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Abstract
Optimal performance depends in part on the ability to inhibit the automatic processing of irrele-

vant information and also on the adjusting the level of control from one trial to the next. In this

study, we investigated the spatio–temporal neural correlates of cognitive control using simulta-

neous functional magnetic resonance imaging and electroencephalography, while 22 participants

(10 women) performed a numerical Stroop task. We investigated the spatial and temporal

dynamic of the conflict adaptation effects (i.e., reduced interference on items that follow an

incongruent stimulus compared to after a congruent stimulus). Joint independent component

analysis linked the N200 component to activation of anterior cingulate cortex (ACC) and the

conflict slow potential to widespread activations within the fronto–parietal executive control

network. Connectivity analyses with psychophysiological interactions and dynamic causal

modeling demonstrated coordinated engagement of the cognitive control network after the pro-

cessing of an incongruent item, and this was correlated with better behavioral performance. Our

results combined high spatial and temporal resolution to propose the following network of con-

flict adaptation effect and specify the time course of activation within this model: first, the ante-

rior insula and inferior frontal gyrus are activated when incongruence is detected. These regions

then signal the need for higher control to the ACC, which in turn activates the fronto–parietal

executive control network to improve the performance on the next trial.
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1 | INTRODUCTION

Cognitive control refers to top-down processes needed when relying

on an automatic mode would be inefficient (Diamond, 2013; Stokes,

Buschman, & Miller, 2017). It is often studied by presenting individ-

uals with incongruent or conflicting stimuli (e.g., color word in a mis-

matched font color in the Stroop task), which are typically associated

with slower responses and more errors. Previous work in animals and

humans has associated cognitive control processes with activity of

prefrontal cortex (see Miller & Cohen, 2001; Buschman & Miller,

2014, for reviews). Although human neuroimaging studies have con-

sistently identified a set of frontal and parietal regions involved in cog-

nitive control (e.g., Breukelaar et al., 2017; Cole & Schneider, 2007),

the dynamic interplay within the presumed cognitive control network

engaged in trial-to-trial adjustments of interference processing is

poorly understood.

The sequential modulations of cognitive control can be investi-

gated using manipulations that probe conflict adaptation, defined as

reduced interference following an incongruent compared to a congru-

ent trial (Duthoo, Abrahamse, Braem, Boehler, & Notebaert, 2014;

Gratton, Coles, & Donchin, 1992). The detection and resolution of

interference are proposed to elicit increased control and better inter-

ference processing on the subsequent trial (Botvinick, Braver, Barch,

Carter, & Cohen, 2001). Conversely, following a congruent trial, the

activation of cognitive control processes is reduced, and interference

effects are larger (e.g., Bailey, West, & Anderson, 2010; Braver, 2012;

West, Bailey, Tiernan, Boonsuk, & Gilbert, 2012).
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Electroencephalography (EEG) studies have revealed two main

components associated with conflict adaptation. The N200 compo-

nent (fronto-central negativity at around 200–350 ms after stimulus

presentation) shows larger negativity on incongruent trials following

congruent compared to incongruent trials (e.g., Iannaccone et al.,

2015; see Larson, Clayson, & Clawson, 2014, for a review). It is inter-

preted as reflecting conflict detection and increased interference

(e.g., Folstein & Van Petten, 2008; Yeung, Botvinick, & Cohen, 2004).

Another component, the conflict slow potential (SP; centro-parietal

positivity at around 500 ms after stimulus presentation), exhibits

larger positivity on incongruent trials following congruent compared

to incongruent trials and is also associated with increased engagement

of cognitive control during interference processing (e.g., Larson, Kauf-

man, & Perlstein, 2009; West, Jakubek, Wymbs, Perry, & Moore,

2005). Studies using source localization have suggested that anterior

cingulate cortex (ACC) is implicated in the generation of the N200

(e.g., Ladouceur, Dahl, & Carter, 2007; Yeung et al., 2004), while the

conflict SP may originate from prefrontal and posterior regions

(Larson et al., 2014; West et al., 2005). However, EEG cannot pre-

cisely localize the generator of activations.

Research using functional magnetic resonance imaging (fMRI) has

identified frontal regions implicated in conflict adaptation. The ACC is

often hypothesized to play a key role in conflict detection and reactive

adjustments, with larger activation on incongruent trials when the pre-

vious trial was congruent than incongruent (e.g., Carter et al., 2000;

Kerns et al., 2004). Also, dorsolateral prefrontal cortex (DLPFC) is

more activated on incongruent trials after incongruent than congruent

trials and is therefore thought to be associated with the proactive

engagement of cognitive control (e.g., Egner & Hirsch, 2005; Lesh

et al., 2013; Sheth et al., 2012). However, most current frameworks of

cognitive control (e.g., Buschman & Miller, 2014; Koechlin, Ody, &

Kouneiher, 2003; Volle et al., 2008) essentially rely on fMRI data,

which lacks the temporal resolution to provide a fine-grained measure

of the sequential modulations of brain activations and their interaction

during conflict adaptation. Furthermore, until now, the spatial extent

and temporal dynamics of brain networks associated with conflict

adaptation have not been investigated simultaneously.

Here, we used simultaneous recording of EEG and fMRI to char-

acterize the brain network associated with conflict adaptation with

high spatial and temporal resolution during a numerical Stroop task

(Besner & Coltheart, 1979; Henik & Tzelgov, 1982). Although conflict

adaptation likely relies of brief spatially discrete activations and inter-

actions, unimodal (EEG or fMRI alone) studies may have difficulties in

capturing the relevant circuitry. Previous work showed that EEG-fMRI

combination could overcome the limitations of unimodal imaging and

provide a fine-grained specification of spatial–temporal dynamics rele-

vant to conflict adaptation (e.g., Baumeister et al., 2014; Dong et al.,

2014; Frank et al., 2015; Pisauro, Fouragnan, Retzler, & Philiastides,

2017). We used the numerical Stroop paradigm to study the sequen-

tial modulations of cognitive control processes because of the involve-

ment of cognitive control processes during numerical and arithmetic

processing (see Hinault & Lemaire, 2016b; Hinault et al., 2016, for

reviews). Using a numerical Stroop task also allows to control for the

alternative accounts to conflict monitoring previously raised in “classi-

cal” conflict tasks (see Duthoo et al., 2014 for a review). Indeed, given

the large number of problems and possible solutions, sequential mod-

ulations in the numerical Stroop can difficultly be accounted for in

terms of learning of stimulus–response associations (see Duthoo

et al., 2014 for a review). Moreover, as the number of congruent and

incongruent items is equal in this paradigm, sequential modulations of

congruency effects cannot be explained by higher discriminability of

incongruent items. The main goal of our study was to investigate

(a) the neural network underlying conflict adaptation and (b) the evo-

lution of activation within this network over time on a trial-by-trial

basis. More specifically, we were interested in the modulation of the

spatial–temporal dynamic associated with the processing of an incon-

gruent trial as a function of the congruency of the immediately pre-

ceding trial. We thus expected to observe spatial and temporal

differences in brain activity between cI and iI sequences.

2 | MATERIALS AND METHODS

2.1 | Participants

Twenty-two volunteers participated in this experiment (10 women,

mean age 23.8 � 4.5 years). All participants were right handed and

reported normal or corrected-to-normal vision. Exclusion criteria

included claustrophobia and metal in the body. No participant had a

history of major medical problems, prescription medication use

(except oral contraceptive), psychiatric or neurological illness, or head

trauma. Participants were informed about procedures and goals of the

study and gave their informed consent. The study was approved by

the Montreal Neurological Institute Research Ethics Board. Partici-

pants were paid $75. Twenty-three participants were recruited, but

one was excluded from the analyses due to accuracy below 50% in

several experimental blocks.

2.2 | Experimental paradigm

The experiment was implemented in OpenSesame software (Mathôt,

Schreij, & Theeuwes, 2012). A numerical Stroop task was used

(Beldzik, Domagalik, Froncisz, & Marek, 2015; Cohen Kadosh,

Gevers, & Notebaert, 2011; Cohen Kadosh, Linden, Gevers, Berger, &

Henik, 2007; Henik & Tzelgov, 1982; Soltész, Goswami, White, &

Szűcs, 2011; Szűcs & Soltész, 2007, 2012). Stimuli consisted of two

Arabic numerals displayed side by side on a computer monitor, on

either side of the center point. Participants were asked to identify the

numerically larger digit, regardless of font size. Two types of trials

were used in equal proportions. In congruent trials, the numerically

larger digit was also displayed in a larger font size. In incongruent tri-

als, the numerically larger digit was displayed in the smaller font size.

To study the conflict adaptation effect, the congruency of trials was

manipulated to create four types of two-trial sequences: congruent–

congruent (cC), congruent–incongruent (cI), incongruent–congruent

(iC), and incongruent–incongruent (iI). The digits 2–8 were used. Fol-

lowing previous work (Cohen Kadosh & Dowker, 2015), the digit

5 was excluded. Two internumerical distances were used (Kaufmann

et al., 2005): distance 1:2–3, 3–4, 6–7, 7–8 and distance 4:2–6, 3–7,

4–8. Stimuli were presented at the following size and visual angles:
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Arial font-size 55: height 2.86�, width 1.91�; arial font-size 73: height

3.81�, width 2.48�. The stimuli were pseudo-randomly sampled so

that there was the same distribution of items in each of the four two-

trial sequences. Each digit and each distance was present equally

often in the four trial types, and the left/right position of the numeri-

cally larger digit was balanced across trials. The task was constructed

so that the correct responses were made equally often with the left

and the right button. Stimuli were arranged in five blocks, with each

block composed of 129 trials, amounting to a total of 645 trials, with

an equal distribution of trial sequences across blocks. EEG data were

processed with EEGLAB (Delorme & Makeig, 2004). Only event-

related potentials (ERPs) corresponding to correct answers were ana-

lyzed. Trials that followed an error and the first trial of each block

were also excluded. The averages � standard deviations in the num-

ber of epochs used in analyses for cI and iI trials were, respectively,

72 � 24, and 72 � 22, with a minimum number of 38 trials per partic-

ipant per condition.

Participants gave their answer via a MRI-compatible two-button

box (left button to select the item on the left and vice-versa). All par-

ticipants completed a short training session of 18 trials outside the

scanner. Instructions emphasized both accuracy and speed. There was

a pause of approximately 30 s after each block. The order of the

blocks was counterbalanced between participants to control for

fatigue. Each trial began with the presentation of a fixation cross for a

jittered period of 1,500−1800 ms (1,500, 1,600, 1,700, and 1800 ms;

Figure 1). Then, the two digits were presented, for a maximum dura-

tion of 1,500 ms. The next trial started if no response was given dur-

ing this time period.

EEG was recorded simultaneously with fMRI. After the task

instructions were reviewed, the EEG cap was fit to the participant's

head and they entered the MRI scanner. The MRI-compatible button

box was placed on the participant's right side. Participants were

reminded to keep their eyes fixed upon the white fixation cross and

to try to lie as still as possible. Extra padding was placed around the

head to minimize the head motion, which can generate EEG and fMRI

artifacts (e.g., Fellner et al., 2016). The task stimuli were projected

onto a screen situated at the rear of the magnet, which the partici-

pants viewed via a mirror attached to the MRI head coil. The full ses-

sion (including the installation of the EEG cap) lasted no longer than

90 min.

2.3 | EEG recording and preprocessing

The study followed the best current practice for simultaneous EEG-

fMRI studies (Mullinger, Castellone, & Bowtell, 2013; Ullsperger &

Debener, 2010). EEG was recorded continuously inside the MR-

scanner with 64 electrodes mounted on an elastic cap according to

the 10–20 standard system (EasyCap-MR; Brain Products, Munich,

Germany). As there is no explicit recommendation in the cited current

practice, the sampling rate was selected following previous work. EEG

was recorded with a sampling rate of 1,000 Hz, as this rate has been

shown to be required to efficiently remove gradient artifacts

(e.g., Walz et al., 2014). The ground electrode was located between

the 10/20 positions of FCz and Fz and the reference was located

between the 10/20 positions of Cz and CPz on the 64-electrode cap.

A SyncBox (Brain Products) was used to synchronize the clock output

of the MR scanner with the EEG acquisition and to improve the

removal of MR gradient artifacts from the EEG signal. The electrocar-

diogram (ECG) was recorded with an electrode on the left lower back

for removal of ballistocardiogram (BCG) artifacts. We used two MR-

compatible 32-channel amplifiers (BrainAmp MR, Brain Products) that

are not saturated by MR gradients. Cables connecting cap and ampli-

fiers were secured to prevent any additional movement-related arti-

facts. Following previous simultaneous EEG-fMRI studies, electrode

impedance was strictly maintained below 25 kΩ, with a majority of

electrodes between 10 and 20 kΩ (e.g., Frank et al., 2015; Pisauro

et al., 2017).

The EEG signal recorded inside the MRI scanner is contaminated

with gradient artifacts and BCG artifacts because of magnetic induc-

tion in the EEG wires. Because we synchronized EEG acquisition with

scanner clock output, we were able to detect and use scanner time-

stamps of volume acquisition in the EEG signal. Gradient artifacts

were removed using the average artifact subtraction method (Allen,

Josephs, & Turner, 2000; Allen, Polizzi, Krakow, Fish, & Lemieux,

1998) with the BERGEN plugin (Moosmann et al., 2009). MR gradient

artifacts were removed using a moving average width of 30 MR vol-

umes. Data were subsequently low-pass filtered at 70 Hz and down-

sampled to 250 Hz. First, each heartbeat was identified based on ECG

activity. Based on combined adaptive thresholding followed by a cor-

rection algorithm, the Gaussian weighted means of BCG artifacts were

then removed from the continuous data using the FMRIB plugin

(Niazy, Beckmann, Iannetti, Brady, & Smith, 2005). Continuous EEG

data were then filtered (0.3–40 Hz bandpass) and re-referenced using

FIGURE 1 Experimental procedure and behavioral results.

(a) Sequence of events within a trial. (b) Mean solution times
(columns) and percentages of errors (dashed lines) for current
congruent and incongruent trials, as a function of previous congruent
or incongruent trials. Errors bars represent the standard error of the
mean (S.E.M.) *p < .05, **p < .01, ***p < .001. Upper stars refer to
analyses on solution times and lower stars refer to analyses on
percentages of errors
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the algebraic average of the left and right mastoid electrodes (Luck,

2005). Independent component analysis (ICA), as implemented in

EEGlab (runica algorithm), was used to remove residual gradient and

BCG artifacts, eye-blinks, and eye-movement artifacts. Note that the

ECG channel was removed prior to ICA analysis. ERPs containing hori-

zontal eye movements or activity exceeding �50 μV were rejected.

Also, any epoch with a channel containing amplitudes of more than

five standard deviations from the epoch mean was rejected. After arti-

fact removal, continuous EEG data were epoched ([−200, 800] ms

stimulus based), with the 200 ms prestimulus period serving as base-

line. Artifact-free epochs for each experimental sequence were aver-

aged separately to obtain ERPs in each participant. We compared cI

trials (i.e., incongruent trials, when the previous trial was congruent) to

iI trials (i.e., incongruent trials, when the previous trial was incongru-

ent; see also Egner, 2011; Jarcho et al., 2013; Kerns et al., 2004;

Hinault, Dufau, & Lemaire, 2014; Hinault, Lemaire, & Phillips, 2016;

Hinault, Badier, Baillet, & Lemaire, 2017; Roquet, Hinault, Badier, &

Lemaire, 2018; Sheth et al., 2012; Yuan et al., 2011). The rationale for

this contrast was that these trials were expected to reveal distinct

neurophysiological patterns during the processing of the current

incongruent trial, as a function of the previous trial (congruent

vs. incongruent), indicative of proactive control.

Source reconstruction and analyses were performed using Brain-

storm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). The individual

digitized head shape (Polhemus Fastrak, Polhemus Inc., Colchester,

VT) and individuals' anatomy were used to constrain the source recon-

struction. FreeSurfer (Fischl, 2012) was used to generate cortical sur-

faces and automatically segment cortical structures from each

participant's T1-weighted anatomical MRI. The EEG forward model

was obtained from a symmetric boundary element method (BEM

model; OpenMEEG; Gramfort, Papadopoulo, Olivi, & Clerc, 2010;

Kybic et al., 2005), fitted to each electrode's spatial positions (Huang,

Mosher, & Leahy, 1999). A cortically constrained, sLORETA-

normalized minimum-norm estimate (MNE) procedure was applied to

estimate the cortical origin of the ERP signals (15,000 vertices on cor-

tex; Hämäläinen & Ilmoniemi, 1994; Hauk, 2004). The MNE was

weighted by a sample estimate of the sensor noise covariance matrix

(Dale et al., 2000) obtained from the prestimulus baseline, in each of

the participants, and used to improve data modeling, as typical in

MNE approaches (Baillet, 2017). Furthermore, source analyses were

guided by Blood-Oxygen-Level dependent (BOLD) activations in fMRI

contrasts for each condition to define the analyzed regions of inter-

est (ROI).

2.4 | fMRI acquisition and preprocessing

Individuals were scanned with a 3 T Siemens TIM Trio MRI scanner

with a 12-channel head coil. The helium pump and internal cooling of

the MRI scanner were switched off during fMRI acquisition to reduce

EEG artifacts. Total scanning time was approximately 45 min. Follow-

ing localizer scans, T1-weigthed images were recorded with a 3D MP-

RAGE sequence (Field of view: 256 × 256 × 176 mm, sagittal orien-

tation, 1 × 1 × 1 mm voxel size, TR: 2300 ms, TE: 2.9 ms, flip angle:

9�). FMRI data were then acquired while participants performed the

task, using a whole brain gradient echo planar imaging sequence

sensitive to BOLD contrast in 25 slices (TR: 2,000 ms, TE: 28 ms,

3.5 mm slice thickness, voxel sizes: 3 × 3 × 3 mm, FA: 77�, FOV:

224 × 224 × 88 mm). Magnetic field inhomogeneities due to the EEG

cap in the scanner were estimated using a GRE field mapping

sequence.

FMRI data were analyzed using Statistical Parametric Mapping

12 (SPM12; Wellcome Trust Centre for Neuroimaging, London, UK,

http://www.fil.ion.ucl.ac.uk/spm). We first performed a distortion cor-

rection with the fieldmap and slice timing correction. Functional

images were realigned to correct for head motion, high-pass filtered

(0.01 Hz) to remove signal drift, normalized into the Montreal Neuro-

logical Institute (MNI) stereotaxic space with trilinear interpolation,

and convolved spatially with a 3D isotropic Gaussian kernel (8 mm Full

Width at Half Maximum [FWHM]) to improve signal-to-noise ratio.

Regressors were added in the following order: cC sequences, cI

sequences, iC sequences, iI sequences, error trials, and motion param-

eters. First-level statistical analyses were carried out using a general

linear model (GLM) with the following regressors of interest: incongru-

ent trials when the previous trial was congruent (cI trials) and incon-

gruent trials when the previous trial was incongruent (iI trials). Trials

with RT < 150 ms, congruent trials, error trials and trials that followed

an error were also modeled. The head realignment parameters were

included in the GLM as confounds. The onset of each event was con-

volved with a boxcar function of duration of the corresponding reac-

tion time. The beta estimates were calculated for each regressor with

a canonical hemodynamic response basis function. Data were com-

bined across blocks using a fixed-effect model and across participants

using a mixed effects linear model. We applied a voxel-wise t-test to

compare cI and iI trials (see below). The average variance inflation fac-

tor (1/[1-R2]), estimated with the Model Assessment, Comparison and

Selection (MACS) toolbox (Soch & Allefeld, 2017), was 1.01. A Vari-

ance Inflation Factor (VIF) indicates a problematic amount of collinear-

ity when superior to five (James, Witten, Hastie, & Tibshirani, 2013).

Moreover, the correlation between the cosine angles of the regressors

was 0.36. Therefore, although problems occur with short inter-trial

intervals (but see Iannaccone et al., 2015; Wang et al., 2015; Wor-

hunsky et al., 2012, e.g., for examples of short successions), our results

cannot be interpreted as reflecting multicollinearity of the regressors.

2.5 | Joint independent component analyses

We used the method proposed by Calhoun, Adali, Pearlson, and Kiehl

(2006) and validated by Mijovi�c et al. (2012). The Fusion ICA Toolbox

(http://icatb.sourceforge.net/) was used to fuse ERP components

derived from EEG time courses with the contrasts of the fMRI activa-

tion map (e.g., Edwards, Calhoun, & Kiehl, 2012; Masterton, Jackson, &

Abbott, 2013). The method assumes that temporal components of the

ERP and spatial components of a statistical brain activation map of

the same condition covary if they originate from the same source in

the brain. This technique simultaneously identifies the components

from both modalities (e.g., Calhoun et al., 2006; Mas-Herrero, Ripollés,

HajiHosseini, Rodríguez-Fornells, & Marco-Pallarés, 2015). Using the

Infomax algorithm (Bell & Sejnowski, 1995), the independence

between spatial fMRI and ERP components was maximized and both

their shared unmixing matrix and the fused ERP/fMRI sources were
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calculated. The joint independent component analysis (jICA) was per-

formed across subjects, by combining individual time courses from

ERP epochs of a single electrode with participants' fMRI t-maps from

the iI versus cI trials and cI versus iI trials. The number of components

was estimated based on the minimum description length (MDL) cri-

teria. To investigate the N200 component, data from AF4 were

included in the ICA fusion analyses because it was the channel at

which the difference between cI and iI trials was maximal, in line with

previous jICA work (e.g., Edwards et al., 2012). Data from Cz were

used to investigate the conflict SP component. ERP components were

first regressed against the mean time course and then ranked accord-

ing to their respective contribution to the mean time course. The ICA

component with the maximum contribution to either N200 or conflict

SP was further analyzed. The N200 component was identified as a

negative deflection at around 200 ms and the conflict SP was identi-

fied as a positive deflection after 500 ms. The corresponding fMRI

components were z-scored and thresholded at p < .001 (Z > 3.1;

Doñamayor, Heilbronner, & Münte, 2012).

2.6 | Generalized psychophysiological interactions

Generalized psychophysiological (gPPI) was used to explore task-

specific changes in the functional connectivity between brain regions

(Friston, Stephan, & Frackowiak, 1997). We used the generalized

form of PPI proposed by McLaren, Ries, Xu, and Johnson (2012) to

model all of the task states (http://www.nitrc.org/projects/gppi).

Based on fMRI activations from GLM analyses and the literature, we

selected the left ACC (x = −9, y = 4, and z = 38, MNI coordinates,

5 mm radius sphere at the local peak) as a seed region. This was the

peak activation of ACC in the fMRI results for the cI versus iI trials

contrast. A single-participant level analysis was performed using the

GLM in SPM12, with a multiplication of the mean time course of the

seed region with all the regressors. gPPI was used to examine the

interactions with the seed region for cI versus iI trials and iI versus cI

trials contrasts. Individual participant data were combined using a

random effects model.

2.7 | Dynamic causal modeling

To study network interactions involved in the conflict adaptation

effect, we used dynamic causal modeling (DCM)-fMRI and DCM-EEG.

The following ROIs were entered into the network: left dorsal ACC

(x = −9, y = 4, z = 38—MNI coordinates of the ROI centroid); right

DLPFC (x = 9, y = 49, z = 44); right inferior frontal gyrus (IFG; x = 57,

y = 20, z = 26), left IFG (x = −-30, y = 32, z = −4), left inferior parietal

sulcus (IPS; x = −54, y = −25, z = 32), left orbitofrontal cortex (OFC;

x = −30, y = 53, z = 5), right anterior insula (x = 38, y = 26, z = −2),

and left anterior insula (x = −36, y = 17, z = 5). Eight is the maximum

number of ROI that can be implemented in the DCM model. These

brain regions were selected in accordance with previous meta-

analyses on cognitive control processes (e.g., Cieslik et al., 2013; de la

Vega, Chang, Banich, Wager, & Yarkoni, 2016; Derrfuss, Brass, Neu-

mann, & von Cramon, 2005; Nee et al., 2013; Niendam et al., 2012)

and previous DCM work (e.g., Bönstrup, Schulz, Feldheim, Hummel, &

Gerloff, 2016; Ma et al., 2015; Schlösser et al., 2008), while the

coordinates were based on task-related brain activations from results

of fMRI, jICA, and gPPI analyses obtained in this study. Brain activa-

tions were extracted as the first eigenvariate from 6 mm diameter

spheres centered on the peak coordinates.

In the bilinear state equation of DCM (Figure 5e), matrix A

describes the endogenous context-independent coupling within the

network. Matrix B represents the modulation of these couplings by

experimental parameters. Finally, matrix C specifies the regions that

receive the exogenous modulations on neural couplings. Here, as we

wanted to investigate the differences of couplings within the network

of sequential modulations as a function of cI and iI trials, only matrix B

is reported (see also Stephan et al., 2010).

Similar to previous DCM experiments (e.g., Bönstrup et al., 2016),

the endogenous network (i.e., Matrix A) was formulated as unrest-

ricted and fully connected for both DCM-fMRI and DCM-EEG. The

resulting model was inverted separately for cI and iI trials in each par-

ticipant. DCM12, as implemented in SPM12, was used for effective

connectivity analyses. For DCM-EEG, the model was run on the whole

epoch. The model used the same fMRI derived coordinates as for

DCM-fMRI. As routinely implemented in the DCM model of SPM12,

the same symmetric BEM model as for the EEG source analyses was

computed as a forward model based on individual T1-weighted struc-

tural images and individual electrode positions. Group level post hoc

optimization was conducted by selecting all inverted models (one per

participant and per condition).

2.8 | Experimental design and statistical analyses

Trials with RT < 150 ms were excluded from analyses to reject fast

guesses. Error trials and trials that followed an error were also

excluded as was the first trial of each block. Mean behavioral perfor-

mance (solution times and percentages of errors) were analyzed using

2(Previous congruency: congruent, incongruent) × 2(Current congru-

ency: congruent, incongruent) repeated measures ANOVA. Significant

interactions were followed by planned contrasts. Greenhouse–Geisser

epsilon correction was used when necessary. Original degrees of free-

dom and corrected p values are reported. Unless otherwise noted,

only effects significant to at least p < .05 (with Šidák correction to

control the family wise error rate; Šidák, 1967) are reported. For ERP

and source analyses, differences were tested for significance using

cluster-based permutation tests (n = 1,000). A whole-brain t-test

(FDR corrected) was used to determine whether significant source

activations were present in other brain areas than the ROIs. No signifi-

cant activation lasting at least 50 ms was observed elsewhere. Differ-

ences in source activation were tested using Time (50 ms

windows) × ROIs × Trial type (cI trials, iI trials) repeated measure

ANOVA, with FDR correction for multiple comparisons (Table 6,

Figure 6). For fMRI data, individual contrast images were entered into

a one-sample t-test at the second (group) level to test between condi-

tion differences. Statistical images for fMRI and gPPI were thre-

sholded at a multiple comparison corrected level of cluster FDR

p < .001. For DCM, the group level optimal sparse model was found

using Bayesian estimation of parameters, integrated in the

spm_dcm_post_hoc routine (e.g., Ma et al., 2015). Correlations
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between behavioral performance and DCM and gPPI results were

Šidák corrected for multiple comparisons.

3 | RESULTS

3.1 | Behavioral results

Participants were slower (544 ms vs. 499 ms; F[1,21] = 169.01,

p = .001, Mean Standard error [MSe] = 2066.56, partial eta squared

[np2] = 0.89) and less accurate (7.3% vs. 4.5%; F[1,21] = 19.52,

p = .001, MSe = 7.85, np2 = 0.48) when solving current incongruent

trials than current congruent trials, in line with a congruency effect.

Furthermore, the congruency effect was modulated by the congru-

ency of the previous trial, consistent with a conflict adaptation effect

(Figure 1). Indeed, the Previous congruency × Current congruency

interaction was significant for both reaction time (F[1,21] = 23.03,

p = .001, MSe = 240.21, np2 = .52) and error rate (F[1,21] = 30.56,

p = .001, MSe = 2.59, np2 = 0.59). Planned comparisons revealed that

the congruency effect was reduced after an incongruent trial (29 ms,

F[1,21] = 37.79, p = .001, MSe = 4.76, np2 = 0.64; 1.2%, F

[1,21] = 4.35, p = .049, MSe = 0.56, np2 = 0.17) compared to after a

congruent trial (60 ms, F[1,21] = 172.36, p = .001, MSe = 4.54, np2 =

0.89; 4.3%, F[1,21] = 30.06, p = 0.001, MSe = 0.79, np2 = 0.59). A

significant RT difference was observed between cI and iI trials (F

[1,21] = 33.22, p = .001, MSe = 244.57, np2 = 0.61), while differences

were marginally significant between cC and iC trials (F[1,21] = 4.09,

p = .056, MSe = 39.41, np2 = 0.16). Thus, the congruency of the pre-

viously solved trial was a strong determinant of performance when

the current trial was incongruent, consistent with sequential adapta-

tion. Additional analyses with either block or numerical distance as

factors revealed no interactions with previous or current congruency

(Fs < 1.5). Despite differences in accuracy, performance was quite

high in every trial type (above 90%). Because there were so few trials

with errors, we were not able to compare EEG data for correct versus

incorrect trials. Analyses of percentages of errors revealed a main

effect of current congruency, as more errors were committed on

incongruent items than on congruent items (7.3% vs. 4.5%, respec-

tively; F[1,21] = 19.52, p < .001, MSe = 7.85, np2 = .48). Also, the

Previous congruency × Current congruency interaction was signifi-

cant (F(1,21) = 30.56, p < .001, MSe = 2.59, np2 = .59), as congruency

effects were smaller after an incongruent item (1.2%; F[1,21] = 4.35,

p < .05, MSe = 0.56, np2 = 0.17) relative to after a congruent item

(4.3%; F[1,21] = 30.06, p < .001, MSe = 0.79, np2 = 0.59). Planned

comparisons also revealed that significantly more errors were commit-

ted on cI trials than on iI trials (F[1,21] = 11.31, p < .004, MSe = 1.25,

np2 = 0.35).

3.2 | EEG results

Activity during the baseline period was centered on 0 μV and differ-

ences between conditions during this period were of small amplitude

(<1 μV) and nonsignificant. ERP analyses revealed a significant differ-

ence (p < .002), between 208 ms and 232 ms, at anterior right sites

of the scalp (electrodes Fp2, F4, F8, T8, AF4, FC4, F6, C6, AF8, FT8,

and FT10), with a larger negativity on cI trials than iI trials (N200 com-

ponent, Figure 2). Significant differences (p < .001) also occurred

between 532 and 568 ms, at right centro-parietal sites (electrodes P4,

Cz, Pz, CP1, CP2, CP6, C2, PO3, PO4, P6, and CPz), with a greater

positivity on cI trials than iI trials, in line with the conflict SP compo-

nent (e.g., Larson et al., 2009; West et al., 2005). Additional analyses

were conducted to investigate the difference between congruent and

incongruent trials. Results revealed a significant difference (p < .04),

between 460 and 508 ms, at anterior sites of the scalp (electrodes

Fp1, Fp2, AF4, AF7, Fpz, Fz, FT9, AF3, F5), with a larger negativity on

incongruent trials than on congruent trials (N450 component,

Figure 2c).

3.3 | fMRI results

The cI versus iI trials contrast showed activation of the left IPS, the

left superior parietal lobule (SPL), left anterior insula, and the left post-

central gyrus. Most importantly, frontal activations were found,

including bilateral IFG and left ACC. The iI versus cI trials contrast

showed activations in the right DLPFC (Table 1 and Figure 3a). Addi-

tional analyses were conducted to investigate the difference between

congruent and incongruent trials. Significant effect was not found in

the congruent versus incongruent trials contrast. However, the incon-

gruent versus congruent trials contrast revealed activation of the right

DLPFC, right ACC, and left occipital cortex (Table 2 and Figure 3b).

3.4 | Joint-independent component analysis

The ICA component showing the N200 yielded a corresponding fMRI

spatial map with activation of the right OFC (BA10), left ACC (BA32),

and cuneus (BA17). The ICA component corresponding to the conflict

SP was associated with activation of the left SPL (BA7), left IPS (40),

right IFG (BA44), left IFG (BA47), and right DLPFC (BA 9) (Figure 4

and Table 3).

3.5 | Psychophysiological interactions (gPPI)

An ACC seed was defined based on BOLD activation on cI trials, with

the assumption that ACC connectivity to frontal areas after conflict

detection would identify areas belonging to a cognitive control net-

work (e.g., Kerns, 2006; Kerns et al., 2004). No significant effect was

found in the cI versus iI trials contrast. However, the iI versus cI trials

contrast revealed significantly higher functional connectivity of ACC

with the right IFG and right anterior insula (Figure 3c and Table 4).

This connectivity was found to be positively correlated across subjects

with behavioral congruency effects (i.e., reaction times on incongruent

trials minus congruent trials) when the previous trial was congruent

(r = 0.434, p < .041). This correlation suggests that individuals who

displayed high congruency effects when the previous trial was con-

gruent (when proactive processes were not engaged) also demon-

strated increased connectivity between ACC and right IFG/anterior

insula on iI trials, indicative of conflict adaptation.
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FIGURE 2 Cluster-based permutation tests were conducted to analyze the ERPs associated with the conflict adaptation effect. (a) Left, scalp

distribution of cI and iI trials during the significant cluster (208–232 ms), revealing larger frontal negativity for cI trials than iI trials. Right, wave
amplitudes from the significant cluster (Fp2, F4, F8, T8, AF4, FC4, F6, C6, AF8, FT8, and FT10) for cI (dashed line), and iI trials (black line),
displaying the N200 component (black box). (b) Left, scalp distribution of cI and iI trials during the significant cluster (532–568 ms), revealing
larger right-lateralized positivity for cI trials than iI trials. Right, wave amplitudes from the significant cluster (P4, Cz, Pz, CP1, CP2, CP6, C2, PO3,
PO4, P6, and CPz) for cI (dashed line), and iI trials (black line), displaying the conflict SP component (black box). (c) Left, scalp distribution for
congruent and incongruent trials during the significant cluster (460–508 ms), revealing larger frontal negativity for incongruent trials than
congruent trials. Right, Wave amplitudes from the significant cluster (Fp1, Fp2, AF4, AF7, Fpz, Fz, FT9, AF3, and F5) for congruent (dashed line),
and incongruent trials (black line), displaying the N450 component (black box) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Significant brain activation clusters (FDR-corrected) for the cI versus iI trials and iI versus cI trials contrasts, including regions

(Brodmann area), cluster size (k), t-values, and MNI coordinates

Contrasts Regions (BA) k T
MNI coordinates

x y z

CI vs. II sequences Left IPS/SPL (7/40) 2,617 9.09 −18 −44 62

7.18 −6 −49 56

6.68 −54 −25 32

Right IFG (45/47) 122 6.15 57 20 26

4.20 42 20 8

3.89 48 20 27

Left IFG (6) 195 5.11 −30 32 −4

4.74 −27 8 44

Left anterior insula (13) 275 4.76 −36 17 5

Left postcentral gyrus (1/40) 100 4.82 −57 −19 23

4.69 −63 −37 35

4.21 −60 −37 44

Left ACC (24/32) 266 4.42 −9 27 25

4.23 −9 20 35

4.16 −9 4 38

II vs. CI sequences Right DMPFC (9) 429 10.86 9 49 44

Right DLPFC 9.51 12 50 45

8.76 28 42 44

IPS = intraparietal sulcus; SPL = superior parietal lobule; IFG = inferior frontal gyrus; ACC = anterior cingulate cortex; DLPFC = dorsolateral prefrontal
cortex; DMPFC = dorsomedial prefrontal cortex.
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3.6 | DCM (modulatory activity)

We defined eight ROIs based on previous fMRI, jICA, and gPPI results.

The same eight ROIs were used for DCM-fMRI and DCM-EEG. Ana-

lyses at the group level revealed significant coupling differences as a

function of the congruency of the previous trial (Figure 5b and

Table 5). For DCM-fMRI, while after congruent trials significant cou-

plings mainly involved the ACC, left IPS, right IFG and right anterior

insula, almost all regions were engaged when the previous trial was

incongruent (except the left IPS), with stronger couplings for left IFG.

The overall greater coupling between all regions seen after incongru-

ent trials is reflective of proactive control.

Compared to the couplings derived from DCM-fMRI, DCM-EEG

revealed similar but not identical results (Figure 5d and Table 5). In line

with DCM-fMRI results, a larger number of significant couplings were

found when the previous trial was incongruent, than when it was con-

gruent. On iI trials, results show a larger number of significant cou-

plings from and to ACC. On cI trials, significant couplings were

FIGURE 3 Analyses of BOLD activity associated with cI and iI trials. (a) Left, regions activated in the cI versus iI trials contrast, showing activation

of the left anterior cingulate cortex, right and left inferior frontal gyrus, left intraparietal sulcus, the left superior parietal lobule, and the left
postcentral gyrus. Right, Regions activated in the iI versus cI trials contrast showing activation of the right dorsolateral prefrontal cortex.

(b) Functional connectivity patterns revealed by generalized PPI, with the activations on the iI versus cI contrast. The anterior cingulate cortex
defined as a seed (5 mm), showed functional connectivity the right IFG and right anterior insula [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Significant brain activation clusters (FDR-corrected) for the incongruent vs. congruent trials contrast, including regions (Brodmann

area), cluster size (k), t-values, and MNI coordinates

Contrasts Regions (BA) k T
MNI coordinates

X Y Z

Incongruent vs. congruent trials Left occipital cortex (18) 78 5.12 −26 −64 2

Right DLPFC/DMPFC (8/9/6) 219 6.04 0 29 59

5.05 6 57 38

4.86 3 20 62

Right ACC (32/24) 65 5.70 6 35 −4

ACC = anterior cingulate cortex; DLPFC = dorsolateral prefrontal cortex; DMPFC = dorsomedial prefrontal cortex.
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observed in left IFG, left IPS, and left OFC. We down-sampled the

EEG data to determine whether differences in sampling could account

for differences between the EEG and fMRI DCMs, but similar results

were found.

Correlations were found between individual behavioral perfor-

mance and DCM coupling strengths. For DCM-fMRI, a positive corre-

lation was found between RTs on cI trials (i.e., on incongruent trials,

when the previous trial was congruent) and the left OFC-DLPFC cou-

pling on iI trials (r = 0.424, p < .044). This suggests that subjects who

experienced increased interference on cI trials demonstrated

increased coupling between left OFC and DLPFC on iI trials, reflecting

sequential adjustment to process conflict more efficiently. For DCM-

EEG, a negative correlation was observed between the left IPS-left

anterior insula coupling on cI trials and RTs on iI trials (r = −.459,

TABLE 3 Joint ICA results of fMRI activation associated with N200 and conflict SP components, including regions (Brodmann area), volume (cc),

maximum t-values, and MNI coordinates

MNI coordinates

Region Brodmann area Volume (cc) X Y Z Max T

N200 component

Right OFC 10 0.9 −30 +53 +5 4.8

Left ACC 32 0.4 −9 +35 +14 4.2

Cuneus 17 0.1 −3 −82 +5 3.8

Conflict SP

Left SPL 7 0.3 −27 −49 +63 4.4

Left IPS 40 0.1 −50 −44 56 3.7

Right IFG 44 0.3 +56 +21 +23 3.8

Left IFG 47 0.4 −30 +32 +04 4.2

Right DLPFC 9 1.2 +54 +24 +28 5.1

IPS = intraparietal sulcus; OFC = orbitofrontal cortex; IFG = inferior frontal gyrus; ACC = anterior cingulate cortex; SPL = superior parietal lobule; ICA:
independent component analysisDLPFC = dorsolateral prefrontal cortex

FIGURE 4 jICA was used to combine results from EEG and fMRI. Z values are shown. Average ERP time course is shown in yellow and estimated

ERP component is shown in blue. (a) Left, ERP data from the AF4 electrode in cI trials, showing the N200. Right, corresponding fMRI component
in the cI versus iI contrast. (b) Left, ERP data from the Cz electrode in iI trials, showing the conflict SP. Right, corresponding fMRI component in
the iI versus cI contrast [Color figure can be viewed at wileyonlinelibrary.com]
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p < .032), suggesting that increased coupling between these regions

was associated with reduced interference on the following incongru-

ent trial. Furthermore, posterior probabilities were used to perform

2 (Previous congruency) × 8 (ROIs) × 7 (Couplings) repeated mea-

sures ANOVAs on both DCM-fMRI and DCM-EEG data and to add

the amplitude of the RT difference between cI and iI trials as a covari-

ate. Results revealed a significant modulation of the Previous congru-

ency × ROIs × Coupling by the covariate for both DCM-EEG and

DCM-fMRI (F[42,840] = 1.49, p < .03, MSe = 1,249.77, np2 = 0.07,

and F(42,840) = 1.70, p < .005, MSe = 0.002, np2 = 0.08, respec-

tively), providing converging evidence that the tested model is related

to behavioral performance. More specifically, individuals with the larg-

est RT difference between cI and iI trials showed larger coupling

values, this difference being larger for DLPFC and ACC on iI trials.

3.7 | EEG source results

Most ROIs showed earlier and larger activations for iI trials than cI tri-

als (Table 6, Figure 6), in line with larger and earlier activations of the

network after the processing of an incongruent item. Only one ROI

(left OFC) showed stronger, and one showed earlier (left anterior

insula) activations for cI trials.

4 | DISCUSSION

We investigated the spatio–temporal neural correlates of cognitive

control using simultaneous fMRI-EEG and a numerical Stroop task.

We investigated the entire data space by replicating the congruency

effect and the larger N450, larger ACC and DLPFC activation for

incongruent trials relative to congruent trials, observed in both arith-

metic and nonarithmetic tasks (e.g., Cohen Kadosh et al., 2007; Grand-

jean et al., 2013; Tang, Hu, Li, Zhang, & Chen, 2013; see Larson et al.,

2014, for a review). We also found behavioral evidence for conflict

adaptation (i.e., reduced interference on items that follow an incon-

gruent stimulus compared to after a congruent stimulus) with

improvement in both RT and accuracy during iI relative to cI trials. We

confirmed previous ERP and fMRI findings with greater N200 and

conflict SP on cI than iI trials, and greater activation in prefrontal

regions. The observed right-lateralization of the N200 is consistent

with previous work using both arithmetic (e.g., Avancini, Galfano, &

Szűcs, 2014, fig. 4) and nonarithmetic tasks (e.g., Al-Subari et al.,

2015, fig. 11). Joint ICA linked the N200 to the ACC and the conflict

SP to the fronto–parietal executive control network. Finally, connec-

tivity analyses demonstrated increased engagement of the cognitive

control network following incongruent items, associated with better

behavioral performance. Across individuals, the sequential adjust-

ments of the cognitive control network were correlated with response

to interference on the previous trial. Results specified how activations

within the cognitive control neural network differ as a function of pre-

vious interference resolution and identified the time course of these

effects.

This study benefited from converging evidence from BOLD, jICA,

and gPPI results to propose a neural model of cognitive control pro-

cesses underlying conflict adaptation, which was then further tested

with DCM. As a maximum of eight ROIs can be implemented in the

DCM software used here, only brain regions that were consistently

reported in prior meta-analyses (e.g., Nee et al., 2013; Niendam et al.,

2012) were included in the model. Although some differences were

found between DCM couplings for EEG and fMRI data, the key fea-

tures converge in showing more couplings and larger coupling

strengths on iI trials than on cI trials, indicative of proactive adaptation

after incongruent trials. Furthermore, these coupling increases were

correlated with better behavioral performance across individuals.

Note that differences between DCM-EEG and DCM-fMRI have been

previously reported (e.g., Bönstrup et al., 2016) and interpreted as

reflecting distinct influence of neural activity on metabolic and neuro-

electric signals (e.g., Hari et al., 2014).

Our results support a model of conflict adaptation in which IFG

and anterior insula, key nodes of the salience network, are involved in

the detection of interference. Then, they connect to ACC for conflict

detection and further engagement of the cognitive control network.

This engagement is triggered following the N200 signal, which may

reflect a negative reward prediction error signal (Holroyd & Coles,

2002; Holroyd & Yeung, 2012) or incongruency (e.g.,Hyman, Hol-

royd, & Seamans, 2017). ACC may then activate fronto–parietal brain

regions, such as OFC, DLPFC, and IPS to process interference when

automatic responding would be maladaptive (see also Shenhav, Botvi-

nick, & Cohen, 2013). ACC and IFG could also be involved in proactive

adjustments from one trial to the next, to maintain the control net-

work in a high state of activation. Our results contribute to the pro-

posed model and provide information on spatial and temporal

changes within the control network during interference processing

and as a function of the previous trial.

We used jICA to simultaneously detect covariations of ERP and

fMRI components across subjects (Calhoun et al., 2006) and identify

the brain regions associated with the ERP components previously

associated with conflict adaptation. Joint ICA analysis assumes that

electrical and hemodynamic responses co-vary and relies on this

covariation to identify components in time and space. Our jICA

results provide empirical support for the role of ACC in the genera-

tion of N200 but also revealed the simultaneous engagement of

OFC, and cuneus. The OFC has been associated with the engage-

ment of cognitive control (e.g., Niendam et al., 2012), and the cuneus

with inhibition (e.g., Crockford, Goodyear, Edwards, Quickfall, & El-

Guebaly, 2005). Our results support the role of the N200 in both

conflict detection and engagement of the control network reflecting

a reactive mode. Joint ICA showed that the conflict SP was

TABLE 4 Significant generalized PPI results (FDR corrected), with

functional connectivity patterns between ACC and other brain regions
in the iI versus cI contrast

Regions (BA) k T MNI coordinates

X Y Z

Right anterior insula (13) 117 6.36 38 26 −2

Right putamen 4.70 30 11 −4

4.40 36 23 2

Right IFG (6) 49 5.00 54 8 32

ACC = anterior cingulate cortex; IFG = inferior frontal gyrus; PPI: psycho-
physiological interaction.
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associated with activation of a widespread fronto–parietal network

(SPL, IPL, IFG, and DLPFC). Such findings suggest that this compo-

nent reflects the engagement of the cognitive control network dur-

ing interference resolution.

The PPI analysis revealed that performance on iI trials was associ-

ated with increased connectivity between right anterior insula, right

IFG, and ACC. These results are consistent with these three regions

being hubs for conflict detection and engagement of control (e.g., Nee

et al., 2013). This up-regulation of brain areas associated with cogni-

tive flexibility and salience processing (anterior insula; e.g., Elton &

Gao, 2014), and inhibitory control (ACC and IFG; e.g., Niendam et al.,

2012) likely contributes to faster and more accurate conflict proces-

sing on the next trial, as demonstrated here. Indeed, correlations

between PPI and the behavioral congruency effect reveal that high

interference was associated with increased connectivity on the subse-

quent incongruent trial, across participants.

FIGURE 5 DCM analyses were run on both EEG and fMRI data to investigate the cognitive control network. (a) Left, connection strengths (Xp:

exceedance probability) for cI trials in fMRI data. Right, connection strengths for iI trials in fMRI data. (b) Left, DCM network for cI trials in fMRI
data. Right, DCM network for iI trials in fMRI data. (c) Left, connections' strengths for cI trials in EEG data. Right, connections' strengths for iI
trials in EEG data. (d) Left, DCM network for cI trials in EEG data. Right, DCM network for iI trials in EEG data. Upper corresponds to positive
connections, while lower corresponds to negative connections. Only couplings that reached the defined threshold are displayed in the DCM
networks. (e) The bilinear state equation of DCM (adapted from Dynamic causal models of neural system dynamics: Current state and future
extensions. Journal of Biosciences, 2007, 32, 129-144 [Stephan et al., 2007]) [Color figure can be viewed at wileyonlinelibrary.com]

90 HINAULT ET AL.

http://wileyonlinelibrary.com


DCM results on cI trials highlighted the widespread engagement

of the cognitive control network when no preparation was previously

engaged. The couplings involving the right anterior insula could reflect

the fact that the salience of incongruent trials plays a role in the acti-

vation of the cognitive control network. The ACC also showed cou-

plings with the fronto–parietal executive network. Thus, results

support a role for these regions in detecting interference and engaging

the rest of the network, especially lateral prefrontal regions

(e.g., Duverne & Koechlin, 2017; Shenhav et al., 2013). Left IFG and

anterior insula also showed couplings with ACC and prefrontal

regions, but only in DCM-EEG. We can hypothesize that some activa-

tions were too short in duration to be detected by DCM-fMRI. Insula

and IFG are associated with cognitive flexibility and working memory

effort (e.g., Nee et al., 2013) and could be involved in the (reactive)

reorganization of cognitive control for incongruent trials when no

preparation was engaged. DCM for cI trials also showed the engage-

ment of the OFC, which has been associated with control of actions

(e.g., Stalnaker, Cooch, & Schoenbaum, 2015). Coupling with left IPS

is also interesting, as this brain region has been associated with

number processing (see Menon, 2015, for a review). DCM results

TABLE 5 DCM connectivity parameters (matrix B) for fMRI and EEG

Model Source Target Estimate p Source Target Estimate p
Modality fMRI EEG

CI sequences ACC DLPFC −1.30 1.00 ACC LIPS 0.20 1.00

ACC LIPS 1.13 1.00 ACC LOFC 0.28 1.00

LIPS ACC −1.44 1.00 DLPFC RIFG 0.28 1.00

LIPS RIFG 1.68 1.00 LIFG DLPFC −0.19 1.00

RIFG ACC 0.32 1.00 LIFG LOFC −0.07 1.00

RIFG DLPFC 1.54 1.00 LIFG RISL 0.76 1.00

RIFG LIPS 3.15 0.80 LIPS RIFG 0.57 1.00

RIFG LISL −4.35 0.69 LIPS LIFG 0.16 1.00

RIFG LOFC −0.44 1.00 LIPS LISL −0.55 1.00

RISL LOFC −0.69 1.00 LISL ACC 0.48 1.00

RISL RIFG 0.70 1.00 LISL LIFJ 0.06 1.00

– – – – LISL LOFC −0.15 1.00

– – – – LOFC ACC 0.50 1.00

– – – – LOFC LIFG 0.95 1.00

– – – – RISL DLPFC −0.49 1.00

– – – – RISL LIFG 0.33 1.00

II sequences ACC DLPFC −1.85 1.00 ACC DLPFC 0.41 1.00

ACC LOFC 1.83 1.00 ACC LIFG −1.01 1.00

ACC RIFG 0.07 0.81 ACC LIPS 0.63 1.00

DLPFC LISL −0.26 1.00 ACC LOFC −0.44 1.00

DLPFC RIFG 0.73 1.00 ACC RIFG 0.23 1.00

LIFG ACC 2.71 1.00 ACC RISL −0.21 1.00

LIFG DLPFC −2.26 1.00 DLPFC RIFG −0.60 1.00

LIFG RIFG −0.14 1.00 LIFG LOFC −0.26 1.00

LIPS DLPFC 2.18 0.80 LIPS RIFG −0.08 1.00

LIPS LOFC −1.50 0.77 LISL ACC −0.10 1.00

LIPS RIFG −0.29 0.84 LISL LIPS 0.26 1.00

LISL ACC −0.32 0.80 LISL RIFG −0.65 1.00

LISL DLPFC 1.04 0.84 LISL RISL 0.37 1.00

LISL RIFG −0.57 1.00 LOFC LIFG 0.13 1.00

LOFC DLPFC −1.57 1.00 LOFC LIPS 0.01 1.00

LOFC LISL −1.71 1.00 LOFC RIFG −0.64 1.00

RIFG ACC −0.47 1.00 RIFG ACC 0.44 1.00

RIFG LOFC 0.68 1.00 RIFG LIPS 0.41 1.00

RISL ACC 2.10 1.00 RIFG LOFC 0.78 1.00

RISL DLPFC −0.10 1.00 - - - -

RISL LIPS −1.71 1.00 - - - -

ACC = anterior cingulate cortex; DLPFC = dorsolateral prefrontal cortex; LIFG = left inferior frontal gyrus; LIPS = left intraparietal sulcus; LISL = left ante-
rior insula; LOFC = left orbitofrontal cortex; RIFG = right inferior frontal gyrus; RISL = right anterior insula. Estimates = maximum a posteriori values of
the posterior distribution (parameter magnitude estimates); p = posterior probability; bold entries are significant at a threshold of posterior ≥95% ; –
No data.
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suggest a stronger involvement of number processing regions when

no preparation to process conflict has been engaged.

On iI trials, DCM results revealed larger and stronger couplings, in

line with sequential adjustments from one trial to the next, with faster

and more accurate conflict monitoring after the processing of an

incongruent trial, as confirmed by behavioral results. The ACC showed

coupling with a major part of the frontal control network, suggesting

that it is not restricted to conflict detection, but it is also involved in

proactive adjustments. Moreover, the right IFG also showed couplings

with frontal and parietal regions and appeared to play a role in faster

and more accurate interference processing following incongruent tri-

als. Proactive control on iI trials was also underpinned by couplings to

and from prefrontal regions (OFC and DLPFC), which suggests that

cognitive control processes are already in a high state of activation

following incongruent trials.

EEG source results further specified the time course of activation

within the conflict adaptation network. Indeed, stimulus encoding and

interference detection were followed by the engagement of control

for conflict resolution on the subsequent trial. Results highlighted

more extensive and earlier brain activations on iI trials than on cI trials.

These earlier activations were found during stimulus encoding but

also later, during response preparation. Earlier activations of right

anterior insula and IFG during cI trials support the theory that these

brain regions are involved in the recruitment of the cognitive control

network (see also Jahfari et al., 2012) and then connect to ACC. The

right anterior insula and IFG are thought to signal salient events and

to activate ACC during conflict detection (Menon & Uddin, 2010). On

incongruent trials following an incongruent trial (iI trials), the salience

network and the fronto–parietal executive network were activated

earlier, during encoding of the items (e.g., before 200 ms, Dehaene,

Spelke, Pinel, Stanescu, & Tsivkin, 1999), presumably to process inter-

ference faster and more accurately. Moreover, results showed the role

of left OFC to process interference when no preparation was

engaged, and of left and right IFG, and left IPS, in proactive adjust-

ments after interference resolution.

Correlation between DCM couplings and behavior clarified how

the proposed network could account for behavioral conflict adapta-

tion. Indeed, the coupling between left OFC and DLPFC was posi-

tively correlated with the interference level on the preceding trial,

when no preparation was engaged. This suggests that the detection

and the processing of the interference led to sequential adjustments

on the next trial. Conversely, the coupling between left IPS and left

anterior insula appeared to be involved in proactive adjustments, as it

was associated with better performance on the subsequent incongru-

ent trial. Furthermore, when the behavioral difference between cI and

iI trials was entered as a covariate in the analyses, individuals with the

largest adjustments showed largest coupling strengths between pre-

frontal regions (on iI trials).

4.1 | Limitations

This study provides new insights on the dynamic functional connectiv-

ity underlying conflict adaptation, but there are some limitations to

acknowledge. First, relatively high impedances, although previously

reported in simultaneous EEG-fMRI recordings, may have reduced the

signal-to-noise ratio in the EEG data. However, the fact that the

results are consistent with previous work suggests that they are genu-

ine and not influenced by artifacts. Blink artifacts were removed after

the correction for BCG artifact to mitigate against blink artifacts

spreading across trials. In addition, ICA decomposition was used fol-

lowing preprocessing to remove remaining blink and scanner artifacts

from the data. Moreover, short intervals between stimuli may have

influenced our ability to detect differences between conditions. Addi-

tional analyses using VIF and correlation between regressors were too

low to assume a multicollinearity issue. As stated in Section 2.4, our

results are unlikely due to multicollinearity of the regressors. Finally,

others have proposed different reference methods (e.g., Reference

Electrode Standardization Technique [REST]; Dong et al., 2017) and

using a higher sampling rate (e.g., 5,000 Hz) that may have allowed a

better removal of the gradient artifacts. However, the sampling rate

and the linked mastoid reference used here have been reported in the

recent work (e.g., Frank et al., 2015; Pisauro et al., 2017; Walz et al.,

2014), and no elements in the current data suggest that a significant

distortion remained following preprocessing.

5 | CONCLUSIONS

Results have implications for the current frameworks of cognitive con-

trol (e.g., Botvinick et al., 2001; Braver, Paxton, Locke, & Barch, 2009;

Buschman & Miller, 2014; Holroyd & Yeung, 2012; Koechlin et al.,

2003; Nee & D'Esposito, 2016; Shenhav et al., 2013; Volle et al.,

2008), as they contribute to unravel the brain network engaged in

FIGURE 6 Time course of EEG source activation for cI and iI trials, between 100 and 700 ms [Color figure can be viewed at

wileyonlinelibrary.com]
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conflict adaptation and how it accounts for behavioral performance.

Results also benefited from the high temporal resolution of EEG to

further specify the time course of activations within this network, and

how the ERP components were related to activations of brain regions

involved in conflict adaptation. Specifically, we show that the N200

relates to ACC activation, whereas the conflict SP appears to co-occur

with activation of the distributed fronto–parietal control network.

Previous frameworks mostly relied on fMRI data and were unable to

provide a fine-grained characterization of the time course of brain

activations during sequential modulations of cognitive control pro-

cesses. The model that emerges from this experiment first includes

the salience network (anterior insula, ACC and IFG) when incongruent

trials are processed. This network marks salient events, detects inter-

ference, and signals the need for higher control. Then, the fronto–

parietal executive control network (OFC, DLPFC, and IPS) is activated

to resolve the interference. The IFG and ACC are involved in main-

taining this network in a high state of activation to process interfer-

ence faster and more accurately when the next trial is incongruent.

Future work could aim to unravel the contribution of these networks

over longer time scales (e.g., depending on the overall proportion of

congruent and incongruent items in the task).

ACKNOWLEDGMENTS

We would like to thank Michael Ferreira for his help with the experi-

mental set-up. This work was supported by a Canadian Institute of

Health Research Foundation grant to Alain Dagher.

CONFLICT OF INTERESTS

The authors disclose any potential sources of conflict of interest.

ORCID

Thomas Hinault https://orcid.org/0000-0001-9939-0640

REFERENCES

Allen, P. J., Josephs, O., & Turner, R. (2000). A method for removing imag-
ing artifact from continuous EEG recorded during functional MRI. Neu-
roImage, 12(2), 230–239. https://doi.org/10.1006/nimg.2000.0599

Allen, P. J., Polizzi, G., Krakow, K., Fish, D. R., & Lemieux, L. (1998). Identifi-
cation of EEG events in the MR scanner: The problem of pulse artifact
and a method for its subtraction. NeuroImage, 8(3), 229–239. https://
doi.org/10.1006/nimg.1998.0361

Al-Subari, K., Al-Baddai, S., Tomé, A. M., Volberg, G., Hammwöhner, R., &
Lang, E. W. (2015). Ensemble empirical mode decomposition analysis
of EEG data collected during a contour integration task. PLoS One,
10(4), e0119489. https://doi.org/10.1371/journal.pone.0119489

Avancini, C., Galfano, G., & Szűcs, D. (2014). Dissociation between arith-
metic relatedness and distance effects is modulated by task properties:
An ERP study comparing explicit vs. implicit arithmetic processing. Bio-
logical Psychology, 103, 305–316. https://doi.org/10.1016/j.biopsycho.
2014.10.003

Bailey, K., West, R., & Anderson, C. A. (2010). A negative association
between video game experience and proactive cognitive control. Psy-
chophysiology, 47(1), 34–42. https://doi.org/10.1111/j.1469-8986.
2009.00925.x

Baillet, S. (2017). Magnetoencephalography for brain electrophysiology
and imaging. Nature Neuroscience, 20(3), 327–339. https://doi.org/10.
1038/nn.4504

Baumeister, S., Hohmann, S., Wolf, I., Plichta, M. M., Rechtsteiner, S.,
Zangl, M., … Brandeis, D. (2014). Sequential inhibitory control pro-
cesses assessed through simultaneous EEG–fMRI. NeuroImage, 94,
349–359. https://doi.org/10.1016/j.neuroimage.2014.01.023

Beldzik, E., Domagalik, A., Froncisz, W., & Marek, T. (2015). Dissociating
EEG sources linked to stimulus and response evaluation in numerical
Stroop task using independent component analysis. Clinical Neurophysi-
ology, 126(5), 914–926. https://doi.org/10.1016/j.clinph.2014.08.009

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach
to blind separation and blind deconvolution. Neural Computation, 7(6),
1129–1159. https://doi.org/10.1162/neco.1995.7.6.1129

Besner, D., & Coltheart, M. (1979). Ideographic and alphabetic processing
in skilled reading of English. Neuropsychologia, 17(5), 467–472. https://
doi.org/10.1016/0028-3932(79)90053-8

Bönstrup, M., Schulz, R., Feldheim, J., Hummel, F. C., & Gerloff, C. (2016).
Dynamic causal modelling of EEG and fMRI to characterize network
architectures in a simple motor task. NeuroImage, 124, 498–508.
https://doi.org/10.1016/j.neuroimage.2015.08.052

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D.
(2001). Conflict monitoring and cognitive control. Psychological Review,
108(3), 624–652. https://doi.org/10.1037/0033-295X.108.3.624

Braver, T. S. (2012). The variable nature of cognitive control: A dual mech-
anisms framework. Trends in Cognitive Sciences, 16(2), 106–113.
https://doi.org/10.1016/j.tics.2011.12.010

Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neu-
ral mechanisms of cognitive control within human prefrontal cortex.
Proceedings of the National Academy of Sciences, 106(18), 7351–7356.
https://doi.org/10.1073/pnas.0808187106

Breukelaar, I. A., Antees, C., Grieve, S. M., Foster, S. L., Gomes, L.,
Williams, L. M., & Korgaonkar, M. S. (2017). Cognitive control network
anatomy correlates with neurocognitive behavior: A longitudinal study:
Cognitive control network development. Human Brain Mapping, 38(2),
631–643. https://doi.org/10.1002/hbm.23401

Buschman, T. J., & Miller, E. K. (2014). Goal-direction and top-down con-
trol. Philosophical Transactions of the Royal Society B: Biological Sciences,
369(1655), 20130471–20130471. https://doi.org/10.1098/rstb.2013.
0471

Calhoun, V. D., Adali, T., Pearlson, G. D., & Kiehl, K. A. (2006). Neuronal
chronometry of target detection: Fusion of hemodynamic and
event-related potential data. NeuroImage, 30(2), 544–553. https://doi.
org/10.1016/j.neuroimage.2005.08.060

Carter, C. S., Macdonald, A. M., Botvinick, M., Ross, L. L., Stenger, V. A.,
Noll, D., & Cohen, J. D. (2000). Parsing executive processes: Strategic
vs. evaluative functions of the anterior cingulate cortex. Proceedings of
the National Academy of Sciences, 97(4), 1944–1948. https://doi.
org/10.1073/pnas.97.4.1944

Cieslik, E. C., Zilles, K., Caspers, S., Roski, C., Kellermann, T. S., Jakobs, O.,
… Eickhoff, S. B. (2013). Is there “one” DLPFC in cognitive action con-
trol? Evidence for heterogeneity from co-activation-based Parcellation.
Cerebral Cortex, 23(11), 2677–2689. https://doi.org/10.1093/cercor/
bhs256

Cohen Kadosh, R., & Dowker, A. (2015). The Oxford handbook of numerical
cognition. New York, USA: Oxford University Press.

Cohen Kadosh, R., Gevers, W., & Notebaert, W. (2011). Sequential analysis
of the numerical Stroop effect reveals response suppression. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 37(5),
1243–1249. https://doi.org/10.1037/a0023550

Cohen Kadosh, R., Linden, D. E., Gevers, W., Berger, A., & Henik, A. (2007).
The brain locus of interaction between number and size: A combined
functional magnetic resonance imaging and event-related potential
study. Journal of Cognitive Neuroscience, 19(6), 957–970. https://doi.
org/10.1162/jocn.2007.19.6.957

Cole, M. W., & Schneider, W. (2007). The cognitive control network: Inte-
grated cortical regions with dissociable functions. NeuroImage, 37(1),
343–360. https://doi.org/10.1016/j.neuroimage.2007.03.071

Crockford, D. N., Goodyear, B., Edwards, J., Quickfall, J., & El-Guebaly, N.
(2005). Cue-induced brain activity in pathological gamblers. Biological
Psychiatry, 58(10), 787–795. https://doi.org/10.1016/j.biopsych.2005.
04.037

Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W.,
Lewine, J. D., & Halgren, E. (2000). Dynamic statistical parametric

94 HINAULT ET AL.

https://orcid.org/0000-0001-9939-0640
https://orcid.org/0000-0001-9939-0640
https://doi.org/10.1006/nimg.2000.0599
https://doi.org/10.1006/nimg.1998.0361
https://doi.org/10.1006/nimg.1998.0361
https://doi.org/10.1371/journal.pone.0119489
https://doi.org/10.1016/j.biopsycho.2014.10.003
https://doi.org/10.1016/j.biopsycho.2014.10.003
https://doi.org/10.1111/j.1469-8986.2009.00925.x
https://doi.org/10.1111/j.1469-8986.2009.00925.x
https://doi.org/10.1038/nn.4504
https://doi.org/10.1038/nn.4504
https://doi.org/10.1016/j.neuroimage.2014.01.023
https://doi.org/10.1016/j.clinph.2014.08.009
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1016/0028-3932(79)90053-8
https://doi.org/10.1016/0028-3932(79)90053-8
https://doi.org/10.1016/j.neuroimage.2015.08.052
https://doi.org/10.1037/0033-295X.108.3.624
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1073/pnas.0808187106
https://doi.org/10.1002/hbm.23401
https://doi.org/10.1098/rstb.2013.0471
https://doi.org/10.1098/rstb.2013.0471
https://doi.org/10.1016/j.neuroimage.2005.08.060
https://doi.org/10.1016/j.neuroimage.2005.08.060
https://doi.org/10.1073/pnas.97.4.1944
https://doi.org/10.1073/pnas.97.4.1944
https://doi.org/10.1093/cercor/bhs256
https://doi.org/10.1093/cercor/bhs256
https://doi.org/10.1037/a0023550
https://doi.org/10.1162/jocn.2007.19.6.957
https://doi.org/10.1162/jocn.2007.19.6.957
https://doi.org/10.1016/j.neuroimage.2007.03.071
https://doi.org/10.1016/j.biopsych.2005.04.037
https://doi.org/10.1016/j.biopsych.2005.04.037


mapping: Combining fMRI and MEG for high-resolution imaging of cor-

tical activity. Neuron, 26(1), 55–67. https://doi.org/10.1016/

S0896-6273(00)81138-1
de la Vega, A., Chang, L. J., Banich, M. T., Wager, T. D., & Yarkoni, T.

(2016). Large-scale meta-analysis of human medial frontal cortex

reveals tripartite functional organization. Journal of Neuroscience,

36(24), 6553–6562. https://doi.org/10.1523/JNEUROSCI.4402-15.

2016
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources

of mathematical thinking: Behavioral and brain-imaging evidence. Sci-

ence, 284(5416), 970–974.
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for

analysis of single-trial EEG dynamics including independent component

analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.
org/10.1016/j.jneumeth.2003.10.009

Derrfuss, J., Brass, M., Neumann, J., & von Cramon, D. Y. (2005). Involve-

ment of the inferior frontal junction in cognitive control:

Meta-analyses of switching and Stroop studies. Human Brain Mapping,

25(1), 22–34. https://doi.org/10.1002/hbm.20127
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1),

135–168. https://doi.org/10.1146/annurev-psych-113011-143750
Doñamayor, N., Heilbronner, U., & Münte, T. F. (2012). Coupling electro-

physiological and hemodynamic responses to errors. Human Brain Map-

ping, 33(7), 1621–1633. https://doi.org/10.1002/hbm.21305
Dong, L., Gong, D., Valdes-Sosa, P. A., Xia, Y., Luo, C., Xu, P., & Yao, D.

(2014). Simultaneous EEG-fMRI: Trial level spatio-temporal fusion for

hierarchically reliable information discovery. NeuroImage, 99, 28–41.
https://doi.org/10.1016/j.neuroimage.2014.05.029

Dong, L., Li, F., Liu, Q., Wen, X., Lai, Y., Xu, P., & Yao, D. (2017). MATLAB

toolboxes for reference electrode standardization technique (REST) of

scalp EEG. Frontiers in Neuroscience, 11, 601. https://doi.org/10.3389/

fnins.2017.00601
Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., & Notebaert, W.

(2014). The heterogeneous world of congruency sequence effects: An

update. Frontiers in Psychology, 5, 1001. https://doi.org/10.3389/

fpsyg.2014.01001
Duverne, S., & Koechlin, E. (2017). Rewards and Cognitive Control in the

Human Prefrontal Cortex. Cerebral Cortex, 1–16. https://doi.org/10.
1093/cercor/bhx210

Edwards, B. G., Calhoun, V. D., & Kiehl, K. A. (2012). Joint ICA of ERP and

fMRI during error-monitoring. NeuroImage, 59(2), 1896–1903. https://
doi.org/10.1016/j.neuroimage.2011.08.088

Egner, T. (2011). Right ventrolateral prefrontal cortex mediates individual

differences in conflict-driven cognitive control. Journal of Cognitive Neu-

roscience, 23(12), 3903–3913. https://doi.org/10.1162/jocn_a_00064
Egner, T., & Hirsch, J. (2005). The neural correlates and functional integra-

tion of cognitive control in a Stroop task. NeuroImage, 24(2), 539–547.
https://doi.org/10.1016/j.neuroimage.2004.09.007

Elton, A., & Gao, W. (2014). Divergent task-dependent functional connec-

tivity of executive control and salience networks. Cortex, 51, 56–66.
https://doi.org/10.1016/j.cortex.2013.10.012

Fellner, M. C., Volberg, G., Mullinger, K. J., Goldhacker, M., Wimber, M.,

Greenlee, M. W., & Hanslmayr, S. (2016). Spurious correlations in

simultaneous EEG-fMRI driven by in-scanner movement. NeuroImage,

133, 354–366. https://doi.org/10.1016/j.neuroimage.2016.03.031
Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. https://doi.

org/10.1016/j.neuroimage.2012.01.021
Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and

mismatch on the N2 component of the ERP: A review. Psychophysiology,

45(1), 152–170. https://doi.org/10.1111/j.1469-8986.2007.00602.x
Frank, M. J., Gagne, C., Nyhus, E., Masters, S., Wiecki, T. V.,

Cavanagh, J. F., & Badre, D. (2015). fMRI and EEG predictors of

dynamic decision parameters during human reinforcement learning.

Journal of Neuroscience, 35(2), 485–494. https://doi.org/10.1523/

JNEUROSCI.2036-14.2015
Friston, K. J., Stephan, K. M., & Frackowiak, R. S. (1997). Transient

phase-locking and dynamic correlations: Are they the same thing?

Human Brain Mapping, 5(1), 48–57. https://doi.org/10.1002/(SICI)

1097-0193

Gramfort, A., Papadopoulo, T., Olivi, E., & Clerc, M. (2010). OpenMEEG:
Opensource software for quasistatic bioelectromagnetics. Biomedical
Engineering Online, 9, 45. https://doi.org/10.1186/1475-925X-9-45

Grandjean, J., D'Ostilio, K., Fias, W., Phillips, C., Balteau, E., Degueldre, C., …
Collette, F. (2013). Exploration of the mechanisms underlying the ISPC
effect: Evidence from behavioral and neuroimaging data. Neuropsycholo-
gia, 51(6), 1040–1049. https://doi.org/10.1016/j.neuropsychologia.
2013.02.015

Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of
information: Strategic control of activation of responses. Journal of
Experimental Psychology: General, 121(4), 480–506. https://doi.org/10.
1037/0096-3445.121.4.480

Hämäläinen, M. S., & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of
the brain: Minimum norm estimates. Medical & Biological Engineering &
Computing, 32(1), 35–42. https://doi.org/10.1007/BF02512476

Hari, R., Bourguignon, M., Piitulainen, H., Smeds, E., Tiège, X. D., &
Jousmäki, V. (2014). Human primary motor cortex is both activated
and stabilized during observation of other person's phasic motor
actions. Philosophical Transactions of the Royal Society B, 369(1644),
20130171. https://doi.org/10.1098/rstb.2013.0171

Hauk, O. (2004). Keep it simple: A case for using classical minimum norm
estimation in the analysis of EEG and MEG data. NeuroImage, 21(4),
1612–1621. https://doi.org/10.1016/j.neuroimage.2003.12.018

Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation
between physical and semantic size in comparison tasks. Memory &
Cognition, 10(4), 389–395. https://doi.org/10.3758/BF03202431

Hinault, T., Badier, J. M., Baillet, S., & Lemaire, P. (2017). The sources of
sequential modulation of control processes in arithmetic strategies: A
MEG study. Journal of Cognitive Neuroscience, 14, 1–11. https://doi.
org/10.1162/jocn_a_01102.

Hinault, T., Dufau, S., & Lemaire, P. (2014). Sequential modulations of
poorer strategy effects during strategy execution: An event-related
potential study in arithmetic. Brain & Cognition, 91, 123–130. https://
doi.org/10.1016/j.bandc.2014.09.001

Hinault, T., & Lemaire, P. (2016a). What does EEG tell us about arithmetic
strategies? A review. International Journal of Psychophysiology, 106¸,
115–126. https://doi.org/10.1016/j.ijpsycho.2016.05.006

Hinault, T., & Lemaire, P. (2016b). Strategic variations with age during
arithmetic problem solving: The role of executive control. Progress in
Brain Research, 227, 257–276. https://doi.org/10.1016/bs.pbr.2016.
03.009

Hinault, T., Lemaire, P., & Phillips, N. (2016). Aging and sequential modula-
tions of poorer strategy effects: An EEG study in arithmetic problem
solving. Brain Research, 1630, 144–158. https://doi.org/10.1016/j.
brainres.2015.10.057

Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error
processing: Reinforcement learning, dopamine, and the error-related
negativity. Psychological Review, 109(4), 679–709. https://doi.org/10.
1037/0033-295X.109.4.679

Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by
anterior cingulate cortex. Trends in Cognitive Sciences, 16(2), 122–128.
https://doi.org/10.1016/j.tics.2011.12.008

Huang, M. X., Mosher, J. C., & Leahy, R. M. (1999). A sensor-weighted
overlapping-sphere head model and exhaustive head model compari-
son for MEG. Physics in Medicine and Biology, 44(2), 423–440. https://
doi.org/10.1088/0031-9155/44/2/010

Hyman, J. M., Holroyd, C. B., & Seamans, J. K. (2017). A novel neural pre-
diction error found in anterior cingulate cortex ensembles. Neuron,
95(2), 447–456.e3. https://doi.org/10.1016/j.neuron.2017.06.021

Iannaccone, R., Hauser, T. U., Staempfli, P., Walitza, S., Brandeis, D., &
Brem, S. (2015). Conflict monitoring and error processing: New insights
from simultaneous EEG–fMRI. NeuroImage, 105, 395–407. https://doi.
org/10.1016/j.neuroimage.2014.10.028

Jahfari, S., Verbruggen, F., Frank, M. J., Waldorp, L. J., Colzato, L.,
Ridderinkhof, K. R., & Forstmann, B. U. (2012). How preparation
changes the need for top-down control of the basal ganglia when inhi-
biting premature actions. Journal of Neuroscience, 32(32),
10870–10878. https://doi.org/10.1523/JNEUROSCI.0902-12.2012

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to
statistical learning: With applications in R. New York: Springer-Verlag.
Retrieved from. www.springer.com/us/book/9781461471370

HINAULT ET AL. 95

https://doi.org/10.1016/S0896-6273(00)81138-1
https://doi.org/10.1016/S0896-6273(00)81138-1
https://doi.org/10.1523/JNEUROSCI.4402-15.2016
https://doi.org/10.1523/JNEUROSCI.4402-15.2016
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1002/hbm.20127
https://doi.org/10.1146/annurev-psych-113011-143750
https://doi.org/10.1002/hbm.21305
https://doi.org/10.1016/j.neuroimage.2014.05.029
https://doi.org/10.3389/fnins.2017.00601
https://doi.org/10.3389/fnins.2017.00601
https://doi.org/10.3389/fpsyg.2014.01001
https://doi.org/10.3389/fpsyg.2014.01001
https://doi.org/10.1093/cercor/bhx210
https://doi.org/10.1093/cercor/bhx210
https://doi.org/10.1016/j.neuroimage.2011.08.088
https://doi.org/10.1016/j.neuroimage.2011.08.088
https://doi.org/10.1162/jocn_a_00064
https://doi.org/10.1016/j.neuroimage.2004.09.007
https://doi.org/10.1016/j.cortex.2013.10.012
https://doi.org/10.1016/j.neuroimage.2016.03.031
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1111/j.1469-8986.2007.00602.x
https://doi.org/10.1523/JNEUROSCI.2036-14.2015
https://doi.org/10.1523/JNEUROSCI.2036-14.2015
https://doi.org/10.1002/(SICI)1097-0193
https://doi.org/10.1002/(SICI)1097-0193
https://doi.org/10.1186/1475-925X-9-45
https://doi.org/10.1016/j.neuropsychologia.2013.02.015
https://doi.org/10.1016/j.neuropsychologia.2013.02.015
https://doi.org/10.1037/0096-3445.121.4.480
https://doi.org/10.1037/0096-3445.121.4.480
https://doi.org/10.1007/BF02512476
https://doi.org/10.1098/rstb.2013.0171
https://doi.org/10.1016/j.neuroimage.2003.12.018
https://doi.org/10.3758/BF03202431
https://doi.org/10.1162/jocn_a_01102
https://doi.org/10.1162/jocn_a_01102
https://doi.org/10.1016/j.bandc.2014.09.001
https://doi.org/10.1016/j.bandc.2014.09.001
https://doi.org/10.1016/j.ijpsycho.2016.05.006
https://doi.org/10.1016/bs.pbr.2016.03.009
https://doi.org/10.1016/bs.pbr.2016.03.009
https://doi.org/10.1016/j.brainres.2015.10.057
https://doi.org/10.1016/j.brainres.2015.10.057
https://doi.org/10.1037/0033-295X.109.4.679
https://doi.org/10.1037/0033-295X.109.4.679
https://doi.org/10.1016/j.tics.2011.12.008
https://doi.org/10.1088/0031-9155/44/2/010
https://doi.org/10.1088/0031-9155/44/2/010
https://doi.org/10.1016/j.neuron.2017.06.021
https://doi.org/10.1016/j.neuroimage.2014.10.028
https://doi.org/10.1016/j.neuroimage.2014.10.028
https://doi.org/10.1523/JNEUROSCI.0902-12.2012
http://www.springer.com/us/book/9781461471370


Jarcho, J. M., Fox, N. A., Pine, D. S., Etkin, A., Leibenluft, E., Shechner, T., &
Ernst, M. (2013). The neural correlates of emotion-based cognitive
control in adults with early childhood behavioral inhibition. Biological
Psychology, 92(2), 306–314. https://doi.org/10.1016/j.biopsycho.
2012.09.008

Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C.,
Rhomberg, P., Golaszewski, S., … Ischebeck, A. (2005). Neural corre-
lates of distance and congruity effects in a numerical Stroop task: An
event-related fMRI study. NeuroImage, 25(3), 888–898. https://doi.
org/10.1016/j.neuroimage.2004.12.041

Kerns, J. G. (2006). Anterior cingulate and prefrontal cortex activity in an
FMRI study of trial-to-trial adjustments on the Simon task. NeuroImage,
33(1), 399–405. https://doi.org/10.1016/j.neuroimage.2006.06.012

Kerns, J. G., Cohen, J. D., MacDonalrd, A. W., III, Cho, R., Stenger, A., &
Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjust-
ments in control. Science, 303(5660), 1023–1026. https://doi.org/10.
1126/science.1089910

Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive
control in the human prefrontal cortex. Science, 302(5648),
1181–1185. https://doi.org/10.1126/science.1088545

Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., &
Papadopoulo, T. (2005). A common formalism for the integral formula-
tions of the forward EEG problem. IEEE Transactions on Medical Imag-
ing, 24(1), 12–28. https://doi.org/10.1109/TMI.2004.837363

Ladouceur, C. D., Dahl, R. E., & Carter, C. S. (2007). Development of action
monitoring through adolescence into adulthood: ERP and source locali-
zation. Developmental Science, 10(6), 874–891. https://doi.org/10.
1111/j.1467-7687.2007.00639.x

Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the
conflict: A theoretical review and critique of conflict-related ERPs.
International Journal of Psychophysiology, 93(3), 283–297. https://doi.
org/10.1016/j.ijpsycho.2014.06.007

Larson, M. J., Kaufman, D. A. S., & Perlstein, W. M. (2009). Neural time
course of conflict adaptation effects on the Stroop task. Neuropsycho-
logia, 47(3), 663–670. https://doi.org/10.1016/j.neuropsychologia.
2008.11.013

Lesh, T. A., Westphal, A. J., Niendam, T. A., Yoon, J. H., Minzenberg, M. J.,
Ragland, J. D., … Carter, C. S. (2013). Proactive and reactive cognitive
control and dorsolateral prefrontal cortex dysfunction in first episode
schizophrenia. NeuroImage: Clinical, 2(Suppl C), 590–599. https://doi.
org/10.1016/j.nicl.2013.04.010

Luck, S. J. (2005). An introduction to the event-related potential technique.
Cambridge: The MIT Press.

Ma, L., Steinberg, J. L., Cunningham, K. A., Lane, S. D., Bjork, J. M.,
Neelakantan, H., … Moeller, F. G. (2015). Inhibitory behavioral control:
A stochastic dynamic causal modeling study comparing cocaine depen-
dent subjects and controls. NeuroImage: Clinical, 7, 837–847. https://
doi.org/10.1016/j.nicl.2015.03.015

Mas-Herrero, E., Ripollés, P., HajiHosseini, A., Rodríguez-Fornells, A., &
Marco-Pallarés, J. (2015). Beta oscillations and reward processing:
Coupling oscillatory activity and hemodynamic responses. NeuroImage,
119, 13–19. https://doi.org/10.1016/j.neuroimage.2015.05.095

Masterton, R. A. J., Jackson, G. D., & Abbott, D. F. (2013). Mapping brain
activity using event-related independent components analysis (eICA):
Specific advantages for EEG-fMRI. NeuroImage, 70, 164–174. https://
doi.org/10.1016/j.neuroimage.2012.12.025

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An
open-source, graphical experiment builder for the social sciences.
Behavior Research Methods, 44(2), 314–324. https://doi.org/10.3758/
s13428-011-0168-7

McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized
form of context-dependent psychophysiological interactions (gPPI): A
comparison to standard approaches. NeuroImage, 61(4), 1277–1286.
https://doi.org/10.1016/j.neuroimage.2012.03.068

Menon, V. (2015). Arithmetic in the child and adult brain. In
R. C. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cog-
nition. Oxford: Oxford University Press. https://doi.org/10.1093/
oxfordhb/9780199642342.013.041

Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and con-
trol: A network model of insula function. Brain Structure & Function,
214(5–6), 655–667. https://doi.org/10.1007/s00429-010-0262-0

Mijovi�c, B., De Vosa, M., Vanderperrena, K., Novitskiyd, N.,

Vanrumstea, B., Stiersf, P., … Van Huffel, S. (2012). The “why” and

“how” of JointICA: Results from a visual detection task. NeuroImage,

60(2), 1171–1185. https://doi.org/10.1016/j.neuroimage.2012.01.063
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cor-

tex function. Annual Review of Neuroscience, 24(1), 167–202. https://
doi.org/10.1146/annurev.neuro.24.1.167

Moosmann, M., Schönfelder, V. H., Specht, K., Scheeringa, R.,

Nordby, H., & Hugdahl, K. (2009). Realignment parameter-informed

artifact correction for simultaneous EEG–fMRI recordings. NeuroImage,

45(4), 1144–1150. https://doi.org/10.1016/j.neuroimage.2009.01.024
Mullinger, K. J., Castellone, P., & Bowtell, R. (2013). Best current practice

for obtaining high quality EEG data during simultaneous fMRI. Journal

of Visualized Experiments: JoVE, (76), 50283. Advance online publica-

tion. https://doi.org/10.3791/50283
Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E.,

Krawitz, A., & Jonides, J. (2013). A meta-analysis of executive compo-

nents of working memory. Cerebral Cortex, 23(2), 264–282. https://
doi.org/10.1093/cercor/bhs007

Nee, D. E., & D'Esposito, M. (2016). The hierarchical organization of the

lateral prefrontal cortex. eLife, 5, e12112.
Niazy, R. K., Beckmann, C. F., Iannetti, G. D., Brady, J. M., & Smith, S. M.

(2005). Removal of FMRI environment artifacts from EEG data using

optimal basis sets. NeuroImage, 28(3), 720–737. https://doi.org/10.

1016/j.neuroimage.2005.06.067
Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., &

Carter, C. S. (2012). Meta-analytic evidence for a superordinate cogni-

tive control network subserving diverse executive functions. Cognitive,

Affective, & Behavioral Neuroscience, 12(2), 241–268. https://doi.

org/10.3758/s13415-011-0083-5
Pisauro, M. A., Fouragnan, E., Retzler, C., & Philiastides, M. G. (2017). Neu-

ral correlates of evidence accumulation during value-based decisions

revealed via simultaneous EEG-fMRI. Nature Communications, 8,

15808. https://doi.org/10.1038/ncomms15808
Roquet, A., Hinault, T., Badier, J.-M., & Lemaire, P. (2018). Aging and

sequential strategy interference: A Magnetoencephalography study in

arithmetic problem solving. Frontiers in Aging Neuroscience, 10, 232.

https://doi.org/10.3389/fnagi.2018.00232
Schlösser, R. G. M., Wagner, G., Koch, K., Dahnke, R., Reichenbach, J. R., &

Sauer, H. (2008). Fronto-cingulate effective connectivity in major depres-

sion: A study with fMRI and dynamic causal modeling. NeuroImage, 43(3),

645–655. https://doi.org/10.1016/j.neuroimage.2008.08.002
Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of

control: An integrative theory of anterior cingulate cortex function. Neu-

ron, 79(2), 217–240. https://doi.org/10.1016/j.neuron.2013.07.007
Sheth, S. A., Mian, M. K., Patel, S. R., Asaad, W. F., Williams, Z. M.,

Dougherty, D. D., … Eskandar, E. N. (2012). Human dorsal anterior cin-

gulate cortex neurons mediate ongoing behavioural adaptation. Nature,

488(7410), 218–221. https://doi.org/10.1038/nature11239
Šidák, Z. (1967). Rectangular confidence regions for the means of multivari-

ate Normal distributions. Journal of the American Statistical Association,

62(318), 626–633. https://doi.org/10.1080/01621459.1967.10482935
Soch, J., & Allefeld, C. (2017). MACS - a new SPM toolbox for model

assessment, comparison and selection. BioRxiv, 306, 19–31. https://
doi.org/10.1101/194365

Soltész, F., Goswami, U., White, S., & Szűcs, D. (2011). Executive function

effects and numerical development in children: Behavioural and ERP

evidence from a numerical Stroop paradigm. Learning and Individual Dif-

ferences, 21(6), 662–671. https://doi.org/10.1016/j.lindif.2010.10.004
Stalnaker, T. A., Cooch, N. K., & Schoenbaum, G. (2015). What the orbito-

frontal cortex does not do. Nature Neuroscience, 18(5), 620–627.
https://doi.org/10.1038/nn.3982

Stephan, K. E., Harrison, L. M., Kiebel, S. J., David, O., Penny, W. D., &

Friston, K. J. (2007). Dynamic causal models of neural system dynamics:

Current state and future extensions. Journal of Biosciences, 32, 129–144.
Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E. M.,

Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic

causal modeling. NeuroImage, 49(4), 3099–3109. https://doi.org/10.

1016/j.neuroimage.2009.11.015

96 HINAULT ET AL.

https://doi.org/10.1016/j.biopsycho.2012.09.008
https://doi.org/10.1016/j.biopsycho.2012.09.008
https://doi.org/10.1016/j.neuroimage.2004.12.041
https://doi.org/10.1016/j.neuroimage.2004.12.041
https://doi.org/10.1016/j.neuroimage.2006.06.012
https://doi.org/10.1126/science.1089910
https://doi.org/10.1126/science.1089910
https://doi.org/10.1126/science.1088545
https://doi.org/10.1109/TMI.2004.837363
https://doi.org/10.1111/j.1467-7687.2007.00639.x
https://doi.org/10.1111/j.1467-7687.2007.00639.x
https://doi.org/10.1016/j.ijpsycho.2014.06.007
https://doi.org/10.1016/j.ijpsycho.2014.06.007
https://doi.org/10.1016/j.neuropsychologia.2008.11.013
https://doi.org/10.1016/j.neuropsychologia.2008.11.013
https://doi.org/10.1016/j.nicl.2013.04.010
https://doi.org/10.1016/j.nicl.2013.04.010
https://doi.org/10.1016/j.nicl.2015.03.015
https://doi.org/10.1016/j.nicl.2015.03.015
https://doi.org/10.1016/j.neuroimage.2015.05.095
https://doi.org/10.1016/j.neuroimage.2012.12.025
https://doi.org/10.1016/j.neuroimage.2012.12.025
https://doi.org/10.3758/s13428-011-0168-7
https://doi.org/10.3758/s13428-011-0168-7
https://doi.org/10.1016/j.neuroimage.2012.03.068
https://doi.org/10.1093/oxfordhb/9780199642342.013.041
https://doi.org/10.1093/oxfordhb/9780199642342.013.041
https://doi.org/10.1007/s00429-010-0262-0
https://doi.org/10.1016/j.neuroimage.2012.01.063
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1016/j.neuroimage.2009.01.024
https://doi.org/10.3791/50283
https://doi.org/10.1093/cercor/bhs007
https://doi.org/10.1093/cercor/bhs007
https://doi.org/10.1016/j.neuroimage.2005.06.067
https://doi.org/10.1016/j.neuroimage.2005.06.067
https://doi.org/10.3758/s13415-011-0083-5
https://doi.org/10.3758/s13415-011-0083-5
https://doi.org/10.1038/ncomms15808
https://doi.org/10.3389/fnagi.2018.00232
https://doi.org/10.1016/j.neuroimage.2008.08.002
https://doi.org/10.1016/j.neuron.2013.07.007
https://doi.org/10.1038/nature11239
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1101/194365
https://doi.org/10.1101/194365
https://doi.org/10.1016/j.lindif.2010.10.004
https://doi.org/10.1038/nn.3982
https://doi.org/10.1016/j.neuroimage.2009.11.015
https://doi.org/10.1016/j.neuroimage.2009.11.015


Stokes, M., Buschman, T. J., & Miller, E. K. (2017). Dynamic coding for flex-
ible cognitive control. In T. Egner & J. Wiley (Eds.), The Wiley handbook
of cognitive control. West Sussex, UK: Chichester.

Szűcs, D., & Soltész, F. (2007). Event-related potentials dissociate facilita-
tion and interference effects in the numerical Stroop paradigm. Neu-
ropsychologia, 45(14), 3190–3202. https://doi.org/10.1016/j.
neuropsychologia.2007.06.013

Szűcs, D., & Soltész, F. (2012). Functional definition of the N450
event-related brain potential marker of conflict processing: A numeri-
cal stroop study. BMC Neuroscience, 13(1), 35. https://doi.org/10.
1186/1471-2202-13-35

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011).
Brainstorm: A user-friendly application for MEG/EEG analysis. Compu-
tational Intelligence and Neuroscience, 2011, 1–13. https://doi.org/10.
1155/2011/879716

Tang, D., Hu, L., Li, H., Zhang, Q., & Chen, A. (2013). The neural dynamics
of conflict adaptation within a look-to-do transition. PLoS One, 8(2),
e57912. https://doi.org/10.1371/journal.pone.0057912

Ullsperger, M., & Debener, S. (2010). Simultaneous EEG and fMRI. New York,
USA: Oxford University Press. https://doi.org/10.1093/acprof:
oso/9780195372731.001.0001

Volle, E., Kinkingnehun, S., Pochon, J. B., Mondon, K., Thiebaut de
Schotten, M., Seassau, M., … Levy, R. (2008). The functional architecture
of the left posterior and lateral prefrontal cortex in humans. Cerebral Cor-
tex, 18(10), 2460–2469. https://doi.org/10.1093/cercor/bhn010

Walz, J. M., Goldman, R. I., Carapezza, M., Muraskin, J., Brown, T. R., &
Sajda, P. (2014). Simultaneous EEG–fMRI reveals a temporal cascade
of task-related and default-mode activations during a simple target
detection task. NeuroImage, 102, 229–239. https://doi.org/10.1016/j.
neuroimage.2013.08.014

Wang, X., Wang, T., Chen, Z., Hitchman, G., Liu, Y., & Chen, A. (2015).
Functional connectivity patterns reflect individual differences in

conflict adaptation. Neuropsychologia, 70, 177–184. https://doi.
org/10.1016/j.neuropsychologia.2015.02.031

West, R., Bailey, K., Tiernan, B. N., Boonsuk, W., & Gilbert, S. (2012). The
temporal dynamics of medial and lateral frontal neural activity related
to proactive cognitive control. Neuropsychologia, 50(14), 3450–3460.
https://doi.org/10.1016/j.neuropsychologia.2012.10.011

West, R., Jakubek, K., Wymbs, N., Perry, M., & Moore, K. (2005). Neural
correlates of conflict processing. Experimental Brain Research, 167(1),
38–48. https://doi.org/10.1007/s00221-005-2366-y

Worhunsky, P. D., Stevens, M. C., Carroll, K. M., Rounsaville, B. J.,
Calhoun, V. D., Pearlson, G. D., & Potenza, M. N. (2012). Functional
brain networks associated with cognitive control, cocaine dependence,
and treatment outcome. Psychology of Addictive Behaviors. https://doi.
org/10.1037/a0029092

Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of
error detection: Conflict monitoring and the error-related negativity.
Psychological Review, 111(4), 931–959. https://doi.org/10.
1037/0033-295X.111.4.931

Yuan, J., Xu, S., Yang, J., Liu, Q., Chen, A., Zhu, L., … Li, H. (2011). Pleasant
mood intensifies brain processing of cognitive control: ERP correlates.
Biological Psychology, 87(1), 17–24. https://doi.org/10.1016/j.biopsycho.
2011.01.004

How to cite this article: Hinault T, Larcher K, Zazubovits N,

Gotman J, Dagher A. Spatio–temporal patterns of cognitive

control revealed with simultaneous electroencephalography

and functional magnetic resonance imaging. Hum Brain Mapp.

2019;40:80–97. https://doi.org/10.1002/hbm.24356

HINAULT ET AL. 97

https://doi.org/10.1016/j.neuropsychologia.2007.06.013
https://doi.org/10.1016/j.neuropsychologia.2007.06.013
https://doi.org/10.1186/1471-2202-13-35
https://doi.org/10.1186/1471-2202-13-35
https://doi.org/10.1155/2011/879716
https://doi.org/10.1155/2011/879716
https://doi.org/10.1371/journal.pone.0057912
https://doi.org/10.1093/acprof:oso/9780195372731.001.0001
https://doi.org/10.1093/acprof:oso/9780195372731.001.0001
https://doi.org/10.1093/cercor/bhn010
https://doi.org/10.1016/j.neuroimage.2013.08.014
https://doi.org/10.1016/j.neuroimage.2013.08.014
https://doi.org/10.1016/j.neuropsychologia.2015.02.031
https://doi.org/10.1016/j.neuropsychologia.2015.02.031
https://doi.org/10.1016/j.neuropsychologia.2012.10.011
https://doi.org/10.1007/s00221-005-2366-y
https://doi.org/10.1037/a0029092
https://doi.org/10.1037/a0029092
https://doi.org/10.1037/0033-295X.111.4.931
https://doi.org/10.1037/0033-295X.111.4.931
https://doi.org/10.1016/j.biopsycho.2011.01.004
https://doi.org/10.1016/j.biopsycho.2011.01.004
https://doi.org/10.1002/hbm.24356

	 Spatio-temporal patterns of cognitive control revealed with simultaneous electroencephalography and functional magnetic re...
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Participants
	2.2  Experimental paradigm
	2.3  EEG recording and preprocessing
	2.4  fMRI acquisition and preprocessing
	2.5  Joint independent component analyses
	2.6  Generalized psychophysiological interactions
	2.7  Dynamic causal modeling
	2.8  Experimental design and statistical analyses

	3  RESULTS
	3.1  Behavioral results
	3.2  EEG results
	3.3  fMRI results
	3.4  Joint-independent component analysis
	3.5  Psychophysiological interactions (gPPI)
	3.6  DCM (modulatory activity)
	3.7  EEG source results

	4  DISCUSSION
	4.1  Limitations

	5  CONCLUSIONS
	5  ACKNOWLEDGMENTS
	  CONFLICT OF INTERESTS
	  REFERENCES




