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Abstract

That metabolic syndrome (MetS) is associated with age-related cognitive decline is well

established. The neurobiological changes underlying these cognitive deficits, however,

are not well understood. The goal of this study was to determine whether MetS is asso-

ciated with regional differences in gray-matter volume (GMV) using a cross-sectional,

between-group contrast design in a large, ethnically homogenous sample. T1-weighted

MRIs were sampled from the genetics of brain structure (GOBS) data archive for

208 Mexican-American participants: 104 participants met or exceeded standard criteria

for MetS and 104 participants were age- and sex-matched metabolically healthy con-

trols. Participants ranged in age from 18 to 74 years (37.3 ± 13.2 years, 56.7% female).

Images were analyzed in a whole-brain, voxel-wise manner using voxel-based morphom-

etry (VBM). Three contrast analyses were performed, a whole sample analysis of all

208 participants, and two post hoc half-sample analyses split by age along the median

(35.5 years). Significant associations between MetS and decreased GMV were observed

in multiple, spatially discrete brain regions including the posterior cerebellum, brainstem,

orbitofrontal cortex, bilateral caudate nuclei, right parahippocampus, right amygdala,

right insula, lingual gyrus, and right superior temporal gyrus. Age, as shown in the post

hoc analyses, was demonstrated to be a significant covariate. A further functional inter-

pretation of the structures exhibiting lower GMV in MetS reflected a significant involve-

ment in reward perception, emotional valence, and reasoning. Additional studies are

needed to characterize the influence of MetS's individual clinical components on brain

structure and to explore the bidirectional association between GMV and MetS.
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1 | INTRODUCTION

Metabolic syndrome (MetS), also commonly known as the insulin

resistance syndrome, is a cluster of physiological abnormalities associ-

ated with the development of cardiovascular disease (CVD), Type

2 diabetes mellitus (T2DM) and early death (Reaven, 1988). It typically

comprises a combination of the following: central obesity measured

as waist circumference (WC), elevated triglycerides (TG), reduced

levels of high-density lipoprotein (HDL) cholesterol, increased fasting

plasma glucose (FPG), and elevated blood pressure (BP; Grundy et al.,

Received: 16 December 2018 Revised: 18 April 2019 Accepted: 24 April 2019

DOI: 10.1002/hbm.24617

Hum Brain Mapp. 2019;40:3575–3588. wileyonlinelibrary.com/journal/hbm © 2019 Wiley Periodicals, Inc. 3575

mailto:kotkowski@uthscsa.edu
mailto:fox@uthscsa.edu
http://wileyonlinelibrary.com/journal/hbm


2005). Epidemiological data suggest that 34.7% of Americans suffer

from MetS with a high prevalence (36.8%) in the Hispanic-American

population (Aguilar, Bhuket, Torres, Liu, & Wong, 2015). Age also

plays a role in the prevalence of MetS, such that more than 50% of all

adults over the age of 60 are afflicted. In addition to T2DM and CVD,

MetS is associated with nonalcoholic fatty liver disease, polycystic

ovarian syndrome, several types of cancer (e.g., colon cancer and

breast cancer), arthritis, and fibromyalgia (Byrne & Wild, 2011). Most

striking, T2DM, and MetS have shown to be associated with demen-

tia, with Mexican Americans exhibiting greater risk than those of

European ancestry (Haan et al., 2003). Indeed, individuals with MetS

commonly display cognitive impairments in learning and memory,

executive function, and generalized processing speed (Cavalieri et al.,

2010; Yates, Sweat, Yau, Turchiano, & Convit, 2012). The genetic

underpinnings of this observation remain unknown, but are suggested

to be partly due to differences in insulin metabolism associated with

a genetic admixture (Lee, Zabolotny, Huang, Lee, & Kim, 2016).

Additionally, cognitive decline following longstanding MetS has been

linked to the development of vascular dementia and Alzheimer's dis-

ease (AD; Exalto, Whitmer, Kappele, & Biessels, 2012; Frisardi et al.,

2010; Vanhanen et al., 2006).

Neurodegenerative diseases are found to correlate with com-

orbidities of MetS, such as obesity. These include frontotemporal

dementia, cerebrovascular disease, and AD, among others (Lee &

Mattson, 2014). Although there are numerous mechanistic hypotheses

as to how these degenerative changes occur, several have gained par-

ticular notoriety. One such hypothesis suggests that dysregulated insu-

lin receptor binding/activation plays a role in neuronal atrophy of the

reward networks (nucleus accumbens, amygdala, VTA, striatum) and

learning and memory networks (hippocampus, OFC, temporal lobe;

Byrne & Wild, 2011). Impaired insulin receptor binding in the hippo-

campus, a structure known to express high levels of insulin receptors, is

presumed to influence the development of AD (De Felice, Lourenco, &

Ferreira, 2014). The hypothesis of AD-related central nervous system

(CNS) insulin resistance, coupled with observations that T2DM is asso-

ciated with an increased risk of developing AD (Ott et al., 1996;

Stranahan, 2015), has led researchers ask whether peripheral metabolic

biomarkers could be used to predict neurological decline (Chatterjee &

Mudher, 2018; Pruzin, Nelson, Abner, & Arvanitakis, 2018). Besides

brain insulin resistance, other mechanisms such as neuroinflammation,

oxidative stress, and abnormal brain lipid metabolism have been pro-

posed as pathophysiological contributors to neurocognitive decline in

the MetS brain (Yates et al., 2012).

Structural abnormalities in T2DM patients were first observed in a

cohort of genetically homogenous Dutch subjects and found that indi-

viduals with T2DM had significantly decreased hippocampal and

amygdalar gray-matter volumes (GMVs) compared to normal controls

(Den Heijer et al., 2003). Their conclusions gave credence to an earlier

study conducted in the Netherlands (The Rotterdam Study), which

found a significant correlation between insulin-dependent T2DM and

AD (Ott et al., 1996).

Neuroimaging is an effective method for investigating the neuro-

biological correlates of cognitive decline in a human population with

MetS. Comorbidities of MetS, namely obesity, insulin resistance, and

T2DM, have been studied extensively using functional imaging

(Byrne & Wild, 2011). Early positron emission tomography (PET) stud-

ies comparing insulin resistant subjects with normal controls, reported

decreased gray matter glucose uptake in the dopaminergic reward cir-

cuit (amygdalae, hippocampi, and orbitofrontal cortex) and increased

uptake in the striatum (nucleus accumbens, caudate, and putamen),

insula and anterior cingulate (Anthony et al., 2006). Task-activation

fMRI studies (food picture, smell, and taste paradigms) have also

shown that glucose infusion is associated with discrete brain activa-

tion patterns and prandial satiety, correlating with the brain's reward

network (Huerta, Sarkar, Duong, Laird, & Fox, 2014; Michaud, Vainik,

Garcia-Garcia, & Dagher, 2017).

Voxel-based morphometry (VBM), is a widely-accepted research

technique employed to identify subtle, disease-related structural

changes that cannot be easily inferred through region-specific or

global gray matter volumetric analyses. VBM achieves this via group-

averaging and registration to a standard brain space comparing gray

matter densities between cases and controls. This method is optimal

for identifying disease-specific atrophy patterns computed in a univar-

iate, voxel-wise manner (Ashburner & Friston, 2000). In the literature,

we know of only one other study that has looked at cortical thickness

and subcortical volume changes (using ANCOVA instead of VBM with

n = 86) explicitly in individuals with MetS (Song et al., 2014). How-

ever, only five VBM studies (with n ranging from 32 to 54) have inves-

tigated the neuroanatomical effects of T2DM (Wu, Lin, Zhang, & Wu,

2017). Other VBM studies have emphasized the GMV effects of

MetS's comorbidities, such as the combined effects of T2DM and

hypertension (Tchistiakova et al., 2014) and obesity (Masouleh et al.,

2016). Allostatic load, the accumulated multisystem physiological

response to chronic stress that strongly correlates with MetS has also

been studied using VBM as a predictor of stroke, diabetes, and neuro-

anatomical integrity (Zsoldos et al., 2018).

For this retrospective study, we utilized previously acquired neu-

roimaging data from a homogenous Mexican-American cohort com-

prising an extended-pedigree imaging dataset known as the Genetics

of Brain Structure (GOBS) image archive of San Antonio, TX. In this

dataset, participants were recruited at random from the San Antonio

community as a measure to minimize selection bias. This archive pres-

ented a unique opportunity to study the neurobiological effects of

MetS because of the population's increased propensity, both biologi-

cal and environmental, to develop MetS and its comorbidities. The

sample is large enough to conduct a statistically powerful analysis,

and includes a wide range of relevant data.

Participants were divided into two groups, randomly matched

MetS and metabolically healthy controls (hereafter also referred to as

“controls”), who differed only in metabolic status while controlling for

age and sex. VBM was subsequently used to identify GMV differences

between groups. After initial analysis, the large group was further sub-

divided in two post hoc analyses of “young” and “old” half samples to

assess age-related effects. Lastly, BrainMap®, an imaging archive

designed for meta-analysis and meta-analytic data interpretation, was
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used to interpret behavioral, paradigm class, and disease covariates

from our results (Lancaster et al., 2012).

We hypothesized: (a) that a group contrast VBM analysis will

reveal discrete MetS-specific GMV differences; (b) that the patterns

observed would recapitulate regions implicated in AD pathology (per

the CNS insulin resistance hypothesis); and, (c) that applying meta-

analytic interpretive tools (BrainMap.org) to the VBM-derived regional

deficits would confirm a cognitive signature corresponding to cogni-

tive deficits previously reported in MetS.

2 | MATERIALS AND METHODS

2.1 | Participants

The goal of the GOBS dataset is to localize, identify, and characterize

genes/quantitative trait loci associated with variations in brain struc-

ture and function (Winkler et al., 2010). The GOBS dataset has been

acquired in three blocks of acquisitions, corresponding to the original

grant and two renewals. In the original block of acquisitions, the

emphasis was almost entirely on imaging and cognitive/behavioral

phenotypes with BMI and health history being the only phenotypes

referable to metabolic syndrome. In the second block of acquisitions,

blood chemistries (including fasting plasma glucose), a lipid panel, and

waist circumference (WC) were added. In the third block of acquisi-

tions, BP was added. Participants in the present analysis were drawn

only from acquisition Blocks 2 and 3. In all three blocks of acquisition,

participants were drawn from the same extended-pedigree, Mexican-

American families. At the time this study was conducted, a total of

1,911 individuals were enlisted in the GOBS dataset.

In acquisition Blocks 2 and 3, neuroanatomic, neurocognitive, and

biometric phenotypes were obtained on each participant. Participants

were subjected to the standardized Composite International Diagnostic

Interview (CIDI; Kessler, Andrews, Mroczek, Ustun, & Wittchen, 1998)

and the Mini-International Neuropsychiatric Interview (MINI-Plus) for

DSM-IV and ICD-10 psychiatric disorders (Sheehan et al., 1998). Blood

samples were collected after a 12-hr fast and processed in order to

obtain blood chemistry and blood lipid data, such as triglycerides, cho-

lesterol, and fasting plasma glucose.

Acquiring BP values did not become standard protocol until acquisi-

tion Block 3. This left ~70% of the eligible participants from the GOBS

cohort without measured BP. However, from the 835 participants with

all pertinent imaging and lipid data (Figure 1), a total of 356 (or 42.6%)

had available BP data. Excluding participants with no BP values, but

who nonetheless had all other pertinent data, would have left us with a

small and underpowered cohort. We overcame this obstacle by diag-

nosing our data as missing at random (MAR), indicating that there is a

systematic relationship between observed data (the 42.6% of BP data

available) and missing values (the 57.4% of missing BP data). BP can

therefore be imputed from available observed BP data and other

observed variables known to correlate with BP (e.g., age, sex, height,

weight, WC, fasting plasma glucose, triglycerides, blood urea nitrogen,

creatinine, sodium, potassium, chloride, calcium, smoking status, total

cholesterol, high density, low density, and very low-density lipoprotein

cholesterol, and previous diagnosis of hypertension; Little & Rubin,

2002). Missing BP values were thus imputed using a well-validated

model-based full information maximum likelihood estimation from the

aforementioned observed variables (Enders, 2010).

As a cross-check we evaluated whether the MAR assumption was

tenable and performed sensitivity analysis under the missing not at ran-

dom (MNAR) assumption. We employed the fully conditional specifica-

tion for multiple imputation to impute BP values for participants in the

study group based on observed values of participants not included in

the study group (Ratitch & O'Kelly, 2011). Using this test of model sen-

sitivity, we were able to discern whether differences existed between

groups on BP values assuming the MAR versus MNAR assumption. The

results of the sensitivity analysis yielded the same conclusions as those

observed under MAR.

F IGURE 1 Participant selection
pipeline from the original GOBS dataset
applying MetS criteria scores based on a
composite of the International Diabetes
Federation (IDF) and National Cholesterol

Education Program-Adult Treatment Plan
III (NCEP-ATP III). Criteria for
metabolically healthy control group was
determined by including participants with
a composite MetS score of ≤1.5. Criteria
for MetS case group was determined by
including participants fulfilling the WC
criteria of the IDF and achieving a MetS
score of ≥3.0. A few borderline
individuals (3 controls and 6 MetS) were
added to provide age- and sex-matched
symmetry in the final analysis
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2.2 | Image acquisition

MRI acquisition was carried out on a 3T Siemens Tim MRI scanner at

the University of Texas Health Science Center at San Antonio's Research

Imaging Institute. An 8-element high-resolution phase array head coil

equipped with foam padding was employed to comfortably restrict head

motion. A standard localizer image was obtained for each participant for

determining head placement, followed by a standard shim sequence.

Seven high quality T1-weighted 3D structural images were collected per

participant via a TurboFLASH sequence with an adiabatic inversion

recovery pulse (TE = 3.04 ms, TR = 2000 ms, TI = 795 ms, flip angle = 8�,

NEX = 6) optimized to achieve a gray/white contrast of ~25% with sig-

nal to noise ratio of 25. Each image contained 0.8 mm3 isotropic voxels

and a 20 cm field of view. Scan time per participant totaled 60 min. Each

of the seven MPRAGE T1-weighted images was motion corrected and

all were subsequently averaged to generate a single high-resolution ana-

tomical image per participant (Kochunov et al., 2006).

2.3 | Study sample

Of the 1,911 total participants in the GOBS cohort, we excluded

519 participants who were lacking successfully acquired T1-weighted

MRI scans, and 557 participants from the first acquisition phase who

were lacking full biometric data such as blood lipids and WC necessary

to establish a MetS diagnosis. Upon reviewing data obtained from CIDI

and MINI-Plus evaluations, we then excluded 122 participants with

past medical histories of stroke, neurosurgery, neurological diseases, or

Axis I psychiatric diagnoses (e.g., schizophrenia, bipolar disorder, major

depressive disorder, substance use disorder, and so on). Our final sam-

ple of neurologically and psychiatrically healthy individuals who met

basic imaging, psychiatric, biometric, and metabolic criteria totaled

713 participants.

We applied both the National Cholesterol Education Program Adult

Treatment Plan III (NCEP-ATP III) and the International Diabetes Federa-

tion (IDF) criteria (Figure 1) to the selection of metabolically healthy and

MetS participants (Eckel & Cornier, 2014). The NCEP-ATP III defines

MetS as patients meeting at least three of the following five criteria:

1. central obesity measured by WC (≥102 cm in men, ≥ 88 cm in

women), 2. raised TGs (≥ 150 mg/dL), 3. reduced HDL cholesterol

(<40 mg/dL in men, < 50 mg/dL in women), 4. raised FPG (> 110 mg/dL),

and 5. elevated BP (≥ 130 mmHg systolic or ≥ 85 mmHg diastolic)

and/or diagnosis of HTN (Eckel & Cornier, 2014). Similarly, the IDF

defines MetS as a disease in which patients must exhibit central obesity

(WC of ≥94 cm for men, ≥ 80 cm for women), along with at least two of

the following four criteria: 1. raised TGs (>150 mg/dL) and/or taking

medication for hypertriglyceridemia, 2. reduced HDL cholesterol

(<40 mg/dL in men, < 50 mg/dL in women) and/or taking medication for

hypercholesterolemia, 3. raised BP (>130 mmHg systolic or >85 mmHg

diastolic) and/or taking medication for hypertension, and 4. raised FPG

(>100 mg/dL) and or having a diagnosis of T2DM (Grundy et al., 2005).

A score of 0–5 was generated for each of the 713 eligible partici-

pants based on how many components (WC, TG, HDL, FPG, and BP)

met the MetS criteria for NCEP-ATP III and IDF respectively

(Tables 1 and 2). For example, a male participant with a WC of 98 cm

would receive a score of 1 for WC under the IDF criteria, but receive a

score of 0 for WC under the NCEP-ATP III criteria. Both the IDF and

NCEP-ATP III scores were then averaged to give each participant a sin-

gle composite MetS score based on both criteria. A score of 3 or

greater would be considered indicative of MetS under the standards

for both criteria.

Metabolically healthy controls were selected from the remaining

713 eligible participants if they had a composite MetS score of 1.5 or

lower (n = 319) and MetS participants were selected if they had a

composite MetS score of 3 or higher (n = 255). From the latter group,

we further excluded MetS subjects who did not meet the IDF criteria

for WC (n = 7). We then employed an algorithm that optimally and

randomly age- and sex-matched the participants who met the study-

specific criteria for controls and for MetS. A total of 101 controls

(n = 44 males, n = 57 females; plus 3 borderline) and 98 MetS partici-

pants (n = 42 males, n = 56 females; plus 6 borderline) were matched

successfully (Figure 1). We included borderline individuals to optimally

configure the group-matching framework between age and sex that is

required for a two-group difference general linear model analysis. Bor-

derline control individuals had a composite score of 2. They did not

meet the ≤1.5 cut-off, nor the IDF or NCEP-ATP III criteria for MetS.

Similarly, borderline MetS individuals had a composite score of 2.5,

meeting the IDF criteria for MetS, but not for NCEP-ATP III.

These criteria were derived in consultation with Dr. Ralph

DeFronzo, director of the Texas Diabetes Institute and were consid-

ered the best accepted estimates to define two groups that are meta-

bolically distinct as “healthy” and “MetS” (Miranda, DeFronzo, Califf, &

Guyton, 2005). Particular emphasis was made on defining the MetS

group as meeting at least the IDF criteria for WC. This emphasis is

important because central obesity as measured by WC is an easily

measurable biometric variable that closely correlates with insulin

resistance (Simonson & Kendall, 2005).

2.4 | VBM and univariate analysis

T1 structural images were acquired retrospectively from the GOBS

dataset. Freesurfer was used for initial processing with autorecon1

(motion correction, nonuniform intensity normalization, Talairach

transform computation, intensity normalization, and skull stripping;

Fischl, 2012). Brain-extracted data were then analyzed with FSL-VBM

(Douaud et al., 2007), an optimized VBM protocol carried out with

FSL tools (FMRIB Software Library; Good et al., 2001; Smith et al.,

2004). Structural images were gray matter-segmented and nonlinearly

registered to MNI-152 standard space (Andersson, Jenkinson, &

Smith, 2007). The resulting images were averaged, flipped along the

x-axis, and re-averaged to create a left-right symmetric, study-specific

gray matter template. All native gray matter images were nonlinearly

registered to this study-specific template and “modulated” to correct

for local expansion (or contraction) due to the nonlinear component

of the spatial transformation. The modulated gray matter images were

smoothed with an isotropic Gaussian kernel (sigma = 3 mm).
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To compare MetS versus metabolically healthy control group differ-

ences in GMV, a two-group difference (two-sampled unpaired t-test)

analysis using voxel-wise general linear modeling (GLM) was applied in

a control vs. MetS contrast analysis involving all participants (n = 208)

with “years of education” as a nuisance covariate. Two separate post

hoc contrast analyses were subsequently conducted along age-

defined half-samples. We ran the GLM analysis with FSL's Randomize, a

nonparametric permutation-testing tool (10,000 permutations), that

corrects for multiple comparisons across voxels. Significance was deter-

mined at the voxel level using a family-wise error (FWE) correction

(p < .05). In VBM, the null hypothesis states that there is no difference

in GMV between the groups being studied. The null hypothesis is

refuted when statistical maps are generated exhibiting voxels, often

clustered together, that overcome a predetermined and study-specific

statistical threshold (e.g., FWE p05, in the case of the present study;

Whitwell, 2009). We did not further correct for the total number of

VBMs performed (i.e., 3) since the post hoc age-defined half samples

were independent of the large primary analysis.

The output comprised of threshold-free cluster enhancement

(TFCE) based statistical parametric maps depicting locations of gray

matter differences between MetS and metabolically healthy control

groups. TFCE avoids the arbitrary definition of an initial cluster-forming

threshold, as in cluster-based thresholding, by enhancing cluster-like

structures while maintaining a voxel-wise approach (Smith & Nichols,

2009). The final results were overlaid onto the MNI-152 standard tem-

plate. Maxima locations for the large 208-subject contrast were

derived from the Talairach Daemon (Table 3; Lancaster et al., 2000).

A summary of the VBM image analysis pipeline is shown in Figure 2.

2.5 | Post hoc analysis on age effects

Two additional post hoc analyses involving the subdivided large group

of 208 participants were performed using identical thresholds and per-

mutations. In this analysis we divided participants by the median age

(35.5 years) and grouped them into half samples termed “young” and

“old.” The “young” group included all participants with age ≤ 35 years

(mean = 26.4 ± 4.6 years; range = 18–35 years); 52 metabolically

healthy controls and 52 MetS participants. The “old” group included all

participants with age ≥36 (mean = 48.1 ± 9.6 years; range = 36–74-

years); 52 metabolically healthy controls and 52 MetS participants

(Tables 1 and 2, Figure 3).

2.6 | Behavior, paradigm class, and disease analyses

BrainMap is a neuroimaging database which, at the time of this study,

contained 15,243 published functional imaging experiments (125,588

TABLE 1 Demographics, MetS components and neuroanatomical characteristics of participants

[Female]

Total
control (SD)
n = 104 [59]

Total
MetS (SD)
n = 104 [59] p

Young
control (SD)
n = 52 [23]

Young
MetS (SD)
n = 52 [23] p

Old
control (SD)
n = 52 [22]

Old
MetS (SD)
n = 52 [22] p

Age (years) 37.3 (13.2) 37.3 (13.2) .996 26.4 (4.6) 26.5 (4.6) .932 48.1 (9.6) 48.1 (9.8) .976

Education (years) 12.2 (2.7) 12.3 (2.6) .872 12.7 (1.8) 12.4 (2.0) .486 11.7 (3.4) 12.1 (3.2) .550

MetS components

Waist circumference (cm) 84.1 (11.2) 110.0 (11.2) <.001* 80.3 (9.1) 110.4 (12.1) <.001* 87.9 (11.9) 109.6 (10.4) <.001*

Triglycerides (mg/dL)a 87.8 (31.5) 223.2 (95.6) <.001* 85.5 (35.1) 220.0 (87.7) <.001* 90.0 (27.7) 226.5 (103.8) <.001*

HDL cholesterol (mg/dL) 61.8 (15.4) 38.8 (8.8) <.001* 60.1 (14.5) 38.3 (8.7) <.001* 63.5 (16.2) 39.3 (9.0) <.001*

Fasting plasma glucose (mg/dL) 86.3 (7.5) 119.8 (55.1) <.001* 86.3 (6.8) 104.7 (49.2) .010* 86.3 (8.3) 134.9 (56.9) <.001*

Systolic blood pressure (mmHg)b 113.4 (15.2) 126.7 (17.3) <.001* 113.1 (15.17) 123.8 (14.1) <.001* 113.8 (15.4) 129.5 (19.8) <.001*

Diastolic blood pressure (mmHg)b 69.3 (10.9) 77.4 (11.3) <.001* 68.9 (10.6) 76.7 (10.3) <.001* 69.8 (11.2) 78.0 (12.4) .001*

IDF score 0.57 (0.63) 4.11 (0.72) <.001* 0.37 (0.60) 3.75 (0.65) <.001* 0.77 (0.61) 4.46 (0.61) <.001*

NCEP-ATP III score 0.24 (0.49) 3.60 (0.90) <.001* 0.15 (0.41) 3.40 (0.72) <.001* 0.33 (0.55) 3.79 (1.02) <.001*

Composite MetS score 0.40 (0.51) 3.85 (0.74) <.001* 0.23 (0.46) 3.58 (0.64) <.001* 0.55 (0.53) 4.13 (0.74) <.001*

Other lipid measures of interest

Total cholesterol (mg/dl) 174.4 (31.7) 202.5 (45.3) <.001* 167.9 (30.8) 197.0 (42.1) <.001* 180.8 (31.6) 208.0 (48.0) .001*

LDL cholesterol (mg/dL) 95.0 (28.3) 119.2 (40.3) <.001* 90.7 (28.0) 114.5 (37.8) <.001* 99.3 (28.2) 123.9 (42.6) .001*

BMI (kg/m2) 24.3 (3.8) 34.5 (5.5) <.001* 23.3 (3.5) 34.7 (5.6) <.001* 25.4 (3.9) 34.2 (5.5) <.001*

Whole brain gray and white matter measures derived from VBM

Average gray matter density 0.482 (0.028) 0.474 (0.032) .072 0.495 (0.018) 0.493 (0.019) .445 0.468 (0.030) 0.456 (0.032) .045*

Average white matter density 0.378 (0.013) 0.373 (0.014) .008* 0.370 (0.010) 0.365 (0.016) .413 0.372 (0.007) 0.374 (0.019) .012*

Abbreviations: BMI, body mass index; HDL, high density lipoprotein cholesterol; IDF, International Diabetes Federation; LDL, low density lipoprotein;

NCEP-ATP III, National Cholesterol Education Program Adult Treatment Plan III; SD, standard deviation; VBM, voxel-based morphometry.

*Two-sample t-test of group differences reported as significant p-value ≤.05.
aExcludes outliers with TG values >500 mg/dL.
bBP values obtained were generated in part by full-information maximum likelihood statistical modeling.
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locations) from 3,261 peer-reviewed publications and 3,151 published

VBM, or structural imaging experiments, (21,827 coordinates) from

994 peer-reviewed publications. BrainMap reports statistically signifi-

cant results from the published, peer-reviewed neuroimaging litera-

ture in the form of standardized coordinates that report functional

and structural effects (Fox, Lancaster, Laird, & Eickhoff, 2014). It

allows investigators to perform robust meta-analyses from thousands

of subjects, experiments, and paradigms using the standardized,

coordinate-based (x, y, z) mapping system. The results have been

coupled to experimental and behavioral conditions in the functional

task-driven database (Lancaster et al., 2012), and disease diagnoses in

the structural VBM database (Vanasse et al., 2018).

BrainMap's® Behavior and Paradigm Class analysis plugins are

invaluable meta-data inference function tools that quantitatively char-

acterize regions that are anatomically altered in MetS and show how

these regions relate to healthy brain functions (Crossley et al., 2014;

Smith et al., 2009). Using this method, we can test the hypothesis that

negative behavioral effects of MetS—specifically concerning impair-

ment of executive function, cognitive reasoning, and reward

perception— can be at least partially explained by structural changes in

the form of GMV loss (Crossley, Scott, Ellison-Wright, & Mechelli,

2015; Fox et al., 2014; Glahn et al., 2008). Similarly, BrainMap's Disease

Inference Function also uses meta-data inferencing to correlate GMV

changes in MetS to neurodegenerative diseases present in the

BrainMap VBM structural database (Kotkowski, Price, Fox, Vanasse, &

Fox, 2018; Vanasse et al., 2018). We can use this function to indepen-

dently quantify the degree of structural similarity between neurodegen-

erative diseases like AD and MetS using a z-score.

BrainMap's software allows for behavior, paradigm class, and dis-

ease comparisons by imputing a 3D spatial region of interest known

as a “mask.” Masks in this study were generated by the VBM analyses

and represent the regions of significant GMV reduction. The software

allows us to compare regions derived in our study to behaviors and

paradigm classes ascribed to a number of functional studies, or

TABLE 2 Percentage of participants meeting MetS criteria by group

Metabolic syndrome components Total control Total MetS Young control Young MetS Old control Old MetS

International diabetes federation

Waist circumference:

≥96 cm in men, ≥80 cm in women

41.3% 100% 23.1% 100% 59.6% 100%

Triglycerides:

≥150 mg/dL and/or HTG Rx

1.0% 93.3% 1.9% 94.2% 0% 92.3%

HDL cholesterol:

<40 mg/dL in men, <50 mg/dL in women and/or HCL Rx

3.8% 94.2% 3.8% 90.4% 3.8% 98.1%

Fasting plasma glucose:

>100 mg/dL and/or T2DM dx

1.0% 60.6% 0% 38.5% 1.9% 78.8%

Blood pressurea:

≥130 mmHg systolic or ≥85 mmHg diastolic and/or HTN dx

13.5% 61.5% 11.5% 48.1% 15.4% 75.0%

Meet IDF criteria for MetS 0% 100% 0% 100% 0% 100%

National cholesterol education program adult treatment plan III

Waist circumference:

≥102 cm in men, ≥88 cm in women

9.6% 92.3% 1.9% 90.4% 17.3% 94.2%

Triglycerides:

≥150 mg/dL

1.0% 87.5% 1.9% 94.2% 0% 80.8%

HDL cholesterol:

<40 mg/dL in men, <50 mg/dL in women

2.9% 83.7% 1.9% 88.5% 3.8% 78.8%

Fasting plasma glucose:

>110 mg/dL

0% 33.7% 0% 14.8% 0% 51.9%

Blood pressurea:

≥130 mmHg systolic or ≥ 85 mmHg diastolic and/or HTN dx

13.5% 61.5% 11.5% 48.1% 15.4% 75.0%

Meet NCEP-ATP III criteria for MetS 0% 87.5% 0% 90.4% 0% 84.6%

Previously diagnosed comorbidities

Hypertriglyceridemia 0% 21.2% 0% 3.8% 0% 38.5%

Hypercholesterolemia 1.9% 33.7% 1.9% 11.5% 1.9% 55.8%

Type II diabetes mellitus 0% 31.7% 0% 13.5% 0% 50%

Hypertension 3.8% 35.6% 0% 17.3% 7.7% 53.8%

Abbreviations: Dx, previously diagnosed; HCL, hypercholesterolemia; HDL, high density lipoprotein cholesterol; HTG, hypertriglyceridemia; HTN,

hypertension; IDF, International Diabetes Federation; NCEP-ATP III, National Cholesterol Education Program Adult Treatment Plan III; Rx, currently

receiving treatment; T2DM, Type 2 diabetes mellitus.
aBP values obtained were generated in part by full-information maximum likelihood statistical modeling.
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diseases in VBM studies, from across the BrainMap database. This is

achieved by comparing our mask to a null reference of random spatial

distribution. Z-scores are generated for observed-minus-expected

values for each behavior sub-domain, or disease sub-domain in the case

of VBM, with the operative threshold z-score of 3.0 as comparable to a

group p-value of .05. This analysis has been previously validated in both

the behavior domain and paradigm class analyses (Lancaster et al.,

2012) and recently in disease class analyses (Kotkowski et al., 2018).

Due to a lack of inclusion of the cerebellum and brainstem in the vast

majority of task activation studies involving PET and fMRI within

the BrainMap database, the cerebellum and brainstem regions were

excluded from the ROI masks in this analysis.

3 | RESULTS

3.1 | Mass univariate VBM contrast analysis

A VBM contrast analysis was performed to investigate regional GMV

differences between age- and sex-matched metabolically healthy con-

trols (n = 104) and individuals meeting the criteria for MetS (n = 104;

see Tables 1 and 2, Figure 1). The most notable between-group differ-

ences were found in the following regions: the posterior cerebellum,

brainstem, orbitofrontal cortex (aka ventromedial prefrontal cortex),

bilateral caudate nuclei, right posterior insula, right amygdala, lingual

gyrus, and superior temporal gyrus (Figure 3, Table 3).

3.2 | Structural age differences

Age differences were observed when contrasting participants in the

post hoc age-defined half-samples. The “young” participants contrast

analysis (≤35 years) reported significantly lower GMV in the posterior

cerebellum only (Figure 3, Table S1). Furthermore, the “old” partici-

pants contrast analysis (≥36 years) reported significantly lower GMV

in a more diffuse pattern than the whole group analysis and involved

a greater number of affected regions. The notable regions in the “old”

group analysis included: the posterior cerebellum, brainstem,

orbitofrontal cortex, caudate nuclei, bilateral posterior insula, bilateral

amygdalae, superior temporal gyrus, posterior cingulate cortex, bilat-

eral posterior parahippocampi, and left fusiform gyrus (Figure 3,

Table S2).

TABLE 3 Results of the whole-brain VBM analysis comparing GMV between groups (MetS: n = 104 vs. metabolically healthy control: n = 104

Metabolic syndrome VBM contrast analysis (n = 208)

Cluster
Cluster size
(voxels)

Foci: MNI coordinates
Max t-score
within cluster Cluster foci: MNI Daemon labelx y z

Brainstem 13,187 2 −28 −48 4.98 Pons

L. Cerebellum 28,818 −24 −62 −46 5.73 L. Crus I

−44 −46 −30 3.62 L. Culmen

R. Cerebellum 24,419 20 −66 −46 5.44 R. Cerebellar tonsil

Orbitofrontal cortex 9,175 4 14 −24 5.66 R. Rectal gyrus (BA11)

12 62 −22 3.90 R. Superior Frontal Gyrus (BA10)

12 44 −28 4.14 R. Medial frontal gyrus (BA11)

−6 14 −28 4.68 L. Rectal gyrus

−12 34 −32 3.64 L. Orbital gyrus (BA47)

−2 28 −30 4.49 L. Rectal gyrus (BA11)

L. Limbic lobe 891 −16 −28 −12 3.00 L. Parahippocampal gyrus

R. Limbic lobe 3,071 18 2 −18 4.25 Subcallosal gyrus (BA34)

27 −2 −16 3.60 R. Amygdala

R. insula 4,026 34 0 −12 3.73 R. Claustrum

42 −2 −8 3.41 R. Insula

L. Caudate 2,752 −12 16 10 4.70 L. Caudate body

R. Caudate 4,054 8 22 8 4.59 R. Caudate body

6 14 4 4.00 R. Caudate body

Cuneus 2,787 −4 −64 8 3.51 L. Cuneus

−6 −84 8 3.05 L. Lingual gyrus

R. Temporal lobe 2,444 70 −24 0 4.15 R. Superior temporal gyrus (BA22)

68 −12 −6 3.33 R. Middle temporal gyrus

Lingual gyrus 637 8 −98 4 3.19 R. Lingual gyrus

Results are significant at FWE p < .05, corrected for multiple comparisons at the voxel level.

Abbreviations: BA, Brodmann area; L., left; R., right.
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3.3 | BrainMap behavior, paradigm class, and disease
meta-analysis

MetS-associated regions exhibiting decreased GMV in the cortex (not

including the cerebellum and brainstem) from the whole sample

(n = 208) were associated with cognitive reasoning (z = 5.4), emotional

valence (z = 5.4), and reward paradigms (z = 6.7). These regions were

also found to be similar in gray matter pathology to Huntington's

disease (HD; z = 3.6) and AD (z = 3.0; Figure 4). A z-score of ≥3.0

is considered statistically significant using this method (Lancaster

et al., 2012).

No statistically significant findings were reported for the “young”

half-sample subgroup (n = 104). Cortical brain regions did not exhibit

any significant GMV differences in this analysis. However, findings of

significantly lower GMV in the posterior cerebellum were reported.

MetS-associated regions exhibiting decreased GMV in the cortex

from the “old” half-sample subgroup (n = 104) were associated with

cognitive reasoning (z = 6.0), fear modulation (z = 3.7), music composi-

tion (z = 3.6), audition perception (z = 3.3), reward paradigms (z = 7.7),

face monitor/discrimination paradigms (z = 4.3), pitch monitor/

discrimination paradigms (z = 3.7), and music comprehension para-

digms (z = 3.6). These regions were also found to be similar in gray mat-

ter pathology to AD (z = 4.9), HD (z = 4.5), and schizophrenia (z = 4.2;

Figure 4). Definitions for these terms can be found in Table S3.

4 | DISCUSSION

Two of the three hypotheses put forward in the present study were

supported by our findings. The first hypothesis, that a discrete pattern

of GMV differences would be identified in individuals with MetS, was

strongly confirmed. Specific GMV reductions were found in the cerebel-

lum, brainstem, OFC, caudate, amygdala, insula, and superior temporal

gyrus, among others. Additionally, age-related effects were observed in

two separate post hoc young versus old analyses from the larger group

sample, suggesting increased age-related effects influencing GMV

between MetS participants and metabolically healthy controls. The

second hypothesis—that patterns of GMV loss would recapitulate AD

pathology—was weakly confirmed in the overall analysis. BrainMap's

disease inference function identified AD's pattern of GMV changes as

the neurodegenerative disease pattern most closely resembling our

MetS VBM findings. This was especially noticeable in the “old” half-

sample analysis. HD and schizophrenia were the other diseases

exhibiting significant similarities in GMV loss with MetS. Importantly,

the hippocampus, a region prominently affected by AD, demonstrated

no GMV reductions in our study. Although other regions implicated in

AD pathology did exhibit GMV reductions, such as the insula, amygdala,

and caudate nuclei. Finally, a BrainMap meta-analysis of task-activation

functional studies of the neural signature of MetS gray matter atrophy

F IGURE 2 Depiction of the VBM image analysis pipeline as applied in this study. Acronym disambiguation: FAST, FMRIB automated
segmentation tool; FLIRT, FMRIB linear image registration tool; FNIRT, FMRIB nonlinear image registration tool; MNI, montreal Neurological
nstitute (standard brain space)
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mask revealed significant associations with regions involved in cognitive

reasoning, emotional valence, and reward perception.

4.1 | Cerebellum

Decreased GMV in the posterior cerebellum was the most significant and

consistent regional difference in MetS across all age groups. The effects of

decreased cerebellar GMV tend to vary depending on the cerebellar-

subregion where differences are seen. For instance, a commonly cited

cause of cerebellar damage is alcohol dependence. Previous VBM studies

have identified GMV in the vermis and anterior cerebellar regions—regions

known to be involved in motor control and coordination—as significantly

lower in alcoholics versus nonalcoholics (Mechtcheriakov et al., 2007). In

contrast, atrophy in the posterior region of the cerebellum is attributed to

“slowness,” defined as slow reaction time and walking speed (Chen et al.,

2015). The effects of posterior cerebellar degeneration have been further

supported by functional studies demonstrating that cortical regions signifi-

cantly co-activating with the anterior cerebellum are the association motor

areas and those most significantly co-activating with posterior cerebellum

are regions implicated in cognition (Riedel et al., 2015). Furthermore, lesion

studies investigating the effects of regional damage to the posterior cere-

bellum have identified deficits in executive function, visual spatial

processing, linguistic skills, and regulation of affect (Schmahmann, 2004).

This collection of symptoms termed “dysmetria of thought” have since

been given the name of Cerebellar Cognitive Affective Syndrome, also

known by its eponym as Schmahmann's Syndrome (Schmahmann, 2019).

4.2 | Brainstem

Our study demonstrated significant MetS-associated decreased GMV in

the pons and periaqueductal gray (PAG) regions of the brainstem. Human

studies have shown that increased hemoglobin A1c, another blood glu-

cose measure, is independently associated with the severity and progno-

sis of brainstem infarcts, primarily involving the pons (Li et al., 2012).

Decreased activity in the PAG is associated with increased levels of pain

(migraine-like headaches, fibromyalgia, nonspecific back pain) and anxi-

ety. Animal studies have also found that diabetes-related neuropathic

pain is associated with a decrease in functional activity of the PAG

(Paulson, Wiley, & Morrow, 2007). Of note, forebrain projections to the

PAG arise predominantly from the prefrontal cortex, insular cortex, and

amygdala (Linnman, Moulton, Barmettler, Becerra, & Borsook, 2012),

structures implicated in our study's neural signature of MetS. PAG atro-

phy can thus serve as a potential neuroimaging biomarker responsible for

increased levels of generalized pain symptoms in MetS patients.

4.3 | The appetitive network

Regions in the appetitive network are involved in appetite-related

behaviors such as craving, feeding, and satiety. It consists of the lateral

F IGURE 3 VBM cluster analysis of statistically significant gray matter structural changes associated with MetS across all subjects (a), subjects with
age range below total subject median (“young”) (b), and subjects with age range above total subject median (“old”) (c). Regional GMV was reduced
significantly across all subjects in the caudate nuclei bilaterally, right posterior insula (r. PI), right superior temporal gyrus (r. STG), lingual gyrus, left
posterior parahippocampus (l. PPH), right superior frontal gyrus (r. SFG), right medial frontal gyrus (r. MFG), right amygdala, right middle temporal gyrus
(r. MTG), ventromedial prefrontal cortex (VMPFC), periaqueductal gray (PAG), pons, left cerebellar tonsil and posterior cerebellum (a). Regional GMV was
reduced significantly among “young” subjects in the left cerebellar tonsil and posterior cerebellum (b). Regional GMVwas reduced significantly among
“old” subjects in the right precentral gyrus, right insula, left lateral posterior nucleus of the thalamus (l. LPN), caudate nuclei bilaterally, r. STG, cuneus,
posterior insula bilaterally, PPH bilaterally, amygdala bilaterally, right orbital gyrus, right rectal gyrus, left fusiform gyrus, PAG, pons, left cerebellar tonsil
and posterior cerebellum (c). All values are FWE-corrected (p < .05) and were not further correct for the total number of VBMs performed (i.e., 3) since
the post hoc age-defined half samples were independent of the large primary analysis
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hypothalamus and the reward circuit, which includes the OFC, caudate,

insula, amygdala, nucleus accumbens, substantia nigra, and ventral teg-

mentum (Kenny, 2011). Hyperactivation of the appetitive network has

been hypothesized to lead to overeating and obesity. Individuals with

high trait reward sensitivity have demonstrated increased neural activ-

ity in the appetitive network when exposed to highly palatable foods

such as pizza and chocolate cake (Beaver et al., 2006), including obese

patients (Rothemund et al., 2007). As weight increases, deficits in the

brain's appetitive network emerge. For example, deficits in the caudate

nuclei have led researchers to speculate that partial reward hypo-

sensitivity may perpetuate the overconsumption of palatable foods as a

compensatory mechanism for reward deficits (Kenny, 2011). As the

motivation to consume palatable food increases, the hedonic value

from the consumption of such foods decreases. These observations

could have broader implications for neurocognitive functioning in other

behavioral-cognitive domains involving overlapping brain structures

(Cornier, 2011).

The OFC is an integral part of the cognitive processes related to

decision-making, emotion valuation, and reward perception. This

region also comprises the secondary taste cortex, a region responsible

for the representation of the reward value of taste (Price, 2007). Fur-

thermore, dysfunction in the OFC has been attributed to the

overconsumption of food in obese patients (Cameron, Chaput,

Sjödin, & Goldfield, 2017).

The caudate nuclei are involved in the modulation of inhibitory

control, goal-directed actions, and procedural learning. Reduced activ-

ity in the caudate nuclei is associated with obesity in older adults

(Green, Jacobson, Haase, & Murphy, 2011). Additionally, adolescents

with T2DM have been found to exhibit reduced GMV in the caudate

nuclei compared to metabolically healthy age- and weight-matched

controls (Nouwen et al., 2017).

The insular cortex is predominantly associated with emotion, empa-

thy, self-awareness, and interoception. It also processes information

related to the hedonic valuation and taste of food (Small, 2010). The

right insula in particular, has previously been reported to show GMV

loss in MetS after correcting for allostatic load (Zsoldos et al., 2018).

The amygdala lends affective significance to perceived stimuli and

enhances memory for emotionally-relevant stimuli. Its activity

increases in response to hunger, particularly when exposed to high-

calorie palatable food (Goldstone et al., 2009). FDG-PET studies show

that increased levels of circulating insulin are correlated with

decreased activity in the right amygdala and cerebellar vermis relative

to whole brain, possibly explaining an individual's impaired emotional

response to high-calorie food (Anthony et al., 2006).

F IGURE 4 Specific behavioral (a), paradigm class (b), and disease weightings (c) on the MetS atrophy mask in all subjects and in “old” subjects
(d–f). Mask regions of interest are FWE-corrected (p < .05) as coordinate-based search function. Functional characterization of MetS volume loss
mask is based on behavior domain (a,d) and paradigm class (b,e) meta-data of the BrainMap functional database representing peak functional
domains related to mask regions. Structural characterization of MetS volume loss mask is based on disease classification meta-data of the
BrainMap VBM structural database representing peak structural atrophy domains related to mask regions (c,f). Disease class disambiguation:
Antisocial personality disorder (APD), temporal lobe epilepsy (TLE), major depressive disorder (MDD), frontotemporal dementia (FTD), mild
cognitive impairment (MCI). Only paradigms fulfilling a z-score threshold ≥2.0 are reported, with z-scores of ≥3.0 deemed statistically significant
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4.4 | Relation to AD, HD, and schizophrenia

The incidence and progression of AD is thought to be influenced by

metabolic diseases, dysregulations, and comorbidities (Stranahan,

2015). In the Rotterdam Study (the first study to propose this link)

T2DM was associated with a twofold increased risk of developing AD

and all-type dementia (Ott et al., 1996). An association that has since

been replicated in more recent studies (Arvanitakis, Wilson, Bienias,

Evans, & Bennet, 2004; Chatterjee & Mudher, 2018). In our study we

found a modest relationship between the MetS neural signature and

that of AD, as shown in the BrainMap VBM meta-analysis. This is a

relationship that conspicuously does not include the hippocampus.

MetS, obesity, HTN, dyslipidemia and T2DM all are associated with

an increased risk of developing AD and other dementias. However,

the reverse could also be true; for instance, that neurodegeneration

contributes to the development of metabolic disease (Biessels & Rea-

gan, 2015). Therefore, although AD may moderately correlate with

MetS, we consider our findings to only weakly support the relation-

ship. We speculate that it is possible that AD-like symptoms are

exhibited by certain individuals with MetS because of overlapping

structural involvement, yet do not reflect the same underlying patho-

physiological mechanism.

HD is a heritable neurodegenerative disease implicating the basal

ganglia and cerebral cortex. Patients in advanced states of the disease

are known to exhibit poor glycemic control and progressive weight

loss (Aziz, Swaab, Pijl, & Roos, 2007). However, research within the

past decade has shed light on the role that obesity-induced inflamma-

tion can play in the pathogenesis of HD. For instance, it has been

demonstrated that insulin resistance and decreased circulating insulin-

like growth factor 1 (IGF-1) can accelerate HD onset in individuals

with the genetic predisposition (Lalic et al., 2008). Furthermore,

mouse models have also indicated that mutations in the huntingtin

gene expressed in the hypothalamus may be the causal factor for met-

abolic abnormalities seen in the disease, such as: impaired glucose

metabolism, insulin resistance, and leptin resistance (Hult et al., 2011;

Procaccini et al., 2016).

Schizophrenia is a neuropsychiatric disorder in which patients

exhibit dysfunctions in language, behavior and affect, often in the

form of delusions, hallucinations, and disorganized speech that tend

to present in early adulthood. Among neuropsychiatric disorders, the

association between schizophrenia and obesity is well documented

(Saha, Chant, & McGrath, 2007). Moreover, a commonly cited associa-

tion between schizophrenia and metabolic syndrome is thought to be

treatment-emergent. A number of second-generation anti-psychotic

drugs, most notably olanzapine, have been shown to cause weight

gain, metabolic syndrome, and T2DM. It is thought that olanzapine's

appetite-stimulating effects via its antagonistic actions on the seroto-

nin 5-HT2C and dopamine D2 receptors contribute to its metabolic

disease side-effects (Patel et al., 2009). One key limitation for the

BrainMap VBM database is its absence of flags indicating whether

patient populations in VBM analyses suffer from metabolic com-

orbidities such as metabolic syndrome or obesity. We believe that

schizophrenic patients on antipsychotics such as olanzapine might be

weighing VBM effects related to MetS. However, more evidence is

needed to support this speculation.

4.5 | Mechanisms of atrophy

Trophic effects associated with gray matter have been attributed to

four primary mechanisms: transneuronal spread, nodal stress, trophic

failure, and shared vulnerability (Zhou, Gennatas, Kramer, Miller, &

Seeley, 2012). We believe that trophic failure, involving the subcellular

dysfunction of trophic factors such as insulin, insulin-like growth factor,

and leptin, is a likely mechanism for explaining our findings that is worth

exploring (Verdile, Fuller, & Martins, 2015). When trophic factor

expression and regulation is impaired, trophic failure in the form of poor

cellular and synaptic maintenance hinders gray matter structural integ-

rity (Fornito, Zalesky, & Breakspear, 2015). Shared vulnerability is also a

likely candidate since similar neuronal cell types can be the targets of

disease-specific changes due to shared genetic and metabolic profiles

(Cioli, Abdi, Beaton, Burnod, & Mesmoudi, 2014). For example, animal

models of obesity and wild-type mice fed high fat diets have found

associations with dopamine-dependent mesocorticolimbic-prefrontal

alterations which could impact reward learning, motivation, and execu-

tive functions (Stoeckel et al., 2016). In summary, a number of potential

mechanisms emerging in the periphery that disturb the normal neuro-

physiological processes in gray matter can, collectively, be used to

explain our reported findings.

4.6 | Limitations

The criteria used to describe the metabolically healthy and MetS

groups were a mixture of the IDF and NCEP-ATP III classification sys-

tems with the notable absence of BP values in 57.4% of our samples.

Although this limitation was addressed using sophisticated statistical

methods involving available observations and related biometric data,

the absence of directly measured BP values stands as a limitation. The

nature of our choice for defining metabolically healthy controls and

MetS participants as meeting a composite score of IDF and NCEP-

ATP III criteria may differ from criteria used in other studies, especially

in different ethnic populations. Importantly, the criteria chosen to

define our samples was optimized for the dataset available.

This study focused on identifying GMV differences associated

with MetS. The pattern identified moderately correlates to neurode-

generative diseases involving gray matter as HD, AD, and schizophre-

nia. Microinfarcts and other vascular-related events are also known to

play a role in the pathophysiology of neurodegeneration (e.g., blood-

brain barrier breakdown, white matter lesions, and inflammation;

Stranahan, 2015). Given the strong evidence for small vessel disease

in the comorbidities of MetS, it could be argued that white matter

integrity is also an important parameter to investigate (Van

Bloemendaal et al., 2016), and we agree. However, an important part

of the present study was to establish a link to cognition. White matter

integrity as assessed by various imaging modalities does not predict

cognitive status as well as gray matter (Lansley, Mataix-Cols, Grau,
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Radua, & Sastre-Garriga, 2013). Nevertheless, a subsequent investiga-

tive report addressing white matter involvement in MetS is underway.

Sex-based differences in BMI-related responses to food cues,

identified using functional MRI, indicate the presence of significant

regional differences in brain activity between males and females

(Atalayer et al., 2014; Cornier, Salzberg, Endly, Bessesen, & Tregellas,

2010). Although studies have shown that individuals with MetS

exhibit worse cognitive performance with increasing number and

severity of MetS components (Yaffe et al., 2004; Cavalieri et al.,

2010), no study to our knowledge has demonstrated that gender dif-

ferences are related to reduced GMV in MetS or T2DM.

The association between MetS, T2DM, obesity, and cognition has

been well-characterized using psychometric evaluations (Yates et al.,

2012). In this study, we demonstrated that regions associated with

MetS also are related to cognition, supporting reports from the litera-

ture that link peripheral metabolic dysfunction to impaired emotion

salience and cognition (Cameron et al., 2017). Nevertheless, we did

not probe psychometric scores available to us in in the GOBS dataset

on a per-subject level. For the purposes of this study, we ensured that

participants were nondemented and did not differ in level of educa-

tional attainment.

Finally, we intentionally chose to use a cohort of geographically

and ethno-culturally homogenous Mexican-Americans from an

extended pedigree due to the genetic and environmental predisposi-

tion for developing MetS in this population. However, in selecting

these participants, we did not account for family or household effects.

We encourage others to reproduce our findings in other ethno-

cultural populations.

5 | CONCLUSION

We report that MetS is associated with reduced GMV, a finding that

is amplified with age. Gray matter regions associated with MetS

include the posterior cerebellum, brainstem, and regions involved in

the appetitive network such as the orbitofrontal cortex, caudate,

amygdala and insula. Functionally, these regions were identified to

correlate with reward perception, reasoning and emotional valence.

Patterns of atrophy also indicated similarities to those seen in AD, but

failed to recapitulate its most important features, namely hippocampal

involvement.
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