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Abstract
The processes involved in value evaluation and self-control are critical when making behavioral

choices. However, the evidence linking these two types of processes to behavioral choices in inter-

temporal decision-making remains elusive. As the ventromedial prefrontal cortex (vmPFC), striatum,

and dorsolateral prefrontal cortex (dlPFC) have been associated with these two processes, we

focused on these three regions. We employed functional magnetic resonance imaging during a

delayed discounting task (DDT) using a relatively large sample size, three independent samples. We

evaluated how much information about a specific choice could be decoded from local patterns in

each brain area using multivoxel pattern analysis (MVPA). To investigate the relationship between

the dlPFC and vmPFC/striatum regions, we performed a psychophysiological interaction (PPI) analy-

sis. In Experiment I, we found that the vmPFC and dlPFC, but not the striatum, could determine

choices in healthy participants. Furthermore, we found that the dlPFC showed significant functional

connectivity with the vmPFC, but not the striatum, when making decisions. These results could be

replicated in Experiment II with an independent sample of healthy participants. In Experiment III, the

choice-decoding accuracy in the vmPFC and dlPFC was lower in patients with addiction (smokers

and participants with Internet gaming disorder) than in healthy participants, and decoding accuracy

in the dlPFC was related to impulsivity in addicts. Taken together, our findings may provide neural

evidence supporting the hypothesis that value evaluation and self-control processes both guide the

intertemporal choices, and might provide potential neural targets for the diagnosis and treatment of

impulsivity-related brain disorders.
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1 | INTRODUCTION

Human beings often make decisions while considering future events

that are delayed in time relative to when the choice is made, this is

called intertemporal decision-making (Green & Myerson, 2004).

For example, deciding to make a large purchase or not can affect a

person's consumption patterns for months into the future, or deciding

to take drugs may put a person at risk of long-term health problems

in individuals with a drug addiction. Intolerance of long-term

rewards, when persistently expressed, is considered maladaptive and

symptomatic of several brain disorders, including addiction, attention-

deficit hyperactivity disorder, and affective disorders (Dalley &

Robbins, 2017).

Two processes are involved in determining the behavioral choices

during intertemporal decision-making (Figner et al., 2010; Kable &

Glimcher, 2007; McClure, Laibson, Loewenstein, & Cohen, 2004):

(a) the value evaluation process and (b) the self-control process. For

the value evaluation process, the magnitude of the reward and the

delay of options are evaluated and integrated into a single measure.

For instance, Kable and Glimcher (2009) and Hare, Hakimi, and Rangel

(2014) reported that the ventral medial prefrontal cortex (vmPFC) as

well as the striatum assessed various attributes of options and inte-

grated them into a single net value for an option as a whole. Human

neuroimaging studies using an intertemporal decision-making task

have shown that blood-oxygen-level-dependent (BOLD) signals in the

vmPFC and striatum correlate with the subjective values (Kable &

Glimcher, 2007). More recent meta-analyses have also shown that the

vmPFC and striatum are implicated in value representation (Bartra,

McGuire, & Kable, 2013; Clithero & Rangel, 2014). An immediate smal-

ler reward might be valued as greater than a larger reward that is

delayed, but the delayed option may still be chosen because of interven-

ing self-control processes (Figner et al., 2010); the dorsolateral prefron-

tal cortex (dlPFC) is considered to be important in this process (Figner

et al., 2010; McClure et al., 2004; van den Bos, Rodriguez, Schweitzer, &

McClure, 2015). Furthermore, Hare, Camerer, and Rangel (2009) and

Peters and D'Esposito (2016) reported that the dlPFC exerted control

over behavior by modulating vmPFC value representations.

In the present study, using multivoxel pattern analysis (MVPA),

we sought to test how much information about a specific choice dur-

ing intertemporal decision-making could be decoded from local pat-

terns in the brain regions implicated in the value evaluation, as well as

self-control processes. This may provide neural evidence to support

the hypothesis that both value evaluation and self-control processes

are critical cognitive components of making behavioral choices during

intertemporal decision-making.

MVPA takes into account the spatial patterns of voxel activity to

examine what information is expressed jointly (Cohen et al., 2017). It

is an appropriate method for decoding cognitive processes and has

been widely used in recent functional magnetic resonance imaging

(fMRI) studies (Chavez, Heatherton, & Wagner, 2016; Koizumi et al.,

2016), including those on decision-making (Domenech, Redoute, Koe-

chlin, & Dreher, 2017; Huang, Soon, Mullette-Gillman, & Hsieh, 2014;

Pogoda, Holzer, Mormann, & Weber, 2016; Vickery, Chun, & Lee,

2011; Wang et al., 2014). Neural activity patterns in the frontal lobe

can be used to decode subjective choices during a reward-learning

task in humans (Hampton & O'Doherty, 2007) as well as in macaques

(Rich & Wallis, 2016).

Steep delay discounting, as a correlate of high impulsivity, has

been implicated in addictive behaviors (Amlung, Vedelago, Acker,

Balodis, & MacKillop, 2017). Specifically, smokers show higher impul-

sivity than healthy controls (Barlow, McKee, Reeves, Galea, & Stuck-

ler, 2016). Although Luo, Ainslie, Giragosian, and Monterosso (2011)

and Kobiella et al. (2014) have shown that different brain activity in

smokers as compared to healthy controls when choosing long-term

reward versus early reward, these two studies did not well control

2 hr of smoking cessation (Hukkanen, Jacob, & Benowitz, 2005).

Nicotine may effect on the findings. Participants with Internet-gaming

disorder were also found to present steeper discounting than recrea-

tional Internet game users or healthy individuals (Wang et al., 2016).

In their study, participants with Internet-gaming disorder showed

altered brain activities in the anterior cingulate cortex and parahippo-

campal gyrus compared to recreational Internet-gaming users, as well

as in the inferior frontal gyrus as compared to healthy controls, in tri-

als choosing between long-term reward versus immediate reward.

Therefore, previous studies did not implicate self-control–related and

value-evaluation–related brain regions in impulsive choices in partici-

pants with Internet-gaming disorder. Although the great potential of

MVPA in decision-making studies has been revealed, previous studies

(e.g., Luo et al. (2011) and Kobiella et al. (2014)) did not use MVPA to

relate brain activity patterns to impulsive choices in smokers, which

involve abnormal decision-making. In the present study, we also

sought to decode choices from brain activity in addictive disorders.

Three regions of interest (ROIs), including the vmPFC and striatum,

implicated in value evaluation processes, and the left dlPFC, implicated

in the self-control process, were specified according to previous studies

(Figner et al., 2010; Hare et al., 2009; Kable & Glimcher, 2007; Li et al.,

2013; McClure et al., 2004). Using MVPA, we evaluated the amount of

information about specific choices that could be decoded from local

patterns in each ROI. If two or all brain regions contained information

about specific choices, it would be reasonable to test whether brain net-

works are built for making decisions. We assessed this via PPI analysis.

However, as the replication of decoding and functional connectivity

results may be poor for an independent data set (Poldrack et al., 2017),

we tested its reliability in Experiment II to provide validation for the

results of Experiment I, using independent data sets with different age,

education, and location, acquired on different MRI scanners. Finally, we

performed Experiment III to test whether the decoding accuracy was

impaired in patients with mental disorders involving abnormal impulsiv-

ity, for example, individuals with addictions.

2 | MATERIALS AND METHODS

2.1 | Experiment I

2.1.1 | Participants

Forty-six cognitively healthy male participants were recruited in the

present study [age: mean, 23.8 years; SD, 1.7 years; range,

20–27 years; education: mean, 17.0 years; SD, 1.8 years; range,
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12–21 years]. To avoid intense emotions effect on the decision-

making (Al Omari, Razeq, & Fooladi, 2016; Lempert & Phelps, 2016),

females were not recruited in the present study. All the participants

had normal or corrected-to-normal vision, and reported no history of

neurological or psychiatric disorders, or the use of addictive drugs.

The study procedures were performed by a trained PhD student. All

participants had negligible head motion (translation <2 mm and rota-

tion <2�) during fMRI scanning.

This study was approved by the Human Research Ethics Commit-

tee of the University of Science and Technology of China. The

methods and procedures used in this study were carried out in accor-

dance with the approved guidelines. Written informed consent was

obtained from all participants before the study, and adhered to the

tenets of the Declaration of Helsinki.

2.1.2 | Task paradigm

We used a DDT as in our previous study (see Figure 1a in Li et al.,

2013). The first screen presented the immediate option, which always

offered a reward of a magnitude of 50 Chinese Yuan at a delay of

0 days, followed by the delayed option. Delayed options were com-

bined with two sets of monetary magnitudes, and two sets of time

delays, yielding two runs with 42 trials each (see Supporting informa-

tion Methods for more details). The order of the two runs was coun-

terbalanced across participants.

A practice version of the DDT (ca. 5 min and without any pay-

ment) was performed before scanning, to familiarize participants with

the task. To verify that discounting measures were reliable, partici-

pants were informed that they would obtain actual payment in cash

on one randomly drawn trial of the task based on their choice. Partici-

pants obtained the payment at the end of the scanning if the outcome

of the selected trial was an immediate gain; otherwise, payment was

sent to participants with the specified delay (Li et al., 2013).

2.1.3 | Behavioral analysis

The details of behavioral analysis have been described in our previous

study (Li et al., 2013). Briefly, the behavioral choices were fit using a

logistic function to calculate the monetary amount where there was

an equal probability of selecting the immediate versus the delayed

option at the specific delay. Then, the monetary amount was defined

as the indifference point, to calculate the discounted value (DV, frac-

tion of immediate value) for each delay,

DV¼magnitude of immediate reward
indifference point

, ð1Þ

where the magnitude of immediate reward in the present study was

always 50 Chinese Yuan. DVs were fit against the delays (D) with the

hyperbolic discounting model (Green & Myerson, 2004),

DV¼ 1
1+ k×D

, ð2Þ

called the discounting curve, where k is an individual's discounting

rate, with larger k values indicating higher impulsivity in decision-mak-

ing. Before the analyses, the discounting rate, k, was normalized by

log transformation (Hariri et al., 2006).

The subjective value for each delayed option was estimated by

multiplying the money magnitude of the delayed option by the frac-

tion for that delay (Kable & Glimcher, 2007).

Here, we used “difficulty” to indicate self-control level, as a previ-

ous study (McClure et al., 2004) suggested that impulse control may

be preferentially elicited during difficult decisions. Trials near the dis-

counting curve demand more consideration (i.e., more time to make a

decision) and are considered as “hard” trials, whereas trials far from

the discounting curve represent “easy” trials. Hard trials and easy trials

were defined, to distinguish among the difficulty levels of decision-

making (Hoffman et al., 2008). The distance to the discounting curve

(dist) for each trial was defined as DV0−cDV, where

DV0 ¼magnitude of immediate reward
magnitude of delayed reward

, ð3Þ

and cDV was the predicted value based on a participant's discounting

curve for the corresponding delay. Using the normal distribution func-

tion, we fit response time (RT) against the dist:

RT¼A* exp −
1
2

dist
σ

� �2
 !

+C: ð4Þ

Trials outside the region �σ were defined as easy trials and the

remaining trials included in the region were defined as hard trials. For

FIGURE 1 Beta values for subjective value and difficulty level in Experiment I. (a) The mean BOLD signal of the ventromedial prefrontal cortex

(vmPFC) and striatum was significantly correlated with the subjective value. The mean BOLD signal of the left dorsolateral prefrontal cortex
(dlPFC) was not significantly correlated with the subjective value. (b) The mean BOLD signal of the left dlPFC was significantly correlated with the
difficulty level. The mean BOLD signal of the vmPFC and striatum were not significantly correlated with the difficulty level. *Significant at
p < .05/3; n.s., not significant; error bars, SEM; SV, subjective value
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trials with a delayed option involving either 50 Yuan or 0 days, partici-

pants could make choices by simply comparing the digits of the other

information in the options, without integrating information about

money magnitude and time delay that is considered to be an essential

process in the DDT (Green & Myerson, 2004; Li et al., 2013). There-

fore, these trials, labeled as control trials, were excluded from the hard

and easy trials (see Supporting information Figure S1) and from

decoding analysis.

2.1.4 | fMRI data acquisition and preprocessing

All MRI data were acquired using 3-T, 8-channel head coil Siemens

Magnetom Trio scanners (Siemens Medical Solutions, Erlangen, Ger-

many) in the Anhui Provincial Hospital, Hefei, China. A circularly polar-

ized head coil with foam padding was used to restrict head motion.

Functional images were acquired using a T2*-weighted echo-planar

imaging sequence (Repetition Time [TR] = 2 s, Echo Time [TE] = 30 ms,

Field of view [FOV] = 240 mm) with 33 axial slices (3.7-mm thickness,

no gap), covering the whole brain. Two runs of 257 volumes were

acquired. Between the two runs, there was an interval of ca. 1 min.

High-resolution T1-weighted spin-echo images were also collected for

anatomical overlay.

The preprocessing protocol was the same as that used in our previ-

ous study (Li et al., 2013). The imaging data were processed using Anal-

ysis of Functional Neuroimages (version AFNI_2011_05_26_1457)

software (Cox, 1996). The first two volumes of each run were dis-

carded. The volumes were corrected for temporal shifts between slices,

corrected for head motion, and grand-mean scaled. We also performed

linear trend removal using linear regression.

2.1.5 | fMRI data analysis. Step 1: General Linear Model
(GLM) 1 for subjective value and difficulty

We used a GLM to confirm whether the BOLD signals in our ROIs

(i.e., the vmPFC, striatum, and dlPFC) were correlated with the subjec-

tive value or difficulty level.

The preprocessed fMRI data were spatially smoothed with a

Gaussian kernel (full-width at half-maximum [FWHM] = 8 mm). This

spatial smoothing was carried out selectively for this GLM. GLM anal-

ysis employed a multiple regression model that included one subjec-

tive value regressor for the delayed option (defined as subjective

value when both money and time information of the delayed option

was presented; 0 for the other epochs), and two choice regressors for

hard and easy trials (defined as 1 when current trial was hard one or

easy one, respectively, and 0 for the other epochs), and several nonin-

terest regressors, including those for head motion (six motion parame-

ters), a constant for each of the two runs, and general period effects

(defined as 1 for general period effects for the epochs when immedi-

ate option was presented or when the first information of delayed

option was presented or when choice was required, respectively, and

0 for the other epochs).

The map of beta values of the subjective value regressor and of

the hard minus easy regressors (difficulty level) was based on the mul-

tiple regression analysis findings, and were then transformed to Talair-

ach space (resampled voxel size: 3 × 3 × 3 mm3) according to the

spatial transformation between the anatomical data and the Talairach

space. To avoid “double dipping” (Kriegeskorte, Simmons, Bellgowan, &

Baker, 2009), the coordinates of the ROIs (Table 1) were specified as

coordinates of the voxel of interest according to our previous study

(Li et al., 2013), and 5-mm spheres surrounding the coordinates were

defined as masks for the ROIs. For generalizing our results, analyses

with other radius (6 mm, 8 mm, and 10 mm) were also performed

(see Supporting information Methods and Table S2). As reported in

our previous study (Li et al., 2013), activity in the right vmPFC and

right striatum (Table 1) was significantly associated with the valua-

tion process, which was consistent with results of other studies

(Kable & Glimcher, 2007; McClure et al., 2004; Pine et al., 2009).

The left dlPFC was specified as a ROI because most previous studies

have implicated the left, but not right, dlPFC in self-control (Figner

et al., 2010; Hare et al., 2009). Note that the participants in the pre-

sent study were independent from those in our previous study

(Li et al., 2013). The average beta values for subjective value and dif-

ficulty within a mask were acquired for each ROI and for each

participant.

The average beta value was entered into a group-level one-

sample t test separately for each ROI, for the subjective value as well

as for the difficulty level. Bonferroni correction was used to correct

for multiple comparisons (corrected p < .05/3). The Cohen's d values

were calculated via G*Power 3.1 software (Faul, Erdfelder, Lang, &

Buchner, 2007). We also corrected the ROI by using small volume cor-

rection (Supporting information Methods and Results for more

details). We also performed whole-brain analysis for the subjective

value and difficulty, and results were shown in Supporting information

Figure S2.

We tested whether the main effect of behavioral choices

(i.e., choosing long-term rewards vs. choosing short-term rewards)

reached significance in the vmPFC and dlPFC through traditional uni-

variate methods, that is, GLM (Supporting information Methods and

Results).

2.1.6 | Step 2: Decoding from each ROI activity using
pattern classification

We evaluated the amount of information about a specific choice that

could be decoded from local patterns in each ROI. Data extraction,

that is, Least Squares—Separate, was adapted from a previous study

(Mumford, Turner, Ashby, & Poldrack, 2012). The preprocessed

volumes were transformed to Talairach space (resampled voxel size:

3 × 3 × 3 mm3) according to the spatial transformation between the

anatomical data and the Talairach space. We ran a separate GLM for

each choice (i.e., both immediate and delayed choices), wherein the

choice was modeled as the regressor of interest and all other choices

TABLE 1 ROIs defined by our previous study (Li et al., 2013)

Regions xa y z

vmPFC 4.9 32.5 13.7

Striatum 10.5 10.8 8.8

Left dlPFC −41.6 21.3 32.1

Note. dlPFC = dorsolateral prefrontal cortex; L = left; R = right; ROI =
region of interest; vmPFC = ventromedial prefrontal cortex.
a Voxel coordinates in Talairach space.
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were combined into a single regressor. Similar to the previous study

(Mumford et al., 2012), the regressors only modeled the time points

between 2 s and 6 s after the choices, to capture the peak of the

response. The GLM also included the six motion parameters as nui-

sance variables. This analysis was based on unsmoothed data to allow

extraction of the complete information in the spatial patterns and to

maximize sensitivity (Soon, Brass, Heinze, & Haynes, 2008).

In this study, we adapted MVPA from a previous study (Soon

et al., 2008). The approach examined the information in local patterns

of brain activity surrounding each voxel of interest, vi. Therefore, for

each voxel vi, we examined whether its local pattern contained spatial

information that could decode the specific choice. For a given voxel vi,

we defined a spherical cluster of voxels (M1…N) with 33 voxels

(Kriegeskorte, Goebel, & Bandettini, 2006) centred on voxel vi. For

each voxel M1...N in the fixed spherical cluster, we extracted the

activation (t value for the choice trial) separately for immediate and

delayed choice trials. This generated two N-dimensional pattern

vectors, namely VI, 1...N and VD, 1...N, representing the local response

patterns in the spherical cluster in trials in which the participants

chose between an immediate and a delayed option. By recognizing

local patterns related to each choice, these pattern-based decoders

were trained to predict the specific choice (fivefold cross-validation)

(Soon et al., 2008). Participant's choices that were extracted from two

runs were used to train and test the classifier. The fivefold cross-

validation was performed using the Statistics and Machine Learning

Toolbox in MATLAB (version 8.6.0.267246; MathWorks, Natick,

Massachusetts, America), yielding the average decoding accuracy of

the spherical environment of the central voxel vi. We used a radial

basis kernel, and the cost parameter was 5.06 (Mumford et al., 2012).

The procedure was then repeated for the next position at the voxel of

interest vj. Finally, the average decoding accuracy for each ROI was

acquired for each participant (see Supporting information Methods

and Tables for more details).

We investigated the amount of information that could be

decoded from local patterns for each ROI. Therefore, for each ROI,

the decoding accuracy was tested against chance level. To assess

whether decoding accuracy was influenced by impulsivity, correlations

between the discounting rate and the decoding accuracy from each

ROI were tested using Pearson's correlations. Bonferroni correction

was used to correct for multiple comparisons.

2.1.7 | Step 3: Psychophysiological interaction

To investigate the relationship between the dlPFC and vmPFC or stri-

atum regions, we performed a PPI analysis (McLaren, Ries, Xu, & John-

son, 2012). We sought to determine whether the dlPFC showed

greater functional connectivity with the vmPFC or striatum when par-

ticipants selected an option (we also tested whether the dlPFC

showed greater functional connectivity with the vmPFC or striatum

when choosing delayed choice than immediate choice, however, the

results were not significant(Supporting information Methods and

Results). In the analysis, we estimated a GLM for the dlPFC using the

following protocol (Minati, Grisoli, Seth, & Critchley, 2012). First, we

created a time series by extracting the mean time courses within the

dlPFC. Second, we computed the interaction terms between the

dlPFC and decision, which equals 1 if the participant chooses the

immediate or delayed option, and 0 at baseline. Third, we estimated a

PPI GLM for the dlPFC containing the following regressors:

(a) decision, (b) dlPFC time series, (c) interaction, and (d) all the regres-

sors in GLM 1 (see Step 1). We computed contrasts for the interaction

regressor for the dlPFC for each participant. Note that this contrast

examines functional connectivity between the dlPFC and vmPFC or

striatum ROIs, which is similar to the process described by Lim

et al. (2016).

The contrasts for the interaction regressor were averaged for the

vmPFC and striatum, yielding two connectivity strengths for each

participant. To investigate whether the dlPFC showed functional con-

nectivity with the two ROIs when participants selected an option, the

two connectivity strengths were entered in a group t test. Bonferroni

correction was used to correct for multiple comparisons.

2.1.8 | Step 4: ROIs acquired from one meta-analysis
about subjective value

To complement brain regions activated during DDT task, we also re-

ran all analysis with ROIs reported in the meta-analysis about subjec-

tive value (Clithero & Rangel, 2014). The results were shown in

Supporting information Table S1. Whether the prediction error or

subjective goal value, can better account for striatal BOLD activity

was also tested (see Supporting information Methods and Results).

2.2 | Experiment II

2.2.1 | Participants

Twenty-seven cognitively healthy male participants were recruited for

Experiment II. None of the participants reported any history of neuro-

logical or psychiatric disorders, or the use of addictive drugs. This pro-

cedure was performed by a trained PhD student. All participants

performed the same version of the DDT used in Experiment I. Five

participants were excluded due to excessive head motion (translation

>2 mm or rotation >2�) during fMRI. The remaining participants (age:

mean, 20.0 years; SD, 1.6 years; range, 18−24 years; Education:

mean, 14.2 years; SD, 1.6 years; range, 12−17 years) were used for

the final analysis.

2.2.2 | Data acquisition and analysis

All the MRI data were acquired using 3-T, 12-channel head coil Sie-

mens Magnetom Trio scanners (Siemens Medical Solutions, Erlangen,

Germany) in the Xuanwu Hospital Capital Medical University, Beijing.

Experiment II used the same scanning parameters as those used in

Experiment I. The behavioral analysis, GLM analysis, and decoding

analysis were performed as in Experiment I.

2.3 | Experiment III

2.3.1 | Participants

Participants with Internet-gaming disorder

Nineteen male participants with Internet-gaming disorder (age: mean,

20.5 years; SD, 3.1 years; range, 16−25 years; Education: mean,

12.3 years; SD, 2.7 years; range, 9−17 years) were recruited. Partici-

pants with Internet-gaming disorder met the Diagnostic and Statistical
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Manual of Mental Disorders the 5th Edition (DSM-5) criteria for

Internet-gaming disorder (facing at least five of the nine inclusionary

criteria over a 12-month period). None of the participants reported

any history of neurological or psychiatric disorders, or the use of

addictive drugs, and performed the same version of the DDT used in

Experiment I. The criteria for participants with Internet-gaming disor-

der were based on structured clinical interviews conducted by two

psychiatrists.

Smokers

Thirteen male cigarette smokers (age: mean, 25.3 years; SD, 2.7 years;

range, 22−31 years; Education: mean, 15.4 years; SD, 2.1 years;

range, 11−19 years) were recruited. None of the participants reported

any history of neurological or psychiatric disorders, or the use of

addictive drugs (except nicotine), and performed the same version of

the DDT used in Experiment I.

The number of cigarettes smoked per day for all smokers was

greater than 10 for at least 1 year. This procedure was overseen by at

least one author. Time period of 2 hr of smoking cessation was

required after having smoked their last cigarette, as the half-life of nic-

otine is about 2 hr (Hukkanen et al., 2005). During this 2-hr period,

smokers wrote informed consent and read standardized instructions,

and completed several questionnaires. These procedures were per-

formed under the supervision of one author.

This study was approved by the Human Research Ethics Commit-

tee of the University of Science and Technology of China. The

methods and procedures used in this study were carried out in accor-

dance with the approved guidelines. Written informed consent was

obtained from all participants before the study, and adhered to the

tenets of the Declaration of Helsinki.

2.3.2 | Data acquisition

Participants with Internet-gaming disorder

All MRI data for participants with Internet-gaming disorder were

acquired using the same scanners as those in Experiment II at the

Xuanwu Hospital Capital Medical University, Beijing. We used the

same scanning parameters as those used in Experiment II.

Smokers

For the smokers, all MRI data were acquired using the same scan-

ners as those in Experiment I at the Anhui Provincial Hospital,

Hefei. We used the same scanning parameters as those used in

Experiment I.

2.3.3 | Data analysis

Participants with Internet-gaming disorder

The behavioral analysis, PPI, and decoding analysis followed the same

procedures as those used in Experiment I. We investigated the

amount of information that could be decoded from local patterns for

each ROI in participants with Internet-gaming disorder. Therefore, for

each ROI, the decoding accuracy was tested against chance level. We

tested whether the decoding accuracy in participants with Internet-

gaming disorder was lower than that in healthy participants, using a

t test.

2.3.4 | Smokers

The analyses for smokers' data were the same as those used for the

data of participants with Internet-gaming disorder.

All participants

We also performed group comparisons on the functional connectivity

between the dlPFC and vmPFC or striatum and decoding accuracy for

each ROI using one-way analysis of variance (ANOVA), and results

were shown in Supporting information Results. We performed group

comparisons on the discounting rate in all participants (healthy partici-

pants, smokers, and individuals with Internet-gaming disorder) using

one-way ANOVA. We also performed analysis of covariance

(ANCOVA) while controlling for their age and education level. To

determine whether decoding accuracy from all ROIs differed between

participants with Internet-gaming disorder and smokers, we per-

formed two-way repeated ANCOVA (3 ROIs × 2 Groups) while con-

trolling for their age and education level.

We tested whether the discounting rate was related to the

decoding accuracy for each ROI in patients with Internet-gaming dis-

order and smokers, controlling for the variance arising from different

sites. Previous studies about addiction (DeWit, Adlaf, Offord, &

Ogborne, 2000; Filbey et al., 2014; Wannamethee, Camargo, Manson,

Willett, & Rimm, 2003) and delay discounting task (Achterberg, Peper,

van Duijvenvoorde, Mandl, & Crone, 2016; Scheres, Tontsch,

Thoeny, & Sumiya, 2014) have shown that typical nonlinear relation-

ship in human brain or behaviors. For example, Filbey et al. (2014)

found that the quadratic relationship between duration of marijuana

use and forceps minor's fractional anisotropy. Achterberg et al. (2016)

found that rather than linear model, age-related change in impulsivity

was best described by a quadratic age-model linear. A general linear

model was used to test this relationships. The corrected Akaike infor-

mation criterion (AICc) was used to determine model selection (Filbey

et al., 2014). Model 1: y = bx + cz + d + ε; Model 2: y = ax2 + bx +

cz + d + ε, where y is discounting rate, x is decoding accuracy, z is

group factor, a, b, c, and d are parameters, and ε is a vector of errors.

The t-test was run for b parameter if Model 1 was selected. The t-test

was only run for a parameter if Model 2 was selected, as Model

2 meant nonlinear relationship between discounting rate and

accuracy.

3 | RESULTS

3.1 | Experiment I

The demographic data of participants in Experiment I are shown in

Table 2. Group analysis showed that the mean BOLD signal in the

vmPFC (t45 = 3.772, pcorrected = .001, Cohen’s d = .556) and striatum

(t45 = 4.506, pcorrected < .001, Cohen’s d = .664) were significantly

correlated with the subjective value (Figure 1a). The mean BOLD sig-

nal in the left dlPFC (t45 = 1.572, pcorrected = .369) was not signifi-

cantly correlated with the subjective value (Figure 1a). Group analysis

showed that the mean BOLD signal in the left dlPFC (t45 = 6.560,

pcorrected < .001, Cohen’s d = .967) was significantly correlated with

the difficulty level (Figure 1b). The mean BOLD signals in the vmPFC
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(t45 = 2.374, pcorrected = .066) and striatum (t45 = − 0.815, pcorrected >

.99) were not significantly correlated with the difficulty level

(Figure 1b).

We found that the local patterns in the vmPFC (t45 = 3.045,

pcorrected = .012, Cohen’s d = .449) and the left dlPFC (t45 = 3.132,

pcorrected = .009, Cohen’s d = .462), but not those in the striatum

(t45 = 0.957, ns), contained information encoding behavioral choices

(Figure 2).

The left dlPFC showed significant functional connectivity with

the vmPFC (t45 = 5.686, pcorrected < .001, Cohen’s d = .838), but not

with the striatum (t45 = 1.682, pcorrected = .199) when participants

selected an option versus baseline (Figure 3).

Correlations between the discounting rate and decoding accuracy

for each ROI were not significant (all pcorrected > .2).

3.2 | Experiment II

The demographic data of participants in Experiment II are shown in

Table 2. The results of the mean BOLD signal related to subjective

value (Figure 4) and difficulty (Figure 4) were consistent with those

observed in Experiment I (see Supporting information Results). Fur-

thermore, the decoding accuracy based on local patterns (Figure 5) in

all the ROIs and functional connectivity (Figure 6) were consistent

with those observed in Experiment I (Supporting information Results).

3.3 | Experiment III

The demographic data of participants in Experiment III are shown in

Table 2.

3.3.1 | Participants with Internet-gaming disorder

We found that the local patterns of all ROIs (all ps > .2) for partici-

pants with Internet-gaming disorder did not contain information

encoding behavioral choices. We found that the vmPFC (t85 = 2.153,

p = .034, Cohen’s d = 0.559), but not the striatum or the dlPFC

(both ps > .1), in patients with Internet-gaming disorder showed signif-

icantly lower decoding accuracy values compared to the healthy par-

ticipants (Figure 7).

TABLE 2 Group characteristics in Experiments I, II, and III

Experiment I Experiment II
Experiment III

F-value p-value

Healthy
participants
(n = 46)

Healthy
participants
(n = 22)

Participants with
Internet-gaming
disorder (n = 19)

Smokers
(n = 13)

Sex (% male) 100% 100% 100% 100% — —

Agea–e (mean � SD) 23.8 � 1.7 20.0 � 1.6 20.5 � 3.1 25.3 � 2.7 28.56 <.001

Formal educationa–c,e,f (mean � SD) 17.0 � 1.8 14.2 � 1.6 12.3 � 2.7 15.4 � 2.1 27.16 <.001

Discounting rateb–e,g (mean � SD) −4.25 � 0.74 −4.16 � 0.91 −3.73 � 0.72 −3.07 � 0.88 8.57 <.001

The number of delayed choices 11~50 10~49 11~44 4~38 — —

The number of immediate choices 10~49 11~50 16~48 21~56 — —

a Significant difference between Experiments I and II.
b Significant difference between Experiments I and participants with Internet gaming disorder.
c Significant difference between Experiments I and smokers.
d Significant difference between Experiments II and smokers.
e Significant difference between participants with Internet-gaming disorder and smokers.
f Significant difference between Experiment II and participants with Internet-gaming disorder.
g Log (discounting rate) transformed.

FIGURE 2 Decoding the choices from local patterns in all the regions

of interest (ROIs) in Experiment I. Healthy participants in Experiment I.
*Significant at p < .05/3; n.s., not significant; error bars, SEM

FIGURE 3 Functional connectivity between dorsolateral prefrontal

cortex (dlPFC) and other regions of interest (ROIs) in the value
evaluation process when participants selected an option versus
baseline during the delayed discounting task (DDT) in Experiment I.
*Significant at p < .05/2; n.s., not significant; error bars, SEM
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3.3.2 | Smokers

We found that the local patterns of all ROIs (all ps > .2) in smokers did

not contain information encoding behavioral choices. We found that

the left dlPFC (t85 = 3.005, p = .004, Cohen’s d = 0.910), but not

the striatum or the vmPFC (both ps > .3), in smokers showed signifi-

cantly lower decoding accuracy values than those of healthy partici-

pants (Figure 7).

All participants

One-way ANOVA showed a significant group effect on the discount-

ing rate (F(3, 96) = 8.573, p < .001, partial η2 = .211). The group

effect on the discounting rate remained significant after controlling

for their age and education level (p = .001). Post hoc analysis with the

least significant difference method showed that the discounting rates

in participants with Internet-gaming disorder and smokers in Experi-

ment III were higher than that in healthy participants in Experiment I

(both ps < .05) (Table 2). There were no significant differences in the

decoding accuracy values of participants with Internet-gaming disor-

der and smokers (all ps > .36) while controlling for their age and edu-

cation level.

There was a significant nonlinear relationship between the

discounting rate and decoding accuracy from the left dlPFC in partici-

pants with Internet-gaming disorder and smokers (t28 = 2.234,

p = .034, Figure 8 and Table 3). No significant relationships were

found between discounting rate and decoding accuracy from the

vmPFC or striatum (both ps ≥ .1).

4 | DISCUSSION

This study provides neural evidence supporting the hypothesis that

both value evaluation and self-control processes are critical cognitive

components for behavioral outcome, that is, participants' choices dur-

ing intertemporal decision-making. Activity in both the vmPFC and

the striatum was correlated with the subjective goal value, and activity

in the dlPFC was also correlated with the difficulty level. In Experi-

ments I and II, the dlPFC and the vmPFC, but not the striatum, con-

tained information that encoded specific behavioral choices.

Furthermore, the dlPFC showed functional connectivity with the

vmPFC, but not the striatum, during decision-making. In Experiment

III, as compared to healthy participants, the decoding accuracy of the

choices in the vmPFC and dlPFC was decreased in individuals with

FIGURE 4 The beta value separately for subjective value as well as difficulty level and for each ROI in Experiment II. (a) The significant regions of

interest (ROIs) of subjective value regressor included ventromedial prefrontal cortex (vmPFC) and striatum. The left dorsolateral prefrontal cortex
(dlPFC) was not significantly correlated with the subjective value regressor. (b) The significantly activated ROI of difficulty level was the left
dlPFC. The vmPFC and striatum was not significantly correlated with difficulty level. *Significant at p < .05; n.s., not significant; error bars, SEM

FIGURE 5 Decoding the choices from local pattern in all regions of

interest (ROIs) in Experiment II. *Significant at p < .05; n.s., not
significant; error bars, SEM

FIGURE 6 Functional connectivity between dorsolateral prefrontal

cortex (dlPFC) and other regions of interest (ROIs) in the value
evaluation process in Experiment II. *Significant at p < .05; n.s.,
not significant; error bars, SEM
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addictions. Our data extended the role of these brain areas to deter-

mining behavioral choices in the context of intertemporal decision-

making and provide key insights into why patients with addictions

prefer immediate reward at the risk of long-term physical and mental

health or academic performance.

4.1 | Brain regions involved in value evaluation and
self-control processes guiding participant choices

We found that the vmPFC, which is related to value evaluation

(Bartra et al., 2013; Clithero & Rangel, 2014), and the dlPFC, which is

related to self-control (Figner et al., 2010; Hare et al., 2009), could

guide human behavioral choices during intertemporal choices by spa-

tial patterns of activity of multiple voxels. Previous studies have also

revealed that various types of decision-making could be decoded from

brain activity (Domenech et al., 2017; Huang et al., 2014; Pogoda

et al., 2016; Vickery et al., 2011).

In the present study, the main effect of behavioral choices

(i.e., choosing long-term rewards vs. choosing short-term rewards)

failed to reach significance in the vmPFC and dlPFC through tradi-

tional univariate methods, that is, GLM (see Supporting information

Methods and Results). This is consistent with previous studies using

univariate methods in the GLM on healthy adults. Particularly, Kable

and Glimcher (2007) and Monterosso et al. (2007) used whole-brain

exploratory analyses and reported no brain areas corresponding to

the main effect of choice. Using ROI analyses, several other studies

have shown that activity in the dlPFC, a key brain area related to self-

control processes, also does not correlate with the main effect of

choice (Jimura, Chushak, Westbrook, & Braver, 2017; Monterosso

et al., 2007), although shallow discounters show greater dlPFC activa-

tion than steep discounters when making difficult delayed choices

(Jimura et al., 2017). Hare et al. (2014) have shown that the dlPFC

showed greater activity when choosing long-term rewards; however,

such activation does not control general decision processes well, as

they compared choosing long-term rewards with baseline. Another

study found that the insula might be implicated in choice making;

however, this study used hypothetical rewards (Wittmann, Leland, &

Paulus, 2007).

In contrast to univariate methods, MVPA allowed us to examine

the spatial patterns of ensembles of voxel activities, to determine the

type of information collectively represented in this way. MVPA was

sensitive to this information, as neuronal populations may be distrib-

uted heterogeneously across voxels (Cohen et al., 2017). Therefore,

our MVPA findings extended the role of these brain regions to encod-

ing specific behavioral choices and may provide neural evidence sup-

porting the hypothesis that both value evaluation and self-control

processes are critical cognitive components in making behavioral

choices (Figner et al., 2010; Kable & Glimcher, 2007). The decoding

accuracy in the vmPFC and dlPFC was not correlated with impulsivity

in participants, suggesting that the decoding analysis can be poten-

tially generalized to more or less impulsive healthy individuals.

We also identified functional connectivity between the left dlPFC,

involved in the self-control process, and vmPFC, involved in the value

evaluation process, when making decisions. dlPFC−vmPFC coupling

has been implicated in behavioral choices during intertemporal

decision-making (Hare et al., 2014; Steinbeis, Haushofer, Fehr, &

FIGURE 7 Group differences on decoding accuracy between Experiments I, II, and III. Compared to the healthy participants in Experiments I and

II, participants with Internet-gaming disorder and smokers in Experiment III showed significantly lower decoding accuracy from the ventromedial
prefrontal cortex (vmPFC) and the left dorsolateral prefrontal cortex (dlPFC), respectively. *Significant at p < .05; n.s., not significant; error
bars, SEM

FIGURE 8 Relationship between discounting rate and decoding

accuracy from the left dorsolateral prefrontal cortex (dlPFC) in
patients with Internet-gaming disorder and smokers (Experiment III).
There was a significant nonlinear relationship between discounting
rate and decoding accuracy from the left dlPFC in patients with
Internet-gaming disorder and smokers. Nonlinear relationship
suggests that both extremely good and extremely poor decoding
accuracy in dlPFC is related to steeper discounting rates. This may
demonstrate the complexity of addictive behaviors' effect on the
impulsivity, particularly on addictive behaviors' interaction with brain.
The discounting rates were normalized by log transformation
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Singer, 2016) and in self-control processes in other decision-making

tasks involving self-control. Taken together with the finding that the

vmPFC and dlPFC could guide choices, this finding further indicates

that the vmPFC and dlPFC form part of brain networks necessary for

decision-making.

There is an ongoing debate about the precise functional role of

the dlPFC in the self-control involved in decision-making (Kable,

2010). The dlPFC might act in opposition to immediate choices, that

is, a more influence on choice (Figner et al., 2010), or alternatively,

the dlPFC might modulate the value representations elsewhere in

the brain, that is, inhibitory relationship with the vmPFC (Hare et al.,

2009; Lim et al., 2016). We found that the dlPFC could encode the

specific choice, and that the dlPFC was positively connected with

the vmPFC when selected an option, and that the dlPFC did not

show a significant inhibitory relationship with the vmPFC when

selected delayed choice versus immediate choice (see Supporting

information Methods and Results). Based on these findings, our data

support the former proposal: the dlPFC plays a role in the choice

process.

4.2 | Does the striatum play a role in the
computation of subjective values during intertemporal
decision-making?

In the present study, we found that the activities of the vmPFC and

striatum were correlated with the subjective goal value. This is consis-

tent with results from previous fMRI studies that have identified the

vmPFC as well as the striatum as playing a role in value evaluation

during decision-making (Kable & Glimcher, 2007; Li et al., 2013). Inter-

estingly, we found that the vmPFC, but not the striatum, contained

information that encoded behavioral choices and that the dlPFC was

connected to vmPFC, but not to the striatum, during decision-making.

Our data suggest disassociated roles for the vmPFC and the striatum

in value computation during intertemporal decision-making.

Multiple value computations, including prediction errors and

subjective goal values, are critical to making adaptive choices

(Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008; Schultz, Dayan, &

Montague, 1997). Specifically, prediction errors measuring the deviations

from previous reward predictions are used to learn the value of the con-

ditions of the world, and are, therefore, primary contributors to making

predictions. Subjective goal values, measuring the predicted reward for

each action under consideration, are used to guide the actions in order

to acquire the most valuable benefit when making decisions.

According to the disassociated roles of the vmPFC and striatum

in the computation of subjective goal values and prediction errors in

food-based bid decision-making (Hare et al., 2008), there are two

possible explanations of striatal activation during intertemporal

decision-making. First, the striatum responds to prediction error and,

therefore, its activation in intertemporal decision-making may be due

to the strong correlation between subjective value and prediction

error (Hare et al., 2008). Hare et al. (2008) suggested that people track

the average value of previously obtained outcomes, and are positively

surprised when receiving a relatively good offer. The prediction error

at the time of choice offer during intertemporal decision-making is

equal to the subjective value of the current offer minus the prediction

derived from the outcome of previous offers. Second, the striatum

responds to the subjective goal value during intertemporal decision-

making, as this context is different from that in food-based bid

decision-making(Knutson, Rick, Wimmer, Prelec, & Loewenstein,

2007). If the former is correct, the vmPFC, and not the striatum,

should represent behavioral choices during intertemporal decision-

making, and the vmPFC should be functionally connected with the

dlPFC during decision-making. Prediction errors primarily update

reward prediction for each option. They unlikely influence the com-

parisons of reward prediction between options. Therefore, we

inferred choices could not be decoded from striatum if it responded

to prediction error. Brain regions related to prediction errors may be

not connected to brain regions related to self-control. One study

showed that the striatum responds to prediction error and shows

functional connectivity with the dlPFC during the feedback phase

(Park et al., 2010). The prediction error during the feedback phase

should be responsible for trial-by-trial learning, which may be different

from that during the decision phase. If the latter is correct, the vmPFC

and the striatum should both represent behavioral choices and show

functional connectivity with the dlPFC.

As we found that the vmPFC, but not the striatum, contained

information that encoded behavioral choices, and that the dlPFC

showed connectivity with the vmPFC, but not the striatum, during

decision-making, our data support the former alternative. Further-

more, we performed additional analyses, and found that the predic-

tion error, than subjective goal value, can better account for striatal

activity (see Supporting information Methods and Results). The stri-

atum may be involved in learning the value of the conditions of the

world; prediction errors may then be delivered primarily to the

vmPFC, which is responsible for making the predictions. The

vmPFC measures the predicted reward for each action under con-

sideration and uses these predictions to guide behavioral choices.

However, whether these two brain regions are truly involved in

determining the subjective goal value or prediction errors during

intertemporal decision-making should be tested directly in future

studies.

TABLE 3 Associations between discounting rate and decoding accuracy in Experiment III

Decoding accuracy Parametric modela a b c t Ddf p

vmPFC Model 1 — −0.002 0.666 −0.263 29 .795

Discounting rate Striatum Model 2 0.001 −0.157 0.460 1.992 28 .056

Left dlPFC Model 2 0.001 −0.118 0.557 2.234 28 .034

Note. AICc = Akaike information criterion; dlPFC = dorsolateral prefrontal cortex; vmPFC = ventromedial prefrontal cortex.
a The model selection was controlled by AICc.
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4.3 | Potential neural targets for the diagnosis and
treatment of addiction

In Experiment III, we found that the vmPFC and the dlPFC in participants

with addiction did not contain information that reflected the specific

choice, and that the decoding accuracy from both the vmPFC in patients

with Internet-gaming disorder and the dlPFC in smokers were signifi-

cantly lower than those in healthy participants. Consistent with previous

studies showing altered brain activity in the dlPFC in smokers and partic-

ipants with Internet gaming disorder (Clewett et al., 2014; Wang et al.,

2017), our results highlight the important role of dlPFC in addiction from

the perspective of activity patterns. Our data also support the concept

that, in terms of addictions, intact vmPFC function is important during

value representation (Bedi, Lindquist, & Haney, 2015; Qi et al., 2016).

We found that there was a significant relationship between the dis-

counting rate and decoding accuracy in the left dlPFC in patients with

Internet-gaming disorder as well as in smokers. Previous studies have

shown that higher impulsivity in patients with addiction is correlated

with altered functional connectivity of the dlPFC (Clewett et al., 2014;

Wang et al., 2016). Our data confirmed the critical role of the dlPFC in

the impulsive behaviour of individuals with addiction. The dlPFC is criti-

cal for the self-control, therefore, extremely poor decoding accuracy in

dlPFC may suggest loss of self-control over the impulsive behaviors and

may bring about steeper discounting rates. On the other hand,

extremely good decoding accuracy in dlPFC may suggest that the dlPFC

was recruited more to provide self-control to compensate steeper dis-

counting rates. Consistently, recent studies have shown that the struc-

tural connectivity and functional activation in the prefrontal cortex are

nonlinear related to the behavioral indices in addictive and other

domains (Filbey et al., 2014; Grabell et al., 2018) and that dopamine

pathway may be responsible for the nonlinear relationship (Selvaggi

et al., 2018). The nonlinear relationship suggests that the complexity of

addictive behaviors' effect on the impulsivity, particularly on addictive

behaviors' interaction with the dlPFC. Our data provide a key insight

into the preference of patients with impulse control disorders for imme-

diate reward, even at the risk of long-term health or other problems

when faced with decisions with both long-term and short-term effects.

This, as well as the finding that the decoding accuracy in the

dlPFC was not correlated with the impulsivity of healthy participants,

suggests that the neural correlates for steep discounting in the partici-

pants with addiction might be qualitatively different from those for

more impulsive healthy individuals. The altered neural patterns in

patients with addiction might be a reason for their maladaptive behav-

ior. Therefore, our results suggest that altered neural patterns in the

dlPFC may be a potential biomarker that could be used to improve

the diagnosis and treatment for such conditions, a possibility that

should be formally tested in future studies.

5 | LIMITATION AND CONCLUSIONS

Several shortcomings of the present study should be acknowledged.

First, there are other potential cognitive mechanisms, such as salience,

that might have confounded the signals of value evaluation and self-

control in the present study. However, not all the ROIs can encode

behavioral choices. Furthermore, many previous studies have impli-

cated the dorsal anterior cingulate cortex and anterior insula cortex,

and not the vmPFC or dlPFC, in salience processing (Seeley et al.,

2007). Therefore, our findings should not be confounded by salience

processing. Second, only male participants were recruited in the pre-

sent study; we did not focus on the gender effect on the decoding

results. Previous studies have shown that intense emotions are com-

mon symptoms in females during menstruation (Al Omari et al., 2016;

Bata, 2012) and emotions affect intertemporal choices (Lempert &

Phelps, 2016). Therefore, we did not recruit female participants for

the present study. Whether the findings can be generalized to female

participants remains to be demonstrated in future investigations.

Third, at participant level, choosing the immediate option may be

associated with increased difficulty for less impulsive participants, and

greater difficulty for more impulsive participants; therefore, the collin-

earity between difficulty and choice might affect the power for partic-

ipants who did not fall near the middle. However, at group level, we

showed an appropriate positioning of questions relative to discount-

ing (see Supporting information Figure S1). Fourth, as the immediate

option was fixed, choices might not be independent of the subjective

value of the delayed option. However, we found that striatal activity

was associated with the subjective value, but did not contain informa-

tion that encoded behavioral choices, and we found that dlPFC

activity was not associated with the subjective value, but contained

information that encoded behavioral choices. Therefore, the decoding

results might not be explained by the value of the delayed option.

In conclusion, our results have provided neural evidence linking

both value evaluation and self-control processes to participant choices

during intertemporal decision-making. Our data suggest that spatial

patterns of brain activity may determine the behavioral choices made

during intertemporal decision-making. The findings supporting altered

neural patterns in patients with addiction provide a new insight into

understanding why highly impulsive patients prefer temptations at the

risk of long-term physical and mental health, poor academic perfor-

mance, or other problems, when they faced with drugs or Internet

games. Our findings may provide potential neural targets for the diag-

nosis and treatment of impulsivity-related brain disorders.
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