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Abstract

The hippocampus is a key brain region that participates in a range of cognitive and

affective functions, and is involved in the etiopathogenesis of numerous neuropsy-

chiatric disorders. The structural complexity and functional diversity of the hippo-

campus suggest the existence of structural and functional subdivisions within this

structure. For the first time, we parcellated the human hippocampus with two inde-

pendent data sets, each of which consisted of 198 T1-weighted structural magnetic

resonance imaging (sMRI) images of healthy young subjects. The method was based

on gray matter volume (GMV) covariance, which was quantified by a bivariate voxel-

to-voxel linear correlation approach, as well as a multivariate masked independent

component analysis approach. We subsequently interrogated the relationship

between the GMV covariance patterns and the functional connectivity patterns of

the hippocampal subregions using sMRI and resting-state functional MRI (fMRI) data

from the same participants. Seven distinct GMV covariance-based subregions were

identified for bilateral hippocampi, with robust reproducibility across the two data

sets. We further demonstrated that the structural covariance patterns of the hippo-

campal subregions had a correspondence with the intrinsic functional connectivity

patterns of these subregions. Together, our results provide a topographical configura-

tion of the hippocampus with converging structural and functional support. The

resulting subregions may improve our understanding of the hippocampal connectivity

and functions at a subregional level, which provides useful parcellations and masks

for future neuroscience and clinical research on the structural and/or functional con-

nectivity of the hippocampus.
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1 | INTRODUCTION

The hippocampus, located deep in the medial temporal lobe, is a key

region in the limbic system. Structural and functional deficits of the hip-

pocampus characterize numerous neurological and neuropsychiatric

disorders, including Alzheimer's disease, anxiety disorder, schizophrenia,

and major depression (Chen & Etkin, 2013; Geuze, Vermetten, &

Bremner, 2005; Harrison, 2004; Videbech & Ravnkilde, 2004). Prior

research has shown that the hippocampus participates in a range of cog-

nitive and affective functions (Barkus et al., 2010; Strange, Witter, Lein, &
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Moser, 2014), which has a correlate on a complex and heterogeneous

structure (Amunts et al., 2005; Carr, Rissman, & Wagner, 2010; Moser &

Moser, 1998; Poppenk, Evensmoen, Moscovitch, & Nadel, 2013; Strange

et al., 2014). The functional diversity (Poppenk et al., 2013; Strange et al.,

2014) and structural complexity (Duvernoy, 2005) of the hippocampus

suggest the existence of subdivisions within this region. The parcellation

of the hippocampus into subdivisions may provide critical insights regard-

ing the roles of the hippocampus in physiological and pathological states,

including Alzheimer's disease (Iglesias et al., 2015), major depressive dis-

order (Roddy et al., 2019), and schizophrenia (Arnold et al., 2014),

because these techniques offer a valuable tool to explore such critical

questions (Eickhoff, Thirion, Varoquaux, & Bzdok, 2015; Fan et al., 2016;

Glasser et al., 2016).

Human hippocampal parcellation strategies have used anatomical

features; however, these studies were either mainly based on postmor-

tem brain tissue (Amunts et al., 2005; Augustinack et al., 2014), or based

on topographic landmarks, intensity changes, and geometric information

(Kim et al., 2000; Mueller et al., 2007; Van Leemput et al., 2009;

Yushkevich, Pluta, et al., 2015). Postmortem brain parcellation

approaches may be biased by subtle, but noticeable, anatomical differ-

ences between in vivo and postmortem fixated tissue. Purely topographic

landmark, intensity change, and geometric information-based approaches

take into account the internal microstructure of a brain area, but not the

interregional connectivity properties of the brain areas. Therefore, a

connectivity-based parcellation may provide additional information to

improve our understanding of the structural and functional specialization

of the human brain. Several studies have been conducted to characterize

hippocampal subregions based on the characteristics of the functional

connectivity. Using a combination of meta-analytic connectivity modeling

and clustering algorithms, Chase et al. (2015) parcellated the subiculum

into a bilateral anterior region, and separate posterior and intermediate

regions on each hemisphere. Using the same approaches, the left hippo-

campus was segmented into three distinct subregions: an anterior emo-

tional processing region, an intermediate cognitive operations region, and

a posterior perceptual region (Robinson et al., 2015), while the right hip-

pocampus was segmented into two and five subregions. Wang, Ritchey,

Libby, and Ranganath (2016) did not find significantly different subre-

gions in the hippocampus by using resting-state functional magnetic reso-

nance imaging (fMRI) functional connectivity. A data-driven functional

connectivity approach (masked independent component analysis, [MICA])

(Moher Alsady, Blessing, & Beissner, 2016), was also used to reproducibly

define hippocampal subregions with resting-state fMRI, and map their

intrinsic functional connectivity patterns, demonstrating configurations

that support longitudinal segmentation of hippocampal functions

(Blessing, Beissner, Schumann, Brünner, & Bär, 2016). More recently,

Beissner, Preibisch, Schweizer-Arau, Popovici, and Meissner (2018) and

Zhao et al. (2019) divided the bilateral hippocampus into 10 and 17 subre-

gions with MICA, respectively. Despite these attempts to delineate

functionally hippocampal subdivisions, subregions based on the charac-

terization of the structural connectivity/covariance are less well defined.

To date, one study has identified hippocampal subregions based on struc-

tural connections estimated using probabilistic tractography (Adnan et al.,

2016). Specifically, the authors applied diffusion-weighted imaging to

divide the hippocampus into an anterior versus posterior dichotomy, and

demonstrated that these structurally defined subregions differentially

functionally connected to the rest of the brain.

Research over the past decade has started to identify the organiza-

tional principles that govern the topology of structural covariance net-

works, based on the assumption that brain structural communities covary

in their morphological properties at a population level (Alexander-Bloch,

Giedd, & Bullmore, 2013). A novel valuable tool used to investigate struc-

tural covariance networks is the study of gray matter volume (GMV)

covariance. GMV covariance may reflect the synchronized maturational

changes mediated by axonal connections forming and reforming over the

course of development (Alexander-Bloch, Raznahan, Bullmore, & Giedd,

2013; Mechelli, Friston, Frackowiak, & Price, 2005; Montembeault et al.,

2012; Zielinski, Gennatas, Zhou, & Seeley, 2010). It has been suggested

that GMV covariance recapitulates functional brain networks (Seeley,

Crawford, Zhou, Miller, & Greicius, 2009) and the pattern of interregional

structural covariance is akin to the pattern of functional connectivity

(Alexander-Bloch, Giedd, & Bullmore, 2013), thereby driving the brain

functioning in an efficient way. GMV covariance has been used to reliably

parcellate brain regions such as the insula (Kelly et al., 2012) or the

orbitofrontal cortex (Liu, Qin, Qi, Jiang, & Yu, 2015). These two studies

(Kelly et al., 2012; Liu et al., 2015) employed GMV correlation

(GMVCorr), which is a bivariate voxel-to-voxel correlation method that

utilizes second-order statistics to depict the association of the GMV

between two voxels within the region of interest (ROI). In contrast, inde-

pendent component analysis (ICA) (McKeown & Sejnowski, 1998), is a

multivariate blind source separation method, which utilizes higher order

statistics to model common associations across multiple voxels. MICA

has been used to parcellate an ROI with fMRI data (Blessing et al., 2016;

Kim, Park, & Park, 2013; Moher Alsady et al., 2016). In the present study,

we introduce MICA to quantify GMV covariance for structural brain

parcellation.

We utilized GMVCorr (Kelly et al., 2012; Liu et al., 2015) as well as

MICA (Blessing et al., 2016; Kim et al., 2013; Moher Alsady et al., 2016),

which are two different approaches to quantify GMV covariance

(Mechelli et al., 2005; Xu, Groth, Pearlson, Schretlen, & Calhoun, 2009),

to parcellate the human hippocampus based on T1-weighted MRI scans

from two independent data sets. We hypothesized that the combination

of bivariate GMVCorr and multivariate MICA would provide converging

and complementary information and improve the structural covariance

parcellation. Our secondary aim was to contrast GMV covariance pat-

terns to functional connectivity patterns on the parcellated hippocampal

subregions to determine: (a) the structural and functional connection

properties of these subregions and (b) whether the patterns of inter-

regional structural covariance resemble the patterns of functional con-

nectivity, and to quantify such resemblance.

2 | MATERIALS AND METHODS

2.1 | Data sets and imaging protocols

Study participants were from two independent cohorts (Beijing and

Cambridge datasets) of the 1000 Functional Connectomes Project
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(https://www.nitrc.org/projects/fcon_1000). The corresponding insti-

tutional review boards approved for the submission of anonymized

data obtained with written informed consent from each participant.

There were 198 healthy volunteers (122 females and 76 males,

mean ± SD age = 21.16 ± 1.82, range 18–26 years old) in the Beijing

dataset and 198 healthy volunteers (123 females and 75 males, mean

± SD age = 21.03 ± 2.31, range 18–30 years old) in the Cambridge

dataset. A high-resolution 3D magnetization-prepared rapid gradient

echo sequence was acquired for each participant, and resting-state

fMRI data were acquired using an echo-planar imaging sequence.

Scanning parameters are provided in Table 1.

2.2 | Preprocessing

Structural MR images were preprocessed (Figure 1a) using the voxel-

based morphometry (VBM, http://dbm.neuro.uni-jena.de/vbm8/) and

Statistical Parametric Mapping software toolbox (SPM12, http://

www.fil.ion.ucl.ac.uk/spm). The preprocessing procedures involved

four main steps: segmentation, normalization, modulation, and spatial

smoothing. The first three steps were done within the VBM8 toolbox,

and the spatial smoothing was implemented in the SPM toolbox. The

segmentation procedure applied adaptive maximum a posterior and

partial volume estimation to segment the raw images into gray matter,

white matter and cerebrospinal fluid images in the native space for all

subjects. Prior to high-dimensional warping, the gray matter images

were registered to the tissue probability map using affine transforma-

tion. Diffeomorphic Anatomical Registration using Exponentiated Lie

Algebra was done to implement a high-dimensional nonlinear normali-

zation. Through the iteration of image registration and template crea-

tion, gray matter maps were normalized to their own average

templates and further to the Montreal Neurological Institute (MNI)

space, and resampled to a voxel size of 1.5 × 1.5 × 1.5 mm3. Thereaf-

ter, the normalized gray matter partitions were multiplied by the Jaco-

bian determinants from the deformations to preserve the total

amount of tissue in native spaces. Therefore, the regional GMV repre-

sents normalized GMV after removing the effect of variance in indi-

vidual brain sizes. Finally, the gray matter images were smoothed with

a 3-mm full width at half maximum (FWHM) Gaussian kernel. After

preprocessing, we obtained normalized, modulated, and smoothed

GMV maps for subsequent analyses. To reduce the search space in

GMVCorr calculation to meet reasonable computational and memory

requirement (see below) (Chang, Yarkoni, Khaw, & Sanfey, 2012; Jung

et al., 2014; Kahnt, Chang, Park, Heinzle, & Haynes, 2012), the images

were additionally downsampled to 3 × 3 × 3 mm3. Thus, the final res-

olution was 1.5 × 1.5 × 1.5 mm3 for the hippocampal voxels and

3 × 3 × 3 mm3 for the nonhippocampal voxels.

One of the 198 Beijing participants was excluded for fMRI data

analysis since the data was acquired in a different orientation from

others. Thus, 197 and 198 participants were included in fMRI data

analyses for Beijing and Cambridge dataset, respectively. The fMRI

preprocessing was conducted in SPM toolbox, and steps included dis-

carding the first five volumes, slice-timing correction, realignment,

normalization to the standard MNI template, reslicing into 3-mm iso-

tropic voxels, spatial smoothing using a 3-mm FWHM Gaussian ker-

nel, linear detrending, nuisance signal removing (24-parameter head

motion profiles, cerebrospinal fluid, and white matter signals), and

temporal band-pass filtering (0.01–0.08 Hz).

2.3 | GMV covariance-based parcellation

The left and right hippocampal ROIs were defined on the basis of the

Harvard-Oxford atlas, using a probability threshold of 50% (Beissner

et al., 2018; Blessing et al., 2016; Marder et al., 2014; Zhao et al.,

2019) at the MNI152 space, yielding a conservative anatomical repre-

sentation with 1,267 and 1,271 voxels for the left and right hippocam-

pus respectively (MNI152 1.5 mm space). GMV covariance quantifies

the extent to which GMV covary between different regions across

participants, and in the present study, GMV covariance was con-

ducted via two approaches: voxel-based GMVCorr (Kelly et al., 2012;

Liu et al., 2015) and MICA (Moher Alsady et al., 2016). The following

procedures of GMVCorr and MICA were designed to cluster hippo-

campal voxels that share similar GMV covariance properties together,

and were implemented for unilateral hippocampus of each data set,

respectively.

For GMVCorr (Figure 1c), we calculated the Pearson correlation

between the GMV of each hippocampal ROI voxel (from the

1.5 × 1.5 × 1.5 mm3 set) and those from each nonhippocampal voxel

in the rest of the brain (from the 3 × 3 × 3 mm3 set; downsampling

was used to obtain sufficient spatial resolution for each ROI region

and to meet reasonable computational and memory requirements)

across all 198 subjects. The coefficient matrix C 2 Rv × w of all ROI

voxels was calculated (v and w were the number of voxels over the

TABLE 1 Scanning parameter details for the data sets included in the present study

Data set TR (ms) FOV (mm) Voxel size (mm × mm × mm) Slice number Time points

Beijing-MRI 2,530 256 1.33 × 1.0 × 1.0 128 N/A

Cambridge-MRI 2,200 230 1.2 × 1.2 × 1.2 144 N/A

Beijing-fMRI 2,000 200 3.13 × 3.13 × 3.6 33 225

Cambridge-fMRI 3,000 256 3.0 × 3.0 × 3.0 47 119

Abbreviations: FCP = Functional Connectomes Project; fMRI = functional magnetic resonance imaging; FOV = field of view;

MPRAGE = magnetization-prepared rapid gradient echo.

Note. The Cambridge data used multi-echo MPRAGE for MRI data collection, allows increased contrast through weighted averaging of the four derived

images. Other details on scanning parameters like TE, flip angle, and scanner model are not available through the 1000 FCP website.
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ROI region and nonhippocampal regions), and a symmetric nonnega-

tive similarity matrix W (Elhamifar & Vidal, 2013; Ge et al., 2017) was

constructed from the coefficient matrix: W = |C � E−1 � CT|2 Rv × v

(Zhang et al., 2015), where E was the diagonal matrix saving the col-

umn summations of the coefficient matrix C and T denoted transposi-

tion. The similarity matrix W was then fed into a spectral clustering

algorithm (Ge et al., 2017; Ng, Jordan, & Weiss, 2002) to generate the

final parcellations. Spectral clustering has been proven to outperform

other clustering algorithms (Von Luxburg, 2007), it can be solved effi-

ciently by standard linear algebra methods, and the implementation of

spectral clustering in fMRI studies was less sensitive to initial condi-

tions than other methods (Craddock, James, Holtzheimer, Hu, & May-

berg, 2012). With spectral clustering, a similarity graph was first built,

with vertexes representing voxels and similarity matrix representing

the weight of the edges connecting vertexes within a graph. The prob-

lem of spectral clustering can be formulated using this similarity graph

such that edges between different parcels have low weights (which

means that voxels in different subregions are dissimilar from each

other) and edges within a parcel have high weights (voxels within the

same subregion are similar to each other). Technically, a graph

Laplacian matrix was constructed as L = D − SM, L 2 Rv × v, D 2 Rv × v,

where D was a diagonal matrix saving the degree of each vertex (the

row sum). Then, K (number of subregions) first eigenvectors u1, u2, … ,

uK of the normalized Laplacian L
0
= D−0.5LD−0.5, L

02Rv × K were com-

puted, and saved in a spectral embedding matrix U = [u1, u2, … , uK]

2Rv × K as a low-dimensional representation of the data (Von Luxburg,

2007). We subsequently generated a matrix NU2Rv × K by normalizing

the rows of U to norm 1. Finally, k-means clustering was applied to

the normalized spectral embedding matrix NU. In the present study,

the k-means clustering method was executed 100 times with random

initializations to ensure stability of the results.

MICA analysis (Figure 1b) was applied to parcellate the hippocam-

pus using the GIFT toolbox (http://icatb.sourceforge.net). Spatial ICA

using the InfoMax algorithm (Bell & Sejnowski, 1995) decomposed

the data matrix (participants by voxels, the number of voxels was the

dimension of the hippocampus from the 1.5 × 1.5 × 1.5 mm3 set) into

a mixing matrix (participants by sources) and a source matrix (sources

by voxels). Note that the stability of the parcellation results in this part

relied on the stability of the ICA algorithm, and we selected InfoMax

algorithm, which is quite stable relative to other algorithms (Correa,

Adalı, & Calhoun, 2007; Ma et al., 2011). Furthermore, the component

estimation was performed 100 times with varying initial conditions of

the algorithm using ICASSO (Himberg, Hyvärinen, & Esposito, 2004).

The number of sources was the number of clusters, which was deter-

mined by cross validation (see below). Each row of the source matrix

indicates a gray matter network sharing the same regional covariance

patterns. To generate the maps of subregions, the sources were trans-

formed into z-scores, and each voxel within the source was assigned

the maximally contributed source label, that is, winner-take-all strat-

egy, according to the z-scores (Moher Alsady et al., 2016).

2.4 | Determination of optimal cluster number K

To avoid an arbitrary cluster number from being chosen, we used a

twofold cross-validation strategy to determine a number that would

yield optimal consistency across participants. The entire sample of

F IGURE 1 Flow diagram of the parcellation procedures in the present study. (a) Preprocessing of the T1-weighted magnetic resonance
imaging images, the output of this procedure is the normalized, modulated, and smoothed gray matter volume (GMV) images. Furthermore, we
resampled the 1.5 mm3 data set into 3 mm3 resolution. (b) Masked independent component analysis (MICA)-based parcellation procedure,
including ICA, z-transformation of the components, and voxel assignment with a winner-take-all strategy. (c) GMV correlation (GMVCorr)-based
parcellation procedure. The coefficient matrix C is first generated by correlating the GMV of hippocampal voxels to all of the nonhippocampal
voxels. Then, a similarity matrix W is constructed from C, and is used as the input of a spectral clustering algorithm. Note that the hippocampus
mask was obtained from the Harvard-Oxford probabilistic atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) thresholded at 50% [Color figure can
be viewed at wileyonlinelibrary.com]

GE ET AL. 3741

http://icatb.sourceforge.net
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
http://wileyonlinelibrary.com


each data set was randomly split into two non-overlapping sub-

datasets of equal sample size. We computed the Dice's coefficient of

the parcellation results from the two subdatasets. As one of the most

used metrics to quantify reproducibility and similarity of parcellation

in neuroimaging (Craddock et al., 2012; Hale et al., 2015; Mejia et al.,

2015; Shen, Tokoglu, Papademetris, & Constable, 2013; Wang et al.,

2015), the Dice's coefficient has values in the interval [0,1], with

higher values indicating higher consistency. This cross-validation pro-

cedure was conducted with varying K values (from 2 to 15) and

repeated 50 times for Beijing and Cambridge dataset. We defined the

optimal K to be the nontrivial (K > 2) clustering solution that demon-

strated highest Dice's coefficient between subdatasets.

2.5 | GMV covariance-based hippocampal
subregions overlapping with hippocampal
cytoarchitectonic maps

To investigate the extent to which the GMV covariance-based subre-

gions were comprised of which hippocampal subfields, we calculated the

overlapping ratios between each subregion and subfields of a hippocam-

pal cytoarchitectonic map from the Anatomy toolbox (Amunts et al.,

2005; Eickhoff et al., 2005). Six subfields were selected: cornu ammonis

1–3 (CA1–3), dentate gyrus, entorhinal cortex, and subiculum. Note that

the inclusion of the entorhinal cortex was because the hippocampal ROIs

used in the present study were slightly overlapped with the entorhinal

cortex from the Anatomy toolbox. Masks of these subfields were con-

structed by assigning each voxel to the subfield within which it has the

maximal probability. Since the CA2 and CA3 regions are small relative to

other subfields and there is variability in how these subfields are defined

in humans MRI data (Wisse et al., 2017; Yushkevich, Amaral, et al.,

2015), we combined these two regions with CA1 and formed a single

CA subfield. Subsequently, an overlap ratio between each subregion and

each subfield was computed by dividing the number of overlapping

voxels (between each subregion and each subfield mask) by the number

of voxels in that subregion.

2.6 | GMV covariance maps and resting-state
functional connectivity patterns of hippocampal
subregions

To probe GMV covariance patterns of hippocampal subregions, we

extracted the average GMV of each ROI (derived from intersection of

each GMVCorr and ICA-derived subregion) across participants and calcu-

lated the partial correlation coefficient between the GMV of each subre-

gion and those of nonhippocampal voxels of the whole brain, with age

and sex as nuisance covariates. To characterize the functional connectiv-

ity patterns associated with the hippocampal subregions, whole-brain

correlation analysis was conducted for each participant. Specifically, a

seed-to-voxel correlation strategy was employed, with intersections of

the GMVCorr and ICA-derived subregions as seed regions. Whole-brain

functional connectivity patterns were produced. Specifically, the mean

fMRI time series from each seed region was extracted, followed by com-

puting the Pearson correlation coefficient between that time series and

time series from all other brain voxels. Statistical tests on the Fisher's

z-transformed functional connectivity patterns were performed using

one sample t test for each data set, with age, sex, and mean frame dis-

placement of head movement as nuisance covariates. Multiple com-

parisons were corrected using a false discovery rate method

(p < .05/14 = 0.004, Bonferroni correction was applied to correct for

multiple comparisons of the seven a priori subregions tested for the two

data sets). Subsequently, GMV covariance patterns were spatially corre-

lated with functional connectivity patterns to investigate the relationships

between structural and functional patterns of subregions.

2.7 | Hierarchical clustering of hippocampal
subregions according to GMV covariance and
functional connectivity patterns

To examine how GMV covariance patterns (and functional connectivity

patterns) of the hippocampal subregions resemble one another, we per-

formed hierarchical clustering analysis on the GMV covariance patterns

(and functional connectivity patterns). The clustering algorithm succes-

sively merged pairs of GMV covariance patterns (functional connectivity

patterns) until all were merged into a single cluster, based on the similar-

ity of these patterns. We used a hierarchical clustering approach with

Ward's linkage rule (Ward, 1963) in the present study. For the hierarchi-

cal clustering results, the height in the dendrogram represents the dissim-

ilarity value: the lower the values, the higher the similarity between

GMV covariance patterns or functional connectivity patterns. To assess

the validity and robustness of the hierarchical clustering, a cophenetic

correlation coefficient was calculated for the final dendrogram to evalu-

ate the degree to which the clustering represented the underlying simi-

larities among the GMV covariance patterns or functional connectivity

patterns. Cophenetic correlation coefficient is a measure of how faith-

fully the hierarchical cluster results represent the dissimilarity among

observations. Specifically, it is defined as the linear Pearson correlation

coefficient between the original pairwise dissimilarities and the

cophenetic dissimilarities obtained from the dendrogram. The value of

this coefficient varies between 0 and 1. A higher cophenetic correlation

coefficient indicates a better cluster solution, and the hierarchical cluster-

ing was considered successful if the cophenetic correlation coefficient

was larger than 0.75 (Cauda et al., 2012; Hao et al., 2016).

3 | RESULTS

3.1 | Parcellation of the hippocampus based on GMV
covariance

Using the twofold cross-validation strategy, we identified the local

maxima of Dice's coefficients as K = 3 and 4 for left and right hippo-

campus of each data set (Beijing and Cambridge dataset) and each

method (GMVCorr and MICA, Figure 2), respectively. The optimal

clustering numbers for left and right hippocampus were 3 and 4 in the

present study.

The parcellation results are shown in Figure 3. Using the three-

cluster scheme, the left hippocampus was parcellated into the anterior
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(L1), posterior-medial (L2), and posterior-lateral (L3) subregions. For

the right hemisphere, the hippocampus was parcellated into the

anterior-medial (R1), anterior-lateral (R2), posterior-medial (R3), and

posterior-lateral (R4) subregions. The parcellation results were very

similar in both data sets by GMVCorr and MICA methods, as

evidenced by the fairly high Dice's coefficients between parcellation

results from different methods and different data sets (central panel

in Figure 3 with an average value of 0.76). We employed nonparamet-

ric permutation tests to determine whether the Dice's coefficients

between parcellation results were significantly different from random

parcellation of the ROIs. In other words, we intended to assess the

significance of each of the Dice's coefficient in Figure 3. Specifically,

we obtained an empirical distribution for the Dice's coefficient by ran-

domly reallocating all voxels into different subregions and rec-

omputing the Dice's coefficient based on the randomized results

(5,000 permutations). The 95th percentile points of the empirical dis-

tributions were used as critical values to estimate p-values, which indi-

cate the deviation of the observed discriminative performance from

those expected by chance. The histograms in Figure S1 depict the

results of the permutation tests on Dice's coefficient values, and the

red dots show the real observations of the Dice's coefficient in each

condition. The permutation results demonstrated that the parcellation

results obtained with different methods and different data sets were

highly similar (all p < < .001, Bonferroni corrected, Figure S1).

3.2 | Hippocampal subregions overlapping with
hippocampal cytoarchitectonic maps

Overlapping ratios between GMV covariance-based subregions and

hippocampal subfields are shown in Figure 4. Specifically, L1, L2, R1,

and R2 were mainly located in the subiculum and CA; a large portion

of R3 was located in the subiculum, the remaining portion of this

region overlapped with CA and dentate gyrus; L3 and R4 were mainly

located in CA and dentate gyrus with similar overlapping ratios of the

two subfields. All of the subregions did not largely overlap with ento-

rhinal cortex because this subfield occupies a small portion of the hip-

pocampal mask used in the present study (Harvard-Oxford atlas). In

addition, the subregions obtained with different methods on different

data sets had similar overlapping patterns with cytoarchitectonic

maps. Figure S2 presents the results with divided CA subfields

(i.e., CA1, CA2, and CA3).

3.3 | GMV covariance maps, resting-state functional
connectivity patterns of hippocampal subregions and
their relationships

Different GMV covariance and functional connectivity patterns

were found for each subregion (Figure 5). The GMV covariance pat-

tern of L1 included bilateral hippocampal formation (including

F IGURE 2 Using Dice's coefficient as an indication of the clustering consistency (interval 0–1) of the GMV covariance-based parcellation,
where larger values indicate high consistency and 1 stands for perfect match. With twofold cross-validation technique for each data set
(50 times), we found that the three and four cluster solution showed higher values than other solutions for left and right hippocampus
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hippocampus and parahippocampus), amygdala, putamen, caudate,

insula, ventral thalamus, posterior cingulate, and bilateral temporal

pole. The left posterior-medial portion, L2, was positively corre-

lated with the bilateral hippocampal formation, fusiform gyrus, mid-

dle cingulate, precuneus, dorsal thalamus, and left lateral parietal

cortex. GMV of L3 was primarily positively correlated with bilateral

hippocampal formation, ventral thalamus, cuneus, calcarine gyrus,

and paracentral lobule. For the right anterior-medial portion, R1, its

GMV covariance map mainly included bilateral hippocampal forma-

tion, insula, and right middle temporal gyrus. GMV of R2 was posi-

tively correlated with bilateral hippocampal formation, amygdala,

ventral thalamus, putamen, and bilateral temporal pole. GMV of R3

was positively correlated with bilateral hippocampal formation,

amygdala, caudate, dorsal thalamus, precuneus, and bilateral lateral

parietal cortex. GMV of R4 was mainly correlated with bilateral hip-

pocampal formation and thalamus. The resting-state fMRI signal of

L1 positively correlated with that of bilateral hippocampal forma-

tion, amygdala, bilateral temporal pole, bilateral middle temporal

gyrus, bilateral superior temporal gyrus, bilateral precentral and

postcentral gyrus, supplement motor area, Please expand VMPFC,

dorsomedial prefrontal cortex (DMPFC), bilateral putamen, and left

angular gyrus. L2 was primarily correlated with left dorsolateral

prefrontal cortex, left superior parietal cortex, left hippocampal for-

mation, bilateral VMPFC, DMPFC, bilateral thalamus, bilateral puta-

men, bilateral caudate, bilateral posterior cingulate, bilateral

calcarine gyrus, bilateral precuneus, and cuneus. L3 was primarily

correlated with left hippocampal formation, left middle frontal

gyrus, bilateral insula, bilateral lateral parietal cortex, bilateral mid-

dle temporal cortex, bilateral precuneus, and middle cingulate cor-

tex. As for R1, its fMRI signal positivity correlated with bilateral

hippocampal formation, bilateral thalamus, bilateral putamen and

caudate, and supplement motor area. The functional connectivity

F IGURE 3 Gray matter volume correlation (GMVCorr) and masked independent component analysis (MICA)-based parcellation schemes for
the two data sets. Dice's coefficients between different parcellation methods (GMVCorr vs. MICA, within each data set) and different data sets
(Beijing vs. Cambridge, within each method) are shown in the central panel, with an average value of 0.76. The parcellation results (NIFTI format)
are provided in the have been released on the neuroimaging informatics tools and resources clearinghouse (NITRC) website (https://www.nitrc.
org/projects/hippo_gmvc/) [Color figure can be viewed at wileyonlinelibrary.com]
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pattern of R2 was similar to L1 by showing significant correlation

with bilateral hippocampal formation, amygdala, bilateral temporal

pole, middle temporal gyrus, superior temporal gyrus, precentral

and postcentral gyrus, supplement motor area, VMPFC, DMPFC,

bilateral putamen, and thalamus. The functional connectivity pat-

tern of R3 included bilateral DMPFC, right middle frontal gyrus,

right thalamus, putamen, caudate, bilateral posterior cingulate,

bilateral calcarine gyrus and cuneus, and right lateral parietal cor-

tex. The functional connectivity pattern of R4 included right hippo-

campus, right thalamus, bilateral middle cingulate, bilateral

precuneus, bilateral cuneus and precuneus, and bilateral middle

frontal gyrus. All structural and functional patterns were well repli-

cated in both data sets.

For L1, the structural and functional patterns mainly overlapped at

bilateral hippocampal formation, amygdala, left putamen, bilateral middle

temporal gyrus, and bilateral temporal pole. For L2, the overlapped regions

included left thalamus, parahippocampus, and precuneus. For L3, the over-

lapped regions included middle cingulate and left parahippocampus. The

structural and functional patterns of R1 overlapped at bilateral hippocam-

pal formation and left caudate. For R2, the overlapped regions included

bilateral hippocampal formation, bilateral amygdala, bilateral middle tem-

poral gyrus, and bilateral temporal pole. For R3, the overlapped regions

located at bilateral parahippocampus, fusiform, and right lateral parietal

cortex. For R4, the overlapped regions were at bilateral hippocampal

formation.

The correlational results between GMV covariance and functional

connectivity patterns are shown in Figure 6. For each subregion, its GMV

covariance pattern was most closely related to its own functional connec-

tivity pattern (by showing maximal values, which were marked with black

asterisks, in the row of the correlation matrix between GMV covariance

maps and functional connectivity patterns). These results suggest that

the structural covariance pattern of a particular subregion specifically cor-

responded with its functional connectivity pattern.

The hierarchical clustering of the GMV covariance patterns grouped

L1 and R2, L3 and R4, and L2 and R3 together at a very low height,

suggesting high similarity in their structural covariance patterns (Figure 6,

F IGURE 4 Overlapping ratios between hippocampal subregions and the cytoarchitectonic subfields. Subfields that additively occupy at least
20% of each subregion were numbered. CA = cornu ammonis; DG = dentate gyrus; SUBS = subiculum; EC = entorhinal cortex [Color figure can
be viewed at wileyonlinelibrary.com]
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lower panel). Furthermore, the group of L1 and R2 was similar with R1,

and the group of L3 and R4 merged with the group of L2 and R3. These

results were replicated in both data sets. As for the hierarchical clustering

of the functional connectivity patterns, Beijing and Cambridge datasets

exhibited consistent results by grouping L1 and R2 (further with R1), L2

and R3 together. Nevertheless, for Beijing dataset, the group of L3 and R4

merged with the group of L2 and R3, whereas for Cambridge dataset, the

group of L2 and R3 merged with L3 and R4 sequentially (Figure 6, lower

panel). The cophenetic correlations of the obtained dendrograms were

high (all cophenetic correlation coefficients r > .75) which suggested that

the clustering solution accurately represented the underlying similarities

and differences among the GMV covariance patterns or functional con-

nectivity patterns.

4 | DISCUSSION

To the best of our knowledge, this is the first study to parcellate the

human hippocampus based on structural covariance and to elucidate

the structural covariance and functional connectivity patterns of the

hippocampus at the subregional level. Seven distinct subregions with

their structural covariance and functional connectivity patterns were

reproducibly identified for bilateral hippocampi across two indepen-

dent data sets. We demonstrated the close correspondence between

structural and functional characteristics of the hippocampal subdivi-

sions. The bilaterally symmetric subregions exhibited similar structural

and functional characteristics. Taken together, our results provide a

preliminary topographical configuration of the hippocampus with con-

verging structural and functional support, which may improve our

understanding of hippocampal connectivity and functions at the level

of subregions.

The hippocampus has been parcellated according to its functional

connections with the rest of the brain (Blessing et al., 2016; Wang et al.,

2016), whereas Adnan et al. (2016) used white matter structural connec-

tivity to parcellate it. However, those commonly used fMRI and probabi-

listic tractography connectivity-based parcellation approaches, may not

be optimal for small-sized structures like the hippocampus, due to their

low spatial resolution. Inspired by the parcellation of insula (Kelly et al.,

2012) and orbitofrontal cortex (Liu et al., 2015) with GMV covariance,

we parcellated the human hippocampus based on this technique which

emerged from high-resolution structural images (Mechelli et al., 2005).

GMV covariance examines covariation of gray matter morphology

between brain regions across populations. The biological meaning of this

structural covariance is not yet fully understood, but it may reflect

F IGURE 5 Spatial distribution of the whole brain gray matter volume (GMV) covariance and functional connectivity (FC) patterns for
hippocampal subregions. For visualization purpose, the FC patterns are corrected for multiple comparisons at p < .05 (false discovery rate) with a
cluster extent threshold of 50 voxels, and the GMV covariance patterns are displayed using a voxel-level threshold of p < .005 (uncorrected) with
a cluster extent threshold of 50 voxels [Color figure can be viewed at wileyonlinelibrary.com]
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coordinated development and/or maturational synchronization between

brain regions (Alexander-Bloch, Giedd, & Bullmore, 2013), and has been

demonstrated as an efficient approach to test network hypotheses about

brain aging/developmental mechanisms (Bergfield et al., 2010; DuPre &

Spreng, 2017; Li et al., 2013; Montembeault et al., 2012; Nordin et al.,

2018; Persson et al., 2014; Spreng & Turner, 2013; Zielinski et al., 2010)

and clinical utility for patients (Heinze et al., 2015; Kim et al., 2015;

Modinos et al., 2009; Montembeault, Rouleau, Provost, & Brambati,

2015; Seeley et al., 2009).

GMV covariance was recently proposed as a surrogate method for

assessing structural networks between different brain regions. The

concept of structural covariance networks describes the inter-

individual differences in regional brain structure covariation with

other brain structures across the population (Alexander-Bloch,

Giedd, & Bullmore, 2013). Though the underlying biological meaning

of GMV covariance is still unclear, it may reflect shared variation in

gray matter morphology (Alexander-Bloch, Raznahan, et al., 2013;

Mechelli et al., 2005) and has been suggested to reflect the synchro-

nized maturational changes medicated by axonal connections forming

and reforming over the course of development (Alexander-Bloch,

Giedd, & Bullmore, 2013). To quantify the GMV covariance for

parcellation, we used voxel-by-voxel linear correlation (GMVCorr) and

MICA. These two approaches were complementary to each other in

that GMVCorr is a bivariate measure of association of the GMV

(across participants) between two voxels, while MICA is a multivariate

analytical technique for simultaneously modeling common associa-

tions across multiple voxels. Different from GMVCorr that was

designed for structural gray matter images (Mechelli et al., 2005),

MICA, which is a derivative of ICA (McKeown & Sejnowski, 1998),

was initially introduced to detect local functional connectivity net-

works in particular brain regions (Beissner, Schumann, Brunn,

Eisenträger, & Bär, 2014; Dobromyslin et al., 2012; Leech, Braga, &

Sharp, 2012). Recently, several studies have begun to employ MICA

and fMRI to parcellate brain regions into their functional subdivisions

(Blessing et al., 2016; Igelström, Webb, & Graziano, 2015; Kim et al.,

2013; Moher Alsady et al., 2016). In the present study, we introduced

MICA to quantify GMV covariance for structural brain parcellation for

the first time.

The reproducibility of research results is a topic of concern across

all scientific disciplines (Poldrack & Poline, 2015), and in particular

within the neuroimaging community due to the inconsistent replica-

tion of findings. One way to address this issue is through the

F IGURE 6 Upper panels: Spatial correlation between functional connectivity (FC) patterns and gray matter volume (GMV) covariance maps of
the hippocampal subregions. Lower panels: Hierarchical dendrograms of the seven subregions according to their GMV covariance and FC
patterns. The cophenetic correlation coefficients were shown in each of the dendrograms [Color figure can be viewed at wileyonlinelibrary.com]
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inspection of independent data sets, and analyzing those data sets

with different and/or complementary analytic approaches (Poldrack

et al., 2017). A significant strength of the present study is that we dis-

covered highly reproducible (as evidenced by the fairly high Dice's

coefficient value between parcellation results obtained with different

methods on different data sets) hippocampal subregions by two com-

plementary covariance-based network measures (GMVCorr and

MICA) from two independent data sets with different ethnic

populations. The present study demonstrated that GMV covariance

serves as a feasible and efficient approach to reliably parcellate the

brain regions.

There are some similarities as well as differences between the

parcellations of the present study and of others using fMRI data

(Beissner et al., 2018; Robinson et al., 2015; Robinson, Salibi, &

Deshpande, 2016; Zhao et al., 2019). The longitudinally discrete con-

figuration of the hippocampal subregions in the present study was

remarkable, given the widely known model of the long-axis functional

specialization of hippocampus (Poppenk et al., 2013; Strange et al.,

2014). More importantly, our results revealed that these GMV

covariance-based subregions additionally distributed along the trans-

verse axis, which corresponded with the spatial configuration of the

cytoarchitecturally defined subfields (Amunts et al., 2005). This result

is similar to those reported in the fMRI literature (Beissner et al.,

2018; Moher Alsady et al., 2016; Zhao et al., 2019), where a trans-

verse distribution of the subregions in the head of the hippocampus is

found when the number of clusters was set to a relatively high num-

ber. Furthermore, most of these subregions were located in the CA1,

dentate gyrus, and subiculum, because these three subfields extend

along the anterior–posterior axis mostly (Yushkevich, Pluta, et al.,

2015). Future studies should compare the differences between GMV

covariance-based and fMRI-based parcellation results by fusing these

multimodal data with a unified approach, for instance, joint ICA or

parallel ICA (Correa, Li, Adali, & Calhoun, 2009).

Gray matter is composed of cell somata and their prolongations

forming a dense mesh of connections, the neuropil, and therefore is

considered as the neuroanatomical underpinning of neuronal activity.

It is plausible to hypothesize that structural covariance and functional

connectivity patterns ought to converge and our findings support this

hypothesis by showing that the structural covariance pattern of a par-

ticular subregion specifically corresponded with its functional connec-

tivity pattern (Figure 6). Further support was shown in a study on

healthy volunteers that demonstrated a tight linkage between intrinsic

functional connectivity and correlated GMV (Seeley et al., 2009). The

study built on notions of small worldness in human cortical gray mat-

ter structure by demonstrating a direct, network-based structure–

function relationship. At a large-scale network level, a more recent

study demonstrated the existence of consistent structural covariance

networks that corresponded well with several canonical functional

networks (Guo et al., 2015). Our results were generally consistent

with theirs and extended their ideas by showing that a subcortical

region (i.e., hippocampus) also exhibited highly correlated structure–

function relationships.

With the hippocampal subregions as seeds, we revealed the struc-

tural covariance and functional connectivity patterns with the GMV

and fMRI data, respectively. The structural covariance of each subre-

gion showed a slightly symmetrical covariance pattern, whereas the

functional connectivity patterns showed a hemispheric asymmetry in

many regions. For instance, the GMV of the R4 correlated with the

GMV of the bilateral amygdala, bilateral hippocampal formation, and

bilateral thalamus; however, the fMRI of R4 correlated primarily with

the regions in the right hemisphere, especially in lateral prefrontal and

lateral parietal cortex. This result suggests that human brain is func-

tionally and anatomically asymmetric (Kimura, 1973; MacNeilage,

Rogers, & Vallortigara, 2009); however, the functional asymmetry is

much more striking. Moreover, the functional connectivity patterns of

the anterior subregions (L1, R1, and R2) were primarily located at the

anterior part of the default mode network (DMN), whereas the func-

tional connectivity patterns of the posterior subregions (L2, L3, R3,

and R4) were primarily located at the posterior part of the DMN. This

result is not surprising as the hippocampus itself is often considered

as a node in this network. By using hierarchical clustering algorithms

on the structural covariance and functional connectivity patterns, we

additionally demonstrated bilaterally symmetric subregions had similar

patterns, both structurally and functionally. For instance, L2 and R3

were approximately symmetrical in their spatial configurations, and

they showed similar GMV covariance patterns and functional connec-

tivity patterns. This result was consistent with previous resting-state

network studies (Melie-García, Sanabria-Diaz, & Sánchez-Catasús,

2013; Salvador et al., 2005; Stark et al., 2008) and structural covari-

ance studies (Gong, He, Chen, & Evans, 2012; Mechelli et al., 2005;

Nosarti et al., 2011) showing robust correlated spontaneous activity

and structural covariance between homotopic regions. Taken

together, these results suggest symmetrical subregions are homotopic

in nature. This suggestion does not exclude the notion of hemisphere

specialization (Robinson et al., 2016), as we found subregions showed

more functional connectivity with ipsilateral regions relative to contra-

lateral regions.

This report should be considered in light of some limitations. First,

a methodological limitation of our study inherits the limitation of the

GMV covariance. The GMV covariance networks are constructed

from interregional correlations estimated on the basis of a group of

individual images. Methods for the construction of networks from an

individual MRI image are needed (Tijms, Seriès, Willshaw, & Lawrie,

2012). However, we revealed converging group-level results with

GMV covariance. Another limitation is that we lack the ethnic group

information. The difference between ethnic groups on hippocampus

parcellation is a topic for our future study.

In summary, on the basis of GMV covariance, we have parcellated

the human hippocampus into several subregions, which were highly

replicable in two independent data sets. The resulting subregions may

guide future cognitive neuroscience and clinical studies focusing on

the structural as well as functional connectivity of the hippocampus.

We demonstrated converging and similar structural covariance and

functional connectivity patterns for each hippocampal subregion and

bilaterally symmetric subregions, respectively. These results further
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illuminate our knowledge of the topographical configurations of the

hippocampus.
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