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Abstract

Trans-neuronal propagation of mutant huntingtin protein contributes to the organised

spread of cortico-striatal degeneration and disconnection in Huntington's disease (HD).

We investigated whether the network diffusion model, which models transneuronal

spread as diffusion of pathological proteins via the brain connectome, can determine

the severity of neural degeneration and disconnection in HD. We used structural mag-

netic resonance imaging (MRI) and high-angular resolution diffusion weighted imaging

(DWI) data from symptomatic Huntington's disease (HD) (N = 26) and age-matched

healthy controls (N = 26) to measure neural degeneration and disconnection in HD. The

network diffusion model was used to test whether disease spread, via the human brain

connectome, is a viable mechanism to explain the distribution of pathology across the

brain. We found that an eigenmode identified in the healthy human brain connectome

Laplacian matrix, accurately predicts the cortico-striatal spatial pattern of degeneration

in HD. Furthermore, the spread of neural degeneration from sub-cortical brain regions,

including the accumbens and thalamus, generates a spatial pattern which represents

the typical neurodegenerative characteristics in HD. The white matter connections

connecting the nodes with the highest amount of disease factors, when diffusion based

disease spread is initiated from the striatum, were found to be most vulnerable to dis-

connection in HD. These findings suggest that trans-neuronal diffusion of mutant

huntingtin protein across the human brain connectome may explain the pattern of gray

matter degeneration and white matter disconnection that are hallmarks of HD.

K E YWORD S
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1 | INTRODUCTION

Huntington's disease (HD) is an autosomal dominant neurodegenerative

disease caused by pathological transcription and misfolding of the

mutant huntingtin protein (Macdonald et al., 1993). Selective degenera-

tion of medium spiny neurons in the striatum and associated neuropil is

an early feature of neuropathology in HD (Mitchell, Cooper, & Griffiths,

1999). Over time, degeneration spreads locally into other regions in the

basal ganglia, and distally into the frontal, cingulate, motor, and visual

cortices (Mangiarini et al., 1996). In vivo MRI studies of HD have

mapped the morphological consequences of cortico-striatal progression

of degeneration and disconnection (Douaud et al., 2006; Georgiou-

Karistianis et al., 2013; Hobbs et al., 2010; Kassubek et al., 2004;

Poudel et al., 2014; Tabrizi et al., 2010). In particular, recent longitudinal

studies have demonstrated significant degeneration of the striatum and

associated cortico-striatal white matter pathways many years prior to
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disease onset (Aylward et al., 2011; Poudel, Stout, et al., 2014; Ruocco,

Bonilha, Li, Lopes-Cendes, & Cendes, 2008; Tabrizi et al., 2011; Tabrizi

et al., 2013). While these studies provide important insights into the

overall consequence of the disease, the factors that determine, and

potentially predict, the distribution of neural degeneration and discon-

nection remains unclear.

Emerging evidence suggests that local and distant neuron-to-neuron

transfer of pathogenic mHTT may explain the spatial distribution of neu-

rodegeneration in HD (see Jansen, Batenburg, Pecho-Vrieseling, & Reits,

2017 for a review). Although the precise biomolecular mechanisms of

trans-neuronal mHTT spread remains unclear, synaptic connections play

important role. For example, trans-synaptic transfer of mHTT, involving

synaptic vesicle exocytosis (Pecho-Vrieseling et al., 2014), have been

demonstrated in a mouse model of mHTT. Similarly, trans-neuronal

mHTT can spread through vesicle fusion mechanisms, leading to

aggregation of mHTT in the distant but axonally connected neurons

(Babcock & Ganetzky, 2015). These studies clearly highlight the role

of axonal connections in mHTT spread, motivating the hypothesis

that the canonical organisation of the axonal connections (human

brain connectome) may determine the pattern of neuropathological

changes in the HD brain. Previous studies have mapped the brain

connectome using diffusion weighted imaging (DWI) based tractography

and used it to predict network vulnerability in Alzheimer's and Parkinson's

diseases (Raj et al., 2015; Raj, Kuceyeski, & Weiner, 2012; Yau et al.,

2018). Others have also used functional connectome mapping—a macro-

scopic map of the functional interactions across the brain—to identify

patterns of neurodegenerative distribution that begin from known

pathological epicentres (Seeley, Crawford, Zhou, Miller, & Greicius,

2009; Zhou, Gennatas, Kramer, Miller, & Seeley, 2012). In HD, abnor-

mal changes in both functional and structural brain networks precede

the development of symptoms by several years (Harrington et al.,

2015; Poudel et al., 2014; Werner et al., 2014). Notably, mutant

huntingtin protein appears to target the regions that have high network

traffic and low clustering with neighboring regions (Faria et al., 2016;

McColgan et al., 2015). More recent work has also demonstrated that

white matter pathways, enriched with synaptic and metabolic genes,

are more vulnerable in HD (McColgan et al., 2018). However, whether

propagation of pathology in HD can be modeled as a diffusion process

acting within the human brain connectome remains unknown.

Here, we implemented the network diffusion model (NDM), which

has been used extensively to model the distribution of pathology in

other neurodegenerative diseases (Pandya, Mezias, & Raj, 2017; Raj

et al., 2012; Raj et al., 2015), to investigate whether network spread

can determine neural degeneration and disconnection in HD. We

hypothesized that (a) the severity of degeneration in HD can be deter-

mined by network diffusion and that (b) the white matter connections

linking the nodes most susceptible to diffusion are also most vulnerable

to disconnection. These predictions are supported by the network-

spread hypothesis that has been tested and validated in other neurode-

generative diseases (Guo et al., 2013; Raj et al., 2012; Seeley et al.,

2009; Zhou et al., 2012).

2 | MATERIALS AND METHODS

2.1 | Data

Data used in the current investigation are from the Australian-based

IMAGE-HD study (Dominguez et al., 2013; Georgiou-Karistianis et al.,

2013; Poudel et al., 2015; Poudel, Egan, et al., 2014; Poudel, Stout,

et al., 2014). For the current investigation, we used retrospectively

age-matched T1-weighted and diffusion-weighted (DWI) MRI data

from 26 symptomatic HD and 26 healthy control participants from

the baseline time-point. Recruitment procedures, inclusion criteria,

and MRI protocol have been published previously (Dominguez

et al., 2013; Georgiou-Karistianis et al., 2013; Poudel, Egan, et al.,

2014; Poudel, Stout, et al., 2014; Poudel et al., 2015). Demographic

data for the cohort used in the current investigation are provided

in Table 1.

2.2 | Structural MRI data processing

The data processing pipeline used in the study have been outlined in

Figure 1. MRI data for each subject were processed and analysed using

widely accepted neuroimaging analysis tools, including FreeSurfer

version 5.3.0 (Fischl et al., 2004), FMRIB Software Library(Jenkinson,

Beckmann, Behrens, Woolrich, & Smith, 2012), and MRtrix(Tournier,

Calamante, & Connelly, 2012). Free-surfer was used to parcellate the

T1-weighted MRI data into 82 distinct cortical and sub-cortical brain

regions in the brain according to the Desikan-Killiany atlas. Free-surfer

analyses were performed on MASSIVE HPC (www.massive.org.au) using

the “recon-all” function. The neuroanatomical labels were inspected for

accuracy in all HD and controls. To measure the severity of volume loss

in each of the parcellated brain regions, the mean and SD of the volume

was estimated. For each region, t-statistics of the difference between

the HD and healthy control participants were calculated using the

following equation:

t=
μcontrols−μHDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
controls

ncontrols
+

σ2HD
nHD

q ð1Þ

TABLE 1 Demographic data of the participants in the
symptomatic HD and controls used in the analysis

Controls (n = 26) HD (n = 26)

Age 47 ± 14 49 ± 7

UHDRS 16 ± 11

CAG 44 ± 2

DBS 377 ± 66

YSD 2 ± 2

Note: UHDRS, motor subscale score Unified Huntingtons Disease Rating

Scale (pre-HD, UHDRS < 5; symp-HD, UHDRS ≥ 5); CAG:

cytosine-adenine-guanine (number of repeats >40 is full penetrance);

Disease Burden Score: (CAG − 35.5) × age; DBS: disease burden score;

YSD: years since diagnosis.
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2.3 | Generation of structural connectome

For each individual, the cortical and sub-cortical parcels in the

T1-weighted space were aligned to DWI space via the application of

an inverse transformation matrix derived from the linear alignment

of the mean fractional anisotropy (FA) to T1-weighted images using

FSL FLIRT. Constrained spherical deconvolution was used to esti-

mate the distribution of fiber orientations at each voxel of the DWI

volume. Whole-brain probabilistic tractography was then performed,

generating one million streamlines to form a representation of the

axonal connections in the brain (Tournier et al., 2012). The cor-

tical/sub-cortical parcellation and whole-brain tractography were

combined to produce 82 × 82 connectome maps for each partici-

pant, in which the weight of the connection (edge) between each

pair of parcels (nodes) represented the total number of streamlines

that start/terminate within a 2 mm radius of each parcel divided

by the total volume of the connected nodes. To reduce spurious

connections: (a) connections with streamline count less than 10 were

set to zero, and (b) a group consensus threshold of 60% was

employed so that only connections that were present in at least 60%

of the participants in the control group were retained for subsequent

analyses.

2.4 | Network diffusion model

Network diffusion model was applied on the average brain connectome

generated from the healthy controls (N = 26). Connectome was gener-

ated as per the description in the previous section. Diffusion is defined

as the net passive flow of particles (e.g., mHTT protein molecules) from

a higher concentration region to lower concentration region until a

state of equilibrium is reached. Network diffusion is used to mathemati-

cally model this diffusion process across a structure defined by a set of

elements and their interconnections, such as social networks (Ma, Yang,

Lyu, & King, 2008) and human brain connectome (Raj et al., 2012). An

undirected brain network graph can be represented as G = (v, ε), where

v is the set of brain parcels (nodes) given by v = (v1, v2, …, vn) and ε is

the set of connections between vi and vj (edge) given by ε = (vi, vj). The

network diffusion model treats the edge (vi, vj) as a conduit that con-

nects nodes vi and vj through which diffusion can occur. According to

the diffusion model, spread of pathology at time t can be modeled as:

f tð Þ= e−αHf 0ð Þ ð2Þ

where f(t) denotes the vector consisting of the amount of diffusion

of pathology at node vi at time t, beginning from an initial distribution

F IGURE 1 A flow diagram for the data analysis process used in the study. T1-weighted structural MRI data from healthy controls (N = 26)
and HD (N = 26) were parcellated into 82 brain regions using FreeSurfer reconall protocol. Atrophy in these regions were estimated by calculating
the t-statistics of the difference between HD and controls. Diffusion weighted MRI data from healthy controls and HD were used to generate
streamlines using constrained spherical deconvolution (CSD) based tractography available in the MRtrix software. The number of streamlines and
brain parcels (from FreeSurfer analysis) were combined to obtain connectome matrix, which represented total number of streamlines (edges)
connecting each of the brain regions (nodes). The connectomes from healthy controls were averaged to obtain a healthy connectome matrix,
which was used to model network diffusion. In the first analysis, eigenvectors of healthy connectome graph Laplacian were identified as
eigenmodes of diffusion. The first five eigenmodes were statistically compared against measured atrophy (t-statistics) using correlation analysis. In

the second analysis, network diffusion was run on the healthy connectome by repeatedly initiating diffusion from each regions of the brain.
Predicted degeneration for each seed region were statistically compared against measured degeneration. In the third analysis, a measure of
predicted disconnection, which was calculated as total diffusion in the corresponding nodes, was estimated for network diffusion from each seed
region in the brain. The predicted disconnection was statistically compared against measured disconnection (t-statistics of the difference in
number of streamlines between HD and controls) [Color figure can be viewed at wileyonlinelibrary.com]
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of pathology given by f(0) at time zero. H is the graph Laplacian

defined as the difference between degree matrix and adjacency

matrix. Αlpha (α) is the diffusivity constant (assumed to be 1 in our

analyses).

The diffusion process f(t) can be estimated as:

f tð Þ=
XN

i=1

e−αtuti f 0ð Þ� �
ui ð3Þ

where U = [u1, u2, u3, …un] represent eigenvectors of the Laplacian

matrix. As shown in a previous study (Raj et al., 2012), and replicated

here (Figure S1), eigen vectors of the Laplacian matrix (eigenmodes)

associated with smaller eigen values represent persistent modes of

diffusion in the human brain connectome (Figure S1).

To assess which eigenmode was most representative of the pat-

tern of atrophy in HD, absolute values of the first five eigenvectors of

the Laplacian matrix and measured atrophy (t-values of the difference

between HD and controls) were correlated using Spearman's correla-

tion. Separate correlations were also performed for cortical and sub-

cortical regions. Any correlation with p < .01 (family-wise corrected

p-value threshold for the first five eigenmodes used in the correla-

tion) was considered to be significant.

2.5 | Repetitive network diffusion to identify the
epicenters of disease

To assess whether initiating the process of diffusion from any specific

region in the brain is most predictive of pattern of atrophy in HD, we

simulated the process of diffusion on the healthy connectome by

repeatedly initiating the diffusion from all brain regions within the

Desikan-Killiany atlas. For each region i, the network diffusion model

is used to estimate the diffusion at all other regions at time t = 1 to

50, with initial condition f(0) set as a unit vector with 1 at the ith loca-

tion and 0 elsewhere. Network diffusion was initiated from bilateral

seeds, such that 41 different initial conditions were used. This process

generated vectors with 82 elements at each time point. The predicted

atrophy vector at all time points, f(t), were correlated against mea-

sured atrophy (t-value) using Spearman's correlation, resulting in

41 × 50 correlation-time matrices. To ensure that correlation was not

driven by atrophy in the seed regions, we only correlated measured

atrophy and predicted atrophy after excluding the seed regions. For

each seed region i, we identified the maximum correlation value,

which was used as a measure of the likelihood of the region being the

putative source responsible for spreading the pathology.

2.6 | Identifying the most vulnerable connections

We extend the network diffusion model (Raj et al., 2012) to identify

the edges most vulnerable to disconnection by taking disease spread

process into consideration. We posit that for an edge εi,j, it's suscepti-
bility to disconnection is determined by diffusion vulnerability of the

corresponding nodes (vi and vj). To this end, we define vulnerability of

an edge as the total diffusion in the corresponding nodes, given by:

pi, j tð Þ= fi,n tð Þ+ fj,n tð Þ ð4Þ

Where fi,n(t) and fi,n(t) represent accumulation of diffusion at node

i and j at time t when node n is used as a seed. There are two variables

that need to be accounted for in this definition of edge vulnerability

(a) the seed node and (b) the time. To identify the best seed node

and model time, we repeatedly initiate the spread from 41 bilateral

regions and estimate edge vulnerability associated with each seed

node at time t.

To assess whether the measure of edge vulnerability is predictive

of disconnection in HD, we used the network based statistic (NBS)

(Zalesky, Fornito, & Bullmore, 2010) to identify the connections show-

ing reduced connectivity (i.e., decreased streamline density) in HD,

compared to controls. For each connection, we used an unpaired t-test

to compare the change in the magnitude of the edge weight between

HD and healthy controls. To test the significance of the group differ-

ences, a nonparametric permutation test was performed using 5,000

permutations, an edge-threshold of t > 2.8, and a component-level sig-

nificance threshold of p < .05, as per a standard NBS approach.

To assess the relationship between measured disconnection and

edge vulnerability, we simulated the network spread by initiating the

diffusion from each bilateral pair of nodes over model times 1 to 50.

Hence, for each seed region, a vector representing the vulnerability of

the edges was estimated. This process generated a matrix of K times

t, where K is the number of edges, and t is the model time. T-statistics

representing the difference between HD and controls were correlated

(Spearman) with edge vulnerability estimated from the network diffu-

sion model. This process generated a 41 × 50 matrix of correlation

values. The seed region showing the greatest correlation between

predicted and measured disconnection was identified as that most

responsible for spreading disconnection in HD.

2.7 | Network spread on random networks

To investigate whether network spread on the healthy human brain

connectome is a significant finding, we compared the findings against

network spread on random networks. To this end, we simulated net-

work diffusion model on 2000 random network models and identified

the maximum association between predicted and measured degenera-

tion. The random networks used in the simulation maintained the

weight, degree, and strength distribution of the healthy connectome.

The distribution of maximum correlation between measured atrophy

(t-stats) and predicted atrophy obtained from random networks were

plotted, which allowed us to compare the null model against true associ-

ations. We also tested the significance of network spread by randomly

assigning the 82 brain regions with 2,000 different permutations of true

atrophy vector. The distribution of maximum correlation between NDM

predicted atrophy and scrambled atrophy vector provided another null

model to test the significance of the true association. To investigate

POUDEL ET AL. 4195



whether edge vulnerability identified from network diffusion model is a

significant finding, we further simulated the relationship between

predicted and measured disconnection using 2000 random network

and 2000 randomly scrambled disconnection vectors.

3 | RESULTS

3.1 | Pattern of degeneration in HD compared to
controls

The brain regions showing volume loss in HD compared to the

healthy control group (p < .05) are listed in Table 2. The regions

most affected are in the basal ganglia, with the caudate, putamen,

pallidum, and accumbens showing greatest loss of volumes. In the

frontal lobe, inferior frontal gyri (parstriangularis and parsopercularis),

precentral gyrus, and postcentral gyrus show volume loss in HD. Other

brain regions in Occipital, Parietal, and Temporal lobes were spared in

our HD cohort (Table S1).

3.2 | Eigen-modes of the healthy human brain
connectome determines spatial distribution of
atrophy in HD

Of the first five eigen modes, selected based on their decay character-

istics, the spatial pattern associated with the fifth eigenmode captured

the cortico-striatal pattern of degeneration associated with HD

(Figure 2a). There was a significant association between the measured

atrophy and the atrophy predicted by the fifth eigenmode in the corti-

cal and sub-cortical nodes when considered together (r = .33,

p = .003), as well as when subcategorized (cortical: r = .52, p < .001;

sub-cortical: r = .69, p < .001; Figure 2b). The first four eigenmodes of

healthy connectome also demonstrated distinct spatial patterns, but

they were not significantly associated with HD atrophy pattern

(Figure S2). There was a significant correlation between the first

eigenmode and average regional volume in the healthy brain gener-

ated from the healthy controls (i.e., the global effect; Figure S2).

3.3 | The brain regions critical for generating the
spatial distribution of atrophy

Figure 3 shows the result of repeated diffusion analysis with all

82 cortical–subcortical regions within the Desikan-Killiany atlas as

the potential origin of the disease spread across the healthy brain

connectome (Figure 3a). The thalamus, accumbens, lateral orbitofrontal

cortex, and insula show moderate to strong association between

predicted and measured atrophy (Figures 3b,c). Maximum association

between the predicted and measured atrophy was identified when diffu-

sion was initiated from the thalamus (r = .52, p < .001) and accumbens

(r = .52, p < .001). Application of network diffusion on random network

showed that the findings using the healthy brain connectome are signifi-

cantly different from null models. The distribution of maximum associa-

tion (Pearson's correlation values) between the measured atrophy and

the predicted atrophy identified from the 2,000 random networks is

shown in Figure S3A. This distribution, (Gaussian with mean: 0.31 and

SD: 0.042) shows that the association obtained from healthy connectome

(r = .52) is much higher and statistically outside the 95% confidence inter-

val (p < .05) of the null network. The distribution of maximum associa-

tions when the spatial location of atrophy was randomized is shown in

Figure S3B, which demonstrates that reported associations predicted

by network diffusion on healthy connectome cannot be explained by

chance.

3.4 | Network diffusion determines
disconnection in HD

Figure 4 shows the results of network based statistical comparison of

the number of white matter streamlines in HD and controls. HD com-

pared to controls showed significant disconnection in interhemispheric

connections in the motor, frontal, and parietal cortices and cortico-

striatal connections (Figure 4a). The network edges with the highest

edge vulnerability index encompassed interhemispheric connections

and cortico-striatal connections. The highest association between

the measured and predicted disconnection was observed when dif-

fusion was initiated from the pallidum (r = .36, p < .001) at model

TABLE 2 Comparison of regional volumes in HD and healthy controls. Only the regions showing loss of volumes in HD at p < .05 are shown
in the table

Brain regions Controls (mm3) HD (mm3)
Control vs
HD (t-values)

Control vs
HD (p-values)

Caudate 3,712.74 2,390.85 10.96 <.00001*

Putamen 5,385.55 3,560.33 9.93 <.00001*

Pallidum 1,432.41 1,092.35 4.82 <.00001*

Accumbens area 495.87 354.8 4.57 <.00001*

Amygdala 1,695.71 1,526.41 2.64 .011

Parstriangularis 2089.42 1881.9 2.4 .02

Postcentral 6,675.98 6,254.48 2.16 .036

Parsopercularis 2,371.88 2,187.63 2.03 .047

Precentral 7,967.71 7,531.21 2.02 .049

* denotes FWE corrected.
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time 3. The pallidum, putamen, accumbens, insula, and caudate were

the regions showing the greatest association (r > .3). The association

remained significant after correcting for edge weights (r = .35,

p < .001). Simulations using random networks and random shuffling

of the disconnection vectors show that the findings cannot be

explained by chance (Figure S4).

4 | DISCUSSION

We show that the trans-neuronal spread of pathology across the brain

in HD can be modeled as diffusion across the human brain structural

connectome, with this model successfully recapitulating the pattern of

neural degeneration and disconnection observed in HD. Seeding the

diffusion process from the striatum and thalamus in particular procre-

ates the pattern of cortical degeneration in HD. Notably, the axonal

connections most culpable in the disease spread were also selectively

vulnerable to disconnection, particularly when the striatum was assumed

to be the disease epicenter. These findings demonstrate the potential

utility for network diffusion in predicting the evolution of neural degen-

eration and disconnection in HD. They also provide a framework to test

trans-neuronal spread hypothesis in HD.

Degeneration in the motor cortex, prefrontal cortex, temporal cor-

tex, and the striatum is a hallmark of symptomatic HD (Aylward et al.,

2011; Dominguez et al., 2013; Ruocco et al., 2008; Tabrizi et al.,

2011; Tabrizi et al., 2013). The fifth eigenmode of the healthy

connectome, identified in the current study, is concordant with this

selective vulnerability of the cortico-striatal network in HD. Notably,

the first four eigenmodes observed in our study were similar to the

eigenmodes previously identified and found to be associated with

other neurodegenerative conditions including Alzheimer's disease

subtypes (Raj et al., 2012; Raj et al., 2015). Within the fifth eigen-

mode, the association between the predicted and measured atrophy

varied according to the location of the nodes, such that the relation-

ship was stronger in sub-cortical nodes than in cortical nodes. This is

consistent with the hypothesis that sub-cortical regions show the ear-

liest degeneration in HD. Diverse relationships within and between

the cortical and sub-cortical nodes may also be interpreted as macro-

scopic consequences of distinct neuropathological processes, such

that cell-autonomous processes may cause early striatal atrophy,

whereas trans-neuronal propagation could drive cortical atrophy.

While the neurobiological underpinning of such structured distribu-

tion of the disease remains unclear, recent work from transgenic

mouse models of HD suggest that both paracrine spread, via extra-

cellular space, and neuron-to-neuron transmission of misfolded

huntingtin protein, may play important roles (Pecho-Vrieseling

et al., 2014). Trans-neuronal spread can also occur across synapses,

which provides a putative neuro-biological basis of disease spread

through diffusion within the intrinsic networks of the brain.

When network diffusion was emulated for each brain regions,

maximum correlation between predicted and measured atrophy

was observed for the accumbens and thalamus. The accumbens, in

particular, generated the most stable spatial pattern of diffusion,

consistently recapitulating the atrophy pattern in HD over time. Previ-

ous studies have shown that the striatum, including the caudate, puta-

men, and accumens, show early loss of neurons and morphological

changes in HD (van den Bogaard et al., 2011). Notably, the loss of neu-

rons in these sub-cortical structures have the greatest influence on

predicting the motor and cognitive disturbances in symptomatic HD

F IGURE 2 Visualization of the measured and predicted atrophy. (a) Visual comparison of measured and predicted atrophy displayed on the
brain surface. The predicted atrophy is based on the absolute value of the fifth eigenmode of the healthy brain connectome Laplacian matrix.
The measured atrophy pattern is based on the t-value of the difference in grey-matter volume in the 82 parcels from Desikan-Killiany atlas.
Colour range is chosen such that darker red represents greater atrophy. T-values values were transformed to z-scores for comparison. (b) Scatter
plot showing linear association between predicted and measured atrophy in cortical and sub-cortical nodes. Spearmans correlation values (r) and
associated p-values are provided within the scatter plot. The correlation analysis was performed for cortical and sub-cortical nodes separately
[Color figure can be viewed at wileyonlinelibrary.com]
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(Backman, Robins-Wahlin, Lundin, Ginovart, & Farde, 1997). The find-

ing of selective and targeted spread of disease from the striatum to the

cortex is also consistent with the evidence of regional selectivity in cor-

tical atrophy, as maximum degeneration is observed in the sensorimo-

tor regions with the strongest connections to the striatum (Bohanna,

Georgiou-Karistianis, & Egan, 2011; Rosas et al., 2008). Other sub-

cortical structures such as the thalamus, amygdala, and hippocampus

are relatively spared in the early stage of the disease (van den Bogaard

et al., 2011). The finding that the initiation of spread from the thalamus

can also predict the pattern of atrophy in HD was unexpected. The cor-

relation between predicted and measured atrophy was also high when

diffusion process was initiated from the thalamus. This finding was

unexpected as the thalamus is not one of the most vulnerable regions

in HD. However, the thalamus is a hub region which forms strong and

dense interconnections with most of the cortical and sub-cortical struc-

tures (van den Heuvel & Sporns, 2011). Therefore, the hubness and its

proximity to the striatum may make the thalamus an important node

for spatial distribution of pathology in HD.

Consistent with several previous studies, we also demonstrate sig-

nificant loss of interhemispheric and cortico-striatal white matter con-

nections in HD (Bohanna et al., 2011; McColgan et al., 2018; Poudel

et al., 2015; van den Bogaard et al., 2011; Zhang et al., 2018). Axonal

degeneration has been shown to be an early pathological event in HD

and has been observed even in the absence of neural degeneration

(Li, Li, Yu, Shebourne, & Li, 2001; Wang et al., 2008). Axonal degener-

ation in HD is thought to result from the aggregation of mHTT in

axons, as well as abnormal oligodendrocyte function. More impor-

tantly, axonal disconnection explains cognitive and motor impairment

even in the early stages of the disease(Szabo et al., 2011). Here, we

provide a framework to explain the disconnection in HD and show

that connections most involved in the disease spread are also the

most vulnerable. A number of previous studies have attempted to

F IGURE 3 The spatial distribution of diffusion over time in the brain networks when each of the 82 brain regions are used as starting point of
diffusion. (a) Curves showing evolution of correlation between the measured and predicted atrophy when the spread was initiated from each
region in the Desikan-Killiany atlas (bilaterally). Y-axis shows the correlation values (Pearsons correlation) and x-axis shows time in number of
years. The regions showing the highest correlation (Pearsons correlation) between the measured (t-statistics of the difference between HD and
controls) and predicted atrophy (amount of diffusion) are the thalamus, accumbens, lateral orbitofrontal cortex, and insula. (b) Scatter plot of the
correlation between predicted and measured atrophy at t = 3 for the initiation of diffusion-based spread from the thalamus. (c) Visual
representation of maximum correlation values obtained for each node using spherical balls plotted on a surface brain. The size of the ball
corresponds to the maximum correlation between predicted and measured atrophy. Balls are colour coded by lobe—Dark blue (frontal), light blue
(motor), sky-blue (parietal), yellow (visual), orange (temporal), and dark red (sub-cortical) [Color figure can be viewed at wileyonlinelibrary.com]
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develop mechanistic framework underlying selective disconnection in

HD. One study provided evidence for a direct relationship between

topological length and rate of white matter degeneration in premanifest

stages of HD (McColgan et al., 2017). Another recent study has demon-

strated an association between gene expression profiles and loss of

connections over time in HD (McColgan et al., 2018). Our finding

shows that the process of diffusion itself - whereby abnormal protein

aggregates spread along the connections (edges) between brain regions

(nodes)—may render the edges vulnerable to disconnection.

A number of important factors should be taken into consideration

when interpreting our findings. The network diffusion, used in the

current study, models the distribution of pathology in HD as a linear

passive diffusion process. However, a number of previous studies

have demonstrated that the neurobiological mechanisms underlying

trans-neuronal spread is an active process, which may involve synap-

tic vesicles (see Jansen et al., 2017 for a review). Hence, nonlinear

active models will be necessary to better capture the neurobiological

mechanisms of the disease spread in HD. The study relied on diffusion

weighted imaging based tractography to infer the axonal connectivity

between brain regions. Although the use of canonical human brain

connectome, based on diffusion MRI and tractography, to predict

atrophy spread is in line with previous studies (Pandya et al., 2017;

Raj et al., 2012), a model that is informed by cellular level degenera-

tion and detailed microconnectome is necessary to corroborate our

findings. The current findings were validated only in one HD dataset

(IMAGE-HD). The data from other studies (e.g., Track-HD, Predict-

HD) could be used to further validate network spread in HD. The find-

ings are also limited to cross-sectional group-level differences in

symptomatic HD compared to controls. More recent models of net-

work diffusion, applied on Alzheimer's disease, allow individual-level

prediction of potential seeds of neurodegeneration from longitudinal

MRI data (Torok et al., 2018). The implementation of longitudinal net-

work diffusion model is necessary to causally explain the evolution of

neural degeneration and disconnection in HD.

In summary, we showed that trans-neuronal diffusion of mHTT,

constrained by intrinsic structural organization of the human brain,

may explain the pattern of cortical atrophy and white matter discon-

nection in HD. The network diffusion model helped elucidate the

F IGURE 4 Network diffusion determines white matter disconnection in HD compared to controls. White matter disconnection in HD
compared to controls was determined using network-based statistics comparison of the number of streamlines (generated by tractography) in HD
compared to controls. (a) Visualisation of the measured white matter disconnection (identified using network-based statistics) and predicted
disconnection (top 2% of the most vulnerable edges) using ball and stick plots overlaid on the surface of the brain. Balls are colour coded by
lobe—Dark blue (frontal), light blue (motor), sky-blue (parietal), yellow (visual), orange (temporal), and dark red (sub-cortical). Connections are
shown as blue lines between the nodes. (b) Curves showing evolution of correlation between measured (t-value of the difference between HD
and healthy controls) and predicted disconnection when diffusion is initiated from each region in the Desikan-Killiany atlas (bilaterally). The
regions showing the highest correlation are the pallidum, putamen, accumbens, insula, and cortex. The unit of models diffusion time t is arbitrary.
(c) Scatter plot of association between predicted and measured disconnection at t = 3 when the initiation of the diffusion based spread was from
the pallidum [Color figure can be viewed at wileyonlinelibrary.com]
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cortico-striatal pathways of disease distribution and to determine why

some brain regions and circuits are selectively vulnerable in HD.
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