, Srivastava, Reiss, & Menon, 2004).

4.4 | Methodological considerations

From a methodological point of view, there are strong arguments to

apply connectivity analysis to ESI sources rather than EEG signals

directly from the sensors (electrodes), as it avoids volume conduction

and reference problems that hamper the validity of direct analysis of

electrode signals (Schoffelen & Gross, 2009; Van de Steen et al.,

2016). Several invasive studies support ESI as an accurate sublobar

localization technique as validated by intracranial EEG recordings and
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epilepsy surgery of epileptic activity and cognitive evoked potentials

in the hippocampus (Brodbeck et al., 2011; Megevand et al., 2014;

Nahum et al., 2011; Rikir et al., 2014). There is increasing evidence

that ESI applied to high-density EEG can estimate cortical activity

from deep regions such as the cingulate, medial frontal, orbitofrontal

and medial temporal lobe, as shown by simultaneous scalp and intra-

cranial recordings (Koessler et al., 2015; Nahum et al., 2011; Raman-

tani et al., 2014). However, ESI might have difficulty distinguishing

between strictly temporo-polar and medial temporal sources (amyg-

dala, anterior hippocampus) and a clear subdivision between the

source activity or connectivity related these two regions remains to

be considered with caution.

We here used the approach of averaging over many epochs to

obtain the predominant drivers across networks and network changes

occurring in spontaneous activity. The relatively low SNR of EEG

recordings compared to fMRI limits the possibility of network identifi-

cation on the single epoch basis, thus preventing windows-based or

point-process approaches on continuous signals typically used in fMRI

dynamics (Karahanoglu & Van De Ville, 2015). Future directed con-

nectivity work using EEG could use alternative approaches to study

the directed connectivity of other RSN (Britz et al., 2010; Vidaurre

et al., 2016) and provide a more fine-grained characterization of how

changes between specific RSNs come about.

In this study, we analyzed summed outflows to study of the main

drivers of spontaneous activity. The wPDC formulation used in this

study was therefore optimized for investigating outflows by normaliz-

ing the coefficients of the MVAR model by the inflows (Astolfi et al.,

2007; Coito, Michel, et al., 2016; Kus et al., 2004; Plomp, et al., 2014).

The investigation of the distribution of summed inflows was not in

the focus of this study. For a reliable estimation of the inflows, a nor-

malization by the outflows would be needed as in the original defini-

tion of PDC (Baccala & Sameshima, 2001).

5 | CONCLUSIONS

Here, we investigated the drivers and directionality of interactions in

the resting human brain at a whole-brain scale, using high-density

scalp EEG recordings. Our work shows that directed interactions from

the PCC and MTL are the main drivers of spontaneous activity

dynamics, and showing the highest integration and segregation impor-

tance. This suggests an important role for directed interactions from

the PCC and MTL in switching between momentarily dominant net-

work states. Furthermore, we showed that the strongest drivers were

coincident with the DMN, which demonstrates a good potential for

the use of EEG-based measures to study resting-state connectivity.

The directional information, coupled to the low-cost of EEG, could

strengthen its use in the study of DMN alterations in clinical popula-

tions and the potential development of biomarkers.
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