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Abstract
Hippocampal atrophy is one of the main hallmarks of Alzheimer's disease (AD). However, there is

still controversy about whether this sign is a robust finding during the early stages of the disease,

such as in mild cognitive impairment (MCI) and subjective cognitive decline (SCD). Considering this

background, we proposed a new marker for assessing hippocampal atrophy: the local surface rough-

ness (LSR). We tested this marker in a sample of 307 subjects (normal control (NC) = 70, SCD = 87,

MCI = 137, AD = 13). In addition, 97 patients with MCI were followed-up over a 3-year period and

classified as stable MCI (sMCI) (n = 61) or progressive MCI (pMCI) (n = 36). We did not find signifi-

cant differences using traditional markers, such as normalized hippocampal volumes (NHV), between

the NC and SCD groups or between the sMCI and pMCI groups. However, with LSR we found sig-

nificant differences between the sMCI and pMCI groups and a better ability to discriminate

between NC and SCD. The classification accuracy of the LSR for NC and SCD was 68.2%, while

NHV had a 57.2% accuracy. In addition, the classification accuracy of the LSR for sMCI and pMCI

was 74.3%, and NHV had a 68.3% accuracy. Cox proportional hazards models adjusted for age, sex,

and education were used to estimate the relative hazard of progression from MCI to AD based on

hippocampal markers and conversion times. The LSR marker showed better prediction of conver-

sion to AD than NHV. These results suggest the relevance of considering the LSR as a new hippo-

campal marker for the AD continuum.
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1 | INTRODUCTION

The study of the hippocampus is a relevant area of interest because it

is one of the first structures that is affected early in Alzheimer’s dis-

ease (AD) pathology (Jack et al., 2004). Different T1-weighted mag-

netic resonance imaging (MRI) measurements of the hippocampus

(e.g., volume) are useful markers for the diagnosis of prodromal AD,

such as mild cognitive impairment (MCI) (Dubois et al., 2007; Frisoni,

Fox, Jack, Scheltens, & Thompson, 2010). In fact, the hippocampal vol-

ume has been proposed as a biomarker of neuronal injury to establish

the diagnosis of AD (Chupin et al., 2009; Cuingnet et al., 2011; Dubois

et al., 2007; Leung et al., 2010). However, it has been reported that

this biomarker can distinguish between AD subjects and normal con-

trols (NC) with accuracy of 75%, based on an analysis of the entire
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Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(Cuingnet et al., 2011). In a longitudinal study based on 568 images

from the ADNI dataset, Wolz et al. (2010) reported a correct classifi-

cation rate of 82% for NC versus AD subjects using hippocampal vol-

umes. This limited capability to classify AD patients using only the

whole hippocampal volume may be due to simplification of the atro-

phic patterns to a global measurement and to the discrepancies

caused by manual protocols. Notwithstanding, volumetric analyses of

the hippocampus as a whole do not provide information about the

precise locations of the morphological changes that characterize and

occur during the progression of AD within this structure.

For this reason, several approaches based on hippocampal shape

analysis have recently been proposed (Chételat et al., 2008; Csernansky

et al., 2005; La Joie et al., 2010; Perrotin et al., 2015). These methods

attempt to capture detailed hippocampal structural modifications to

obtain a more accurate classification. In fact, these techniques based on

shape analysis (Gerardin et al., 2009) have yielded slightly better

classifications than procedures that are focused on volumetric measures

alone (Cuingnet et al., 2011). Furthermore, shape analysis approaches

have allowed the identification of atrophic regions in the hippocampus

when comparing elderly controls and patients with MCI or AD,

contributing to better prediction of the progression of the AD

(Csernansky et al., 2005; Gutman, Wang, Morra, Toga, & Thompson,

2009; Kim, Valdes-Hernandez, Royle, & Park, 2015).

A promising method for segmenting subfields of the hippocampus

has recently emerged (De Flores et al., 2015; Iglesias et al., 2015;

Khan et al., 2015; Yushkevich et al., 2015). This approach is potentially

able to detect atrophic patterns in more detail. However, it requires a

high-resolution MRI, which has not been implemented in standard

clinical practice yet; thus, its application is restricted. Therefore, the

development of new methods that are able to detect subtle anatomi-

cal modifications of the hippocampus are critical for obtaining a better

classification rate.

Although hippocampal volume has been evaluated as a measure

for discriminating between symptomatic predementia (MCI) or

dementia (AD) and healthy aging, in subjective cognitive decline (SCD)

(Jessen et al., 2014; Reisberg, Shulman, Torossian, Leng, & Zhu, 2010),

hippocampal volume is insufficiently sensitive for distinguishing

between SCD and NC subjects. Few studies have described hippo-

campal atrophy in subjects with SCD compared with controls (Saykin

et al., 2006; Scheef et al., 2012). Using a semi-automated surface-

based approach, Tepest et al., (2008) observed patterns of hippocam-

pal surface deformation that were preferentially located in the area of

the CA1 subfield in SCD, MCI, and AD subjects, but there were no sig-

nificant differences between SCD subjects and healthy controls. In

addition, some studies that have explored hippocampal differences

between those MCI subjects who remained stable after a follow-up

period (stable MCI, sMCI) and those who finally developed AD (pro-

gressive MCI, pMCI) have found differences in the left hippocampal

volume (Douaud et al., 2013; López et al., 2016), while others have

reported no differences (López et al., 2014).

Considering this background, in the present study we focused on

exploring group differences in hippocampal atrophy at different stages

and conditions of the disease: (1) healthy elderly individuals and SCD

and MCI subjects and (2) sMCI and pMCI subjects. For this purpose,

T1-weighted MRI images of the whole brain with typical clinical resolu-

tions were used. The hippocampus was extracted using an automatic

approach with the Harmonized Hippocampal Protocol (HarP) (Boccardi

et al., 2011; Frisoni et al., 2015) (http://www.hippocampal-protocol.

net). Once the left and right hippocampus were segmented, volumetric

and shape analyses were performed, and a new marker was calculated

from the mean curvatures in specific regions of the hippocampal sur-

faces. This new marker may increase the ability to discriminate between

clinical groups at different stages along the AD continuum.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 307 subjects were included in the present study (NC = 70,

SCD = 87, MCI = 137, and AD = 13). Participants were recruited

from the Hospital Universitario San Carlos (Madrid, Spain), the Centre

for Prevention of Cognitive Impairment (Madrid, Spain), and the

Seniors Center of the district of Chamartín (Madrid, Spain). All sub-

jects underwent an extensive neuropsychological assessment in order

to explore their cognitive status (for a review of the protocol see

López et al., 2016). The demographics and clinical details from the

database are shown in Table 1. SCD and MCI subjects were diagnosed

according to the Subjective Cognitive Decline Initiative (SCD-I) Work-

ing Group (Jessen et al., 2014) and the National Institute on Aging-

Alzheimer Association (NIA-AA) (Albert et al., 2011), respectively. The

TABLE 1 Demographic and clinical details of the used database

Variable (N. subjects) NC (70) SCD (87) MCI (137) AD (13) F p

Gender male (%) 25 (36%) 19 (22%) 50 (37%) 7 (54%) – .037

Age 70.3 (4.5) 71.7 (5.1) 73.9 (5.0)a,b 75.6 (5.0)a,b 10.86 <.001

Years of education 13.9 (5.5) 12.9 (5.5) 8.8 (4.5)a,b 9.5 (6.4)a,b 20.06 <.001

MMSE 28.9 (1.2) 28.2 (1.9) 26.5 (2.7)a,b 22.6 (5.5)a,b,c 49.99 <.001

Immediate recall 24.8 (8.2) 20.1 (8.6)a 6.7 (7.2)a,b 3.2 (4.9)a,b 111.89 <.001

Delayed recall 40.9 ( 11.3) 34.3 (11.1)a 16.6 (8.9)a,b 7.6 (7.5)a,b,c 123.36 <.001

NC = Normal control; SCD = subjective cognitive decline; MCI = mild cognitive impairment; AD = Alzheimer’s disease.
Data is represented as mean and standard deviation (SD) unless specific otherwise. ANOVA with Bonferroni post hoc test is used for age, years of education
and neuropsychological scores, except for gender where the chi-square test is used.
a Significant differences compared with the NC group.
b Significant differences compared with the SCD group.
c Significant differences compared with the MCI group.
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clinical diagnosis of MCI included the following features: (1) self- or

informant-reported cognitive complaints; (2) objective evidence of

impairment in one or more cognitive domains; (3) preserved indepen-

dence in functional abilities; and (4) not demented (McKhann et al.,

2011). In addition to meeting the clinical criteria, MCI subjects showed

signs of loss of the hippocampal volume compared with controls. As

they fulfilled the criteria for both clinical and neuronal injury, MCI par-

ticipants can be categorized as “MCI due to AD” with an intermediate

likelihood (Albert et al., 2011). It should be noted that hippocampal

volumes were not used to establish any of the different diagnoses

that were explored, since clinical and cognitive performance were

used for this purpose.

Additionally, 97 of the 137 MCI subjects were followed-up for a

period of 3 years to determine if they remained stable or progressed

to AD. Therefore, at the end of this follow-up period, they were split

into two subgroups according to their clinical outcomes: (1) 61 sMCI

subjects who met the diagnostic criteria for MCI; and (2) 36 pMCI

subjects who fulfilled the criteria for probable AD according to the

NIA-AA (McKhann et al., 2011) (see Table 2).

All the participants did not have other severe medical conditions

or psychiatric, medical or neurological pathologies (other than MCI or

AD). The exclusion criteria were as follows: an age outside of the

range of 65–85 years, a modified Hachinski score ≥4 (Rosen, Terry,

Fuld, Katzman, & Peck, 1980), a geriatric depression scale immediate

recall score ≥5 (Yesavage et al., 1982), and a T2-weighted MRI per-

formed within 12 months before the clinical evaluation with indica-

tions of infection, infarction or focal lesions.

The study was approved by the local ethics committee, and all

subjects or their legal representatives signed an informed consent that

explained the technical and ethical considerations of the investigation.

2.2 | MRI acquisition

3D T1-weighted scans were performed with a General Electric 1.5-T

magnetic resonance scanner, using a high resolution antenna and a

homogenization PURE filter [Fast Spoiled Gradient Echo (FSPGR)

sequence with the following parameters: TR/TE/TI = 11.2/4.2/450 ms,

flip angle 12�, 1 mm slice thickness, 256 × 256 matrix, and

FOV 25 cm).

2.3 | Segmentation method

We have recently proposed a fast label fusion method for segmenting

anatomical structures, such as the hippocampus, with low intensity

contrast using T1-weighted MRI images (Platero & Tobar, 2015,

2017). The approach was based on a patch-based labeling method

combined with atlas-warping using nonrigid registrations. The pro-

posed segmentation scheme involved the following principal steps:

(1) MRI preprocessing; (2) spatial normalization; (3) first labeling based

on atlas-warping using nonrigid registration; and (4) final patch-based

labeling based on similarity measures in intensity and labeling.

During preprocessing of the MR images, nonbrain regions were

removed, and intracranial volumes were estimated. Removing non-

brain tissue prior to registration is generally accepted to simplify the

inter-subject registration problem and thus increase the quality of the

registrations (Battaglini, Smith, Brogi, & De Stefano, 2008; Klein et al.,

2009). The images were skull-stripped using Brain Extraction Tool

(BET) (Smith, 2002). To improve the results of BET, we followed the

protocol proposed by Stein et al. (2012). First, a coarse skull-stripping

was performed, and then, the bias field correction was calculated and

applied to the image. Finally, the corrected images were reapplied with

BET, and all of them were spatially normalized to the same stereotac-

tic space (Evans, Janke, Collins, & Baillet, 2012). The MNI-152 tem-

plate (Evans et al., 2012) was selected as a reference for coregistering

the images with an affine transformation using FMRIB’s Linear Image

Registration Tool (FLIRT) with 12� of freedom (Jenkinson, Bannister,

Brady, & Smith, 2002). The intracranial volume (ICV) was calculated by

registration of each skull-stripped MRI to the MNI-152 template using

the same affine transformation (Buckner et al., 2004).

A set of atlases were built using the HarP annotations on

134 images from the ADNI database (Boccardi et al., 2011; Frisoni

et al., 2015). The atlases were normalized to the MNI-152 space

and then, a subset of normalized atlases was nonrigidly registered

to the normalized subject image. Next, the registered atlases were

fused, and the labeling was calculated using graph cuts based on

minimizing an energy function (Platero & Tobar, 2015). Then, a

patch-based labeling method was applied; the patches and weights

for this method were computed with a combination of similarity

measures between patches using intensity-based distances and

labeling-based distances (Platero & Tobar, 2017). The labeling dis-

tances were calculated from the previous segmentation of the target

image by means of atlas-warping using nonrigid registrations. The

average computational time for hippocampal segmentation from a

T1-weighted MRI was less than 17 min (see more details in Sup-

porting Information Materials).

2.4 | Markers

The markers were extracted from the automated hippocampal seg-

mentations and were used to characterize four clinical groups: NC,

SCD, MCI, and AD. The following markers were used to discriminate

among the groups: normalized hippocampal volume, hippocampal sur-

face roughness and a new marker called local surface roughness (LSR).

We explored these measures because recent studies have shown that

a decrease in hippocampal volume and an increase in surface

TABLE 2 Demographic and clinical details of the sMCI and pMCI

subjects from the used database followed during 3 years

Variable (N. subjects) sMCI (61) pMCI (36) F p

Gender male (%) 22 (36%) 14 (39%) – .781

Age 73.2 (5.2) 75.6 (4.9) 5.31 .023

Years of education 8.77 (4.36) 7.94 (4.07) 0.87 .353

MMSE 27.0 (2.3) 25.8 (3.1) 4.45 .037

Immediate recall 7.4 (7.2) 3.1 (6.2)a 10.02 .002

Delayed recall 17.5 (8.5) 11.7 (9.1)a 10.81 .001

sMCI = stable mild cognitive impairment; pMCI = progressive mild cogni-
tive impairment.
Data are represented as mean and standard deviation (SD) unless specific
otherwise. ANOVA was used for age, education, and neuropsychological
scores, except for gender where the chi-square test was used.
a Significant differences compared with the stable MCI group.
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roughness are good markers for the progression of AD (Kim et al.,

2015). Moreover, the values of these features are scalar, showing

higher robustness for generalization and avoiding overfitting when

the size of the samples is limited.

2.4.1 | Volume

We first tested the classification accuracy using the hippocampal vol-

ume which was normalized by the total ICV. This kind of normalization

reduces the variability in the volume measurements of nearly all brain

regions (Keihaninejad et al., 2010). Compared with other commonly

used constants, ICV is less vulnerable to pathological changes (Pengas,

Pereira, Williams, & Nestor, 2009). For more robustness in terms of

hippocampal segmentation errors, both left and right volumes were

averaged and normalized with ICV. This marker was called the normal-

ized hippocampal volume (NHV).

2.4.2 | Surface roughness

We used the surface roughness (SR) of the hippocampus as a marker

to detect significant differences among the groups (Kim et al., 2015).

The hippocampal surface roughness measures atrophy associated with

the progression of AD using a single scan. The surface roughness was

calculated using the mean curvature as follows:

SR¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i

K2 xið Þ
vuut ,

where, n is the number of the voxels belonging to the hippocampal

surface, and K(xi) is the mean curvature at each voxel xi. These voxels

were extracted from the automated hippocampal segmentation in the

standard space, that is, K(xi) was calculated with the isotropic spacing

(1 × 1 × 1 mm3 from the MNI 152 domain). The left and right hippo-

campal segmentations were embedded in a level set formulation, and

the mean curvature was estimated using the following equation:

K xið Þ¼ − div
rΓ xið Þ
rΓ xið Þk k

� �
,

where, Γ = {x|φ(x) = 0} is the hippocampal surface, and φ(x) is a signed

distance function, which assigns positive distances to the inside of the

object and negative distances to the outside (Osher & Fedkiw, 2006).

The estimation of the mean curvature on each xi was controlled using

Gaussian derivatives. In our experiments, a Gaussian kernel of 5 mm

FWHM was applied to the images to calculate the mean curvatures.

This parameter was tuned by maximizing the discrimination capacity

of the SR biomarker between NC and AD populations. For more

robustness in terms of segmentation errors, the left and right surface

roughness was averaged to determine the shape marker.

2.4.3 | Local surface roughness

A new marker based on the statistical significance maps between two

clinical groups being compared from the mean curvature measures

was introduced. With the normalized mean curvature maps of all par-

ticipants, which were generated using volume-to-volume correspon-

dence into a template (Heimann & Meinzer, 2009) and for each voxel

belonging to the hippocampal surface, the statistical significance

between two groups being compared was estimated via permutation

tests (Pantazis, Leahy, Nichols, & Styner, 2004). Group differences

were assessed using the Wilcoxon signed-rank test, which does not

require normality of the data. We defined LSR as a measurement of

the SR on local regions of the hippocampal surface, which exhibited

significant differences when two groups of subjects were compared.

The NHV or SR markers were based on the hippocampal segmen-

tation. The LSR marker also requires statistical significance maps

between two clinical groups, that is, this atrophy measure is not

unique for a given hippocampal segmentation.

Let X = {xi|αk,l(xi) < αth} be the set of voxels of the hippocampal

surface with significant differences in the measures of their mean

curvatures between the k and l clinical groups, where αk,l(xi) is the

p-value in the i-voxel for comparing its measures between the

subjects belonging to the k and l clinical groups and αth is the thresh-

old of statistical significance, then

LSR¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
#X

X
i2X

K2 xið Þ
s

:

2.5 | Statistical analysis

The effects of demographics and clinical measurements were tested

using ANOVA with Bonferroni post hoc comparisons for continuous var-

iables, while categorical variables were analyzed using the Chi-square

test. The hippocampal markers were first analyzed using MANCOVA and

Bonferroni corrections by adopting a general linear model procedure,

adjusting for age and years of education as covariates. Bonferroni

pairwise comparisons were performed to determine hippocampal

marker differences between the groups. Homoscedasticity, normality

and independence were verified in all the tests of analysis of variance.

Statistical analysis was performed using SPSS v. 22.

The hippocampal markers were subsequently analyzed using linear

discrimination, which fits a normal density to each group, with a pooled

estimate of covariance. The use of a simple, linear classifier ensured that

the classification accuracy was primarily determined by the quality of

the input data rather than by stochastic variations in the classifier.

For each comparison between two clinical groups, we computed

the sensitivity (SEN), the specificity (SPE) and the accuracy value

(ACC) (Cuingnet et al., 2011). Note that the number of subjects in

each group was not exactly the same. The classification accuracy did

not enable comparisons of the performances between the different

classification experiments. Instead, we considered both the specificity

and the sensitivity.

Receiver operating characteristic (ROC) curves were calculated for

each hippocampal marker and for each group pairwise comparison. The

discriminant value of the corresponding ROC curve was estimated using

the area under curve (AUC). DeLong’s test was applied to compare the

AUCs between methods (DeLong, DeLong, & Clarke-Pearson, 1998).

A resampling approach was used to evaluate the statistical maps

and classification rate between pairs of clinical groups. A nested

cross-validation (CV) procedure is used to avoid model overfitting and

optimistically-biased estimates of model performance (Korolev,

Symonds, Bozoki, & Alzheimer’s Disease Neuroimaging Initiative,

2016). The procedure consisted of two nested CV loops: an inner

loop, designed to generate statistical maps and to train classifiers, and
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an outer loop, designed to obtain an unbiased estimate of linear dis-

crimination model performance. Therefore, our approach, which relies

on statistical maps of LSR markers, avoids double-dipping by exclud-

ing the samples belonging to the test subjects in the designs of the

statistical maps and classifiers. Both the outer and inner CV loops

used a k-fold CV design. For better replicability, the nested k-fold CV

procedure was repeated with different partitions of the data, generat-

ing multiple performance estimate values. The classification scores

and confidence interval for the different groups are displayed in

Table 5 after 5,000 runs.

3 | RESULTS

3.1 | Demographic and cognitive results

The cognitive measurements applied (i.e., MMSE; Folstein, Folstein, &

McHugh, 1975) and immediate and delayed recall (Wechsler Memory

Scale III, WMS-III; Wechsler, 1997); indicated that cognitive scores

were the lowest in the AD group and the highest in the control group

(see Table 1). No significant differences in MMSE scores were

observed between NC and SCD subjects, but there were significant

differences in both episodic memory measurements between these

groups. Additionally, SCD subjects had statistically higher scores on

the MMSE and immediate and delayed recall than MCI and AD sub-

jects, while there were only differences in MMSE scores and delayed

recall between MCI and AD subjects.

After the 3-year follow-up period involving 97 patients with MCI,

no significant differences in age, gender, years of education and

MMSE score were observed between sMCI and pMCI subjects. How-

ever, pMCI subjects had significantly lower scores in immediate and

delayed recall than sMCI subjects (see Table 2) (see more details in

Supporting Information Materials).

3.2 | Hippocampal markers

An analysis of the variance of hippocampal markers was carried out in

relation to all the clinical groups (Table 3 and Figure 1). Unlike NHV or

SR measurements of the hippocampus, LSR marker depended on the

TABLE 3 The normalized volume was scaled using intracranial volume (ICV) in cm3

Variable (N. subjects) NC (70) SCD (87) MCI (137) AD (13) F p

ICV (cm3) 1,456 (144) 1,406 (145) 1,402 (145) 1,401 (163) 1.30 .274

LH (mm3) 2,810 (348) 2,651 (303) 2,466 (383)a,b 2,209 (326)a,b 10.57 <.001

RH (mm3) 2,909 (323) 2,729 (371) 2,526 (382)a,b 2,356 (387)a,b 9.63 <.001

NHV 3.93 (0.31) 3.83 (0.37) 3.57 (0.44)a,b 3.27 (0.37)a,b 16.28 <.001

SR 0.322 (0.011) 0.326 (0.013) 0.337 (0.017)a,b 0.348 (0.017)a,b,c 19.65 <.001

LSR* 0.331 (0.014) 0.339 (0.018) 0.354 (0.022)a,b 0.370 (0.020)a,b,c 26.07 <.001

LH = left hippocampus; RH = right hippocampus; NHV = normalized hippocampal volume; SR = surface roughness; LSR = local surface roughness;
NC = Normal control; SCD = subjective cognitive decline; MCI = mild cognitive impairment; AD = Alzheimer’s disease.
Data is represented as mean and standard deviation (SD). MANCOVA with Bonferroni pairwise comparisons are used for analyzing the different markers. Age
and years of education are used as covariates. LSR* means that this measurement is based on using the threshold map of statistical significance between
the NC vs. MCI groups.
a Significant differences compared with normal control.
b Significant differences compared with subjective cognitive decline.
c Significant differences compared with mild cognitive impairment.

FIGURE 1 The first row shows the left and right hippocampal volume distribution and the ICV using the proposed method. The second row

illustrates the hippocampal markers of the progression of AD using the proposed method. LSR* indicates that this measurement is based on the
thresholded map of statistical significance between the NC versus MCI groups. ICV = intracranial volume; LH = left hippocampus; RH = right
hippocampus; NHV = normalized hippocampal volume; SR = surface roughness; LSR = local surface roughness; NC = normal control; SCD =
subjective cognitive decline; MCI = mild cognitive impairment; AD = Alzheimer’s disease [Color figure can be viewed at wileyonlinelibrary.com]
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statistical significance map between pairs of groups. To proceed with

this analysis, we used the threshold map defined in the comparison

between the NC and MCI groups to set the LSR measurement, which

is denoted as LSR*. This prevented a stratified analysis between pairs

of clinical groups. MANCOVA with Bonferroni pairwise comparisons were

used to analyze the markers. Age and years of education were used as

covariates. No significant differences were found in ICV values.

Comparisons of the hippocampal markers were significant across all

groups (p < .001). However, multiple comparisons showed different

results in the pairwise comparison. The LSR marker was the most

discriminative (F = 26.07, p < .001), with significant differences

between the NC and MCI groups, the NC and AD groups, the SCD

and MCI groups, the SCD and AD groups and the MCI and AD

groups. Worse results were obtained with SR (F = 19.65, p < .001).

For the volume markers, no significant differences were observed

between the MCI and AD groups. The raw volumetric measures, that

is, the left and right hippocampal volumes, and the normalized hippo-

campal volume revealed significant differences between the NC and

MCI groups, the NC and AD groups, the SCD and MCI groups and

the SCD and AD groups.

Table 4 and Figure 2 show the hippocampal markers between the

sMCI and pMCI groups. MANCOVA was used for analyzing the markers.

Age and education were used as covariates. No significant differences

were found in ICV or in left and right hippocampal volumes. The LSR

marker was the most discriminative of all of the markers (F = 34.62,

p < .001). Significant differences were also observed between sMCI

and pMCI subjects using the NHV (F = 15.09, p < .001) and SR

(F = 13.892, p < .001) markers.

TABLE 4 Marker details of the sMCI and pMCIs subjects followed

during 3 years

Variable
(number of subjects) sMCI (61) pMCI (36) F p

ICV (cm3) 1,392 (141) 1,397 (155) 0.16 .690

LH (mm3) 2,522 (405) 2,251 (378) 8.0 .006

RH (mm3) 2,584 (399) 2,332 (373) 6.59 .012

NHV 3.67 (0.48) 3.29 (0.36)a 15.09 <.001

SR 0.337 (0.017) 0.346 (0.014)a 13.89 <.001

LSR 0.351 (0.027) 0.377 (0.019)a 34.62 <.001

LH = left hippocampus; RH = right hippocampus; NHV = normalized hip-
pocampal volume; SR = surface roughness; LSR = local surface roughness;
sMCI = stable mild cognitive impairment; pMCI = progressive mild cogni-
tive impairment.
The normalized volume is scaled using intracranial volume (ICV) in cm3.
Data are represented as mean and standard deviation (SD). MANCOVA is used
for analyzing the markers. Age and education are used as covariates.
a Significant differences compared with sMCI.

TABLE 5 Results of the classifications between groups of patients with different diagnosis using the normalized hippocampal volume (NHV),

surface roughness (SR), and local surface roughness (LSR)

Groups Marker SEN (%) SPE (%) ACC (%) AUC

NC vs. SCD NHV 57.4 (57.1–57.6) 57.1 (56.8–57.4) 57.2 (57.0–57.4) 0.589 (0.587–0.591)

SR 57.3 (54.0–54.6) 55.8 (55.4–56.1) 55.0 (54.8–55.2) 0.581 (0.579–0.583)

LSR 63.5 (63.2–63.8) 74.1 (73.8–74.4) 68.2 (68.1–68.4) 0.770 (0.768–0.772)a,b

NC vs. MCI NHV 68.6 (68.4–68.8) 73.6 (73.4–73.9) 70.3 (70.1–70.5) 0.772 (0.771–0.774)

SR 66.9 (66.6–67.1) 80.9 (80.7–81.2) 71.7 (71.5–71.8) 0.791 (0.790–0.793)

LSR 68.8 (68.6–69.0) 82.6 (82.4–82.9) 73.5 (73.3–73.6) 0.804 (0.803–0.806)

NC vs. AD NHV 84.4 (83.8–85.0) 81.8 (81.5–82.0) 82.2 (82.0–82.4) 0.923 (0.920–0.926)

SR 83.7 (83.1–84.3) 88.4 (88.2–88.6) 87.6 (87.4–87.7) 0.961 (0.959–0.962)

LSR 71.9 (71.2–72.7) 89.6 (89.4–89.7) 86.8 (86.7–87.0) 0.942 (0.940–0.944)

SCD vs. MCI NHV 63.7 (63.5–63.9) 67.3 (67.0–67.5) 65.1 (64.9–65.2) 0.693 (0.692–0.695)

SR 59.8 (59.5–60.0) 69.6 (69.3–69.8) 63.6 (63.4–63.7) 0.707 (0.705–0.709)

LSR 64.6 (64.4–64.9) 70.8 (70.5–71.1) 67.0 (66.9–67.2) 0.734 (0.732–0.735)

SCD vs. AD NHV 84.6 (84.1–85.2) 76.7 (76.5–77.0) 77.8 (77.6–78.0) 0.856 (0.852–0.859)

SR 77.6 (76.9–78.3) 80.8 (80.6–81.1) 80.4 (80.2–80.6) 0.882 (0.880–0.884)

LSR 70.7 (69.9–71.4) 80.2 (79.9–80.4) 78.9 (78.7–79.1) 0.853 (0.850–0.856)

sMCI vs. pMCI NHV 68.1 (67.7–68.5) 68.4 (68.1–68.8) 68.3 (68.1–68.5) 0.754 (0.752–0.757)

SR 67.5 (67.0–67.9) 68.5 (68.3–68.8) 68.1 (67.9–68.3) 0.755 (0.753–0.757)

LSR 77.4 (77.0–77.9) 72.3 (72.0–72.6) 74.3 (74.1–74.5) 0.831 (0.829–0.833)a,b

sMCI vs. AD NHV 79.4 (78.7–80.1) 67.8 (67.5–68.2) 69.9 (69.6–70.2) 0.755 (0.752–0.759)

SR 66.5 (65.7–67.2) 71.5 (71.2–71.9) 70.6 (70.3–70.9) 0.750 (0.747–0.753)

LSR 84.0 (83.5–84.6) 80.5 (80.2–80.8) 81.2 (80.9–81.4) 0.873 (0.870–0.875)a,b

pMCI vs. AD NHV 35.6 (34.9–36.6) 46.8 (46.4–47.3) 43.6 (43.3–43.9) 0.375 (0.371–0.378)

SR 32.9 (32.2–33.6) 54.7 (54.2–55.2) 48.8 (48.5–49.2) 0.404 (0.399–0.408)

LSR 70.0 (69.3–70.7) 73.0 (72.6–73.4) 72.1 (71.8–72.4) 0.775 (0.771–0.780)a,b

NC = Normal control; SCD = subjective cognitive decline; MCI = mild cognitive impairment; AD = Alzheimer’s disease; sMCI = stable mild cognitive impair-
ment; pMCI = progressive mild cognitive impairment; SEN = sensitivity; SPE = specificity; ACC = accuracy; AUC = area under curve.
Confidence intervals are presented within parenthesis.
a Significant differences compared with NHV.
b Significant differences compared with SR. The p-value of paired DeLong’s test is used for calculating the significant differences between
markers (p < .001).
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3.3 | Classification results

A resampling approach was used to determine the robustness of all

the linear classification models. Left and right hippocampal volumes

were not considered markers in the final classification because they

showed less reliability than the NHV marker.

To control for the effects of age on the hippocampal markers,

they were corrected using linear regression models (Dukart, Schroeter,

Mueller, & The Alzheimer's Disease Neuroimaging Initiative, 2011).

The control group alone was used to estimate the age-related effect.

Then, the markers were corrected for age and the corresponding

linear model.

The results of the classification are summarized in Table 5 and

in Figure 3. For each group pairwise comparison, the following

guidelines were observed: a) the highest scores were obtained

between those groups that were more distant in the AD continuum

(i.e., NC and AD subjects), and b) the classification scores of the

LSR marker were generally higher than the scores of the NHV and

SR markers.

The results for NC versus SCD showed that the LSR marker had

the highest classification accuracy of 68.2% (sensitivity = 63.5%,

specificity = 74.1%, AUC = 0.770) compared with the NHV or SR

markers (see Table 5). Moreover, the AUC of the LSR marker showed

FIGURE 2 The first row shows the left and right hippocampal volume distribution and ICV for images of the sMCI and pMCI subjects. The

second row illustrates the hippocampal markers (NHV = normalized hippocampal volume; SR = surface roughness; LSR = local surface roughness)
in both groups. In both cases, we used the proposed method. sMCI = stable mild cognitive impairment; pMCI = progressive mild cognitive
impairment [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 The left graph shows an ROC curve for NC versus SCD classification using the hippocampal markers (NHV = normalized hippocampal

volume; SR = surface roughness; LSR = local surface roughness), and the right graph illustrates an ROC curve for sMCI versus pMCI classification
using the hippocampal markers. NC = normal control; SCD = subjective cognitive decline; sMCI = stable mild cognitive impairment;
pMCI = progressive mild cognitive impairment [Color figure can be viewed at wileyonlinelibrary.com]
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significant improvements compared with the AUCs of the NHV and

SR markers. In the comparison between NC and MCI patients, the

LSR marker yielded the highest classification accuracy of 73.5% com-

pared with the other two markers (sensitivity = 68.8%, specificity =

82.6%, AUC = 0.804). In terms of the comparison between sMCI and

pMCI subjects, the LSR marker had the highest classification accuracy

of 74.3% (sensitivity = 77.4%, specificity = 72.3%, AUC = 0.831)

compared with the NHV or SR markers (see more details in Support-

ing Information Materials).

3.4 | Follow-up

In those MCI patients who completed the 3-year follow-up, Cox sur-

vival analyses were conducted. The Cox proportional hazards model is

a very flexible and powerful method for demonstrating that atrophy

on hippocampal measurements is associated with an increased risk of

progression to AD (Desikan et al., 2009; Devanand et al., 2007;

Sabuncu, Bernal-Rusiel, Reuter, Greve, & Fischl, 2014; Vemuri

et al., 2011).

A set of univariate and multivariable Cox models were used. The

first Cox model for each hippocampal measure was crude. The second

multivariable model was adjusted for sex, age, and years of education.

These variables were added to determine whether the inclusion of

demographic data provided redundant or complementary information

to the markers concerned with predicting progression.

In the univariate Cox models, smaller volumes and higher surface

roughness of the hippocampus, such as SR and LSR, were highly sig-

nificant predictors of the time to conversion to AD (see Table 6).

Those subjects with MCI whose NHV markers were 1 SD below the

mean of this clinical group had an increased risk of progression to

AD. In contrast, when MCI patients had 1 SD above the mean value

of the SR or LSR marker, these measures also showed an increased

risk of AD conversion. After adjusting for sex, education, and age, in

the multivariate Cox analyses, a smaller NHV remained a strong pre-

dictor, but the level of statistical significance was decreased by the

inclusion of the age adjustment. However, the LSR marker remained

highly significant even after controlling for age and education (hazard

ratio, HR = 1.25 NHV, HR = 3.36 LSR). From these results we

concluded that changes in the LSR marker were less associated with

age-related atrophy and more associated with AD-related changes in

hippocampal volume. The multivariable model reiterated the

importance of including both MR imaging and demographic variables

in the final model.

4 | DISCUSSION

In the present study, a new marker based on the local surface rough-

ness (LSR) of the hippocampus was presented. We showed that the

capacity of discrimination of this marker was more powerful than the

normalized hippocampal volume (NHV) or its surface roughness

(SR) when applied during different stages of the AD continuum, such

as subjective cognitive decline (SCD) or mild cognitive impairment

(MCI). The hippocampus was extracted from T1-weighted MRI images

of 307 participants using an automatic approach with HarP annota-

tion. The segmentation algorithm was based on a multiple-atlas seg-

mentation technique, which combined a patch-based labeling method

with atlas-warping using nonrigid registration. The segmentation

results showed that the algorithm preserved the global shape learned

from the HarP annotations, smoothing the hippocampal surface and

characterizing the volume and surface roughness of the different

groups of subjects. The performance of the automatic hippocampal

segmentation was used to robustly estimate with the mean curvature

at points of the hippocampal surface. This property was applied to

improve the capacity of this marker to discriminate between the clini-

cal groups during the progression to AD. Moreover, the method

allowed a fast analysis of the imaging data. The average time to per-

form hippocampal segmentation from a T1-weighted MRI was less

than 17 min. The scripts used in this study are available at https://

www.nitrc.org/projects/lf_patches/.

The hippocampal segmentation algorithm estimated the values of

the surface roughness and normalized hippocampal volume with a

high linear correlation. The classification results showed that these

markers were complementary. The SR marker generally had higher

specificity than the normalized hippocampal volume, while the sensi-

tivity of the hippocampal volume was typically higher than that of the

surface roughness. We considered both the procedure for estimating

the mean curvature and the smoothing of the hippocampal surface

obtained by the hippocampal segmentation algorithm to determine

the SR marker with high reliability. Furthermore, the SR marker had a

similar ability to determine the hippocampal volume and also had the

advantage of providing a local analysis, which generated atrophy maps

of the progression of AD. As shown in the maps of the mean curva-

ture of each group, the atrophy patterns extended to large parts of

the hippocampus, particularly in the CA1 and subiculum subfields (see

more details in Supporting Information Materials). These subfields

have typically been reported as the earliest and most significant atro-

phic regions in AD (Chételat et al., 2008; Csernansky et al., 2005;

Frankó & Joly, 2013). A new marker that was based on the SR and sta-

tistical significance maps was introduced to compare two different

TABLE 6 Risk of progression to AD in subjects with MCI at baseline (n = 97) using the normalized hippocampal volume (NHV), surface

roughness (SR), and local surface roughness (LSR)

Hippocampal Markers

Crude Adjusted

HR 95% CI p-value HR 95% CI p-value

NHV 1.87 1.33–2.62 .0003 1.25 0.42–2.38 .0007

SR 1.68 1.24–2.28 .0008 2.49 0.88–7.02 .002

LSR 2.31 1.64–3.22 <.0001 3.36 1.14–9.98 <.0001

HR = Hazard ratio; CI = confidence intervals.
Hazard ratio based on comparing the 1 SD above and below the mean.
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groups. The LSR marker is a measurement of the SR based on local

regions of the surface that were identified as statistically significant

by a pairwise comparison.

The LSR marker was developed from the same idea reported by

other authors about the massive use of anatomical structures mea-

surements. The neurodegenerative patterns of those areas that

showed greater atrophy during the progression of the disease did not

correspond to predefined anatomical areas. With the popular two-

group approach, maps of statistical significance provided information

about those areas (at the voxel or cluster level) of greater atrophy in

two clinical groups. Subsequently, markers for predicting disease were

proposed from these zones. This method has been used for diagnos-

ing AD using cortical thickness (Dickerson et al., 2009; Landin-Romero

et al., 2017; Li et al., 2012) or shape analysis of the hippocampus

obtained from the hippocampal thickness (Frankó & Joly, 2013; Kim

et al., 2015; Yushkevich et al., 2015).

We reported that the normalized hippocampal volume decreased,

and the SR or LSR markers were increased in SCD and MCI subjects

compared with healthy elderly subjects. Hippocampal atrophy was

found to be less pronounced in SCD subjects than in MCI subjects.

Our results demonstrated that SCD subjects showed a differential

pattern of atrophy of the hippocampal curvature compared with the

NC group. Although we did not find significant differences between

the SCD and NC participants in any of the analyzed markers, the LSR

presented the highest classification accuracy with 68.2%. As previ-

ously described, the NHV marker does not seem to be a sufficiently

sensitive measure for differentiating between SCD and NC. However,

the LRS marker may be a promising measure for distinguishing these

stages. In addition, it should be noted that the pattern of atrophy

observed here increased during the progression of Alzheimer’s dis-

ease, since greater areas of atrophy were observed in the MCI sub-

jects than in the NC or SCD participants. Additionally, in all groups,

lower NHV values were related to lower MMSE and episodic memory

scores, while higher SR and LSR values were inversely related with

these cognitive measures, and the strongest correlations were found

with the LSR marker.

Although the pMCI subjects exhibited lower NHV and higher SR

and LSR values than the sMCI subjects, LSR achieved higher classifica-

tion accuracy of 74.3% than the other markers (sensitivity = 77.4%,

specificity = 72.3%, AUC = 0.831). These results suggest the rele-

vance of this new marker for classifying those MCI subjects who will

ultimately progress to AD, since some studies have reported no differ-

ences in hippocampal volume measurements, which is the most

employed marker (López et al., 2014).

According to Delong’s test, the classification improvements were

significant using LSR compared with the NHV and SR markers when

the following groups were compared: NC versus SCD, sMCI versus

pMCI, sMCI versus AD, and pMCI versus AD. In contrast, when the

pair of groups being compared were very different in terms of the

degree of the disease (i.e., NC vs. AD, SCD vs. AD, NC vs. MCI, or

SCD vs. MCI), classification scores using the LSR marker were similar

to the results determined by the SR marker. This is because the statis-

tical significance map between these two groups covers almost the

whole left and right hippocampal surface; thus, the LSR and SR values

are similar.

The atrophic regions marked by statistical significance maps are

consistent with those identified in other publications that used other

methodologies, such as high dimensional diffeomorphic mapping

(Chételat et al., 2008; Csernansky et al., 2005; La Joie et al., 2010;

Perrotin et al., 2015), spherical harmonic representation (Gerardin

et al., 2009; Kim et al., 2015) radial distance mapping (Apostolova

et al., 2012) or longitudinal deformation fields (Frankó & Joly, 2013).

In the two-group comparison approach (sMCI vs. pMCI) and the

Cox survival analysis, the LSR marker showed better prediction of the

progression to AD than the classic marker hippocampal volume.

All these results provide evidence that the LSR marker may be a

useful measure to include in AD studies since it is related to cognition

and provides higher accuracy classification scores than the NHV or SR

markers for comparing different clinical groups, such as NC versus

SCD or sMCI versus pMCI.
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