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Abstract
During a conversation, the neural processes supporting speech production and perception over-

lap in time and, based on context, expectations and the dynamics of interaction, they are also

continuously modulated in real time. Recently, the growing interest in the neural dynamics

underlying interactive tasks, in particular in the language domain, has mainly tackled the tempo-

ral aspects of turn-taking in dialogs. Besides temporal coordination, an under-investigated phe-

nomenon is the implicit convergence of the speakers toward a shared phonetic space. Here, we

used dual electroencephalography (dual-EEG) to record brain signals from subjects involved in a

relatively constrained interactive task where they were asked to take turns in chaining words

according to a phonetic rhyming rule. We quantified participants' initial phonetic fingerprints

and tracked their phonetic convergence during the interaction via a robust and automatic

speaker verification technique. Results show that phonetic convergence is associated to left

frontal alpha/low-beta desynchronization during speech preparation and by high-beta suppres-

sion before and during listening to speech in right centro-parietal and left frontal sectors,

respectively. By this work, we provide evidence that mutual adaptation of speech phonetic tar-

gets, correlates with specific alpha and beta oscillatory dynamics. Alpha and beta oscillatory

dynamics may index the coordination of the “when” as well as the “how” speech interaction

takes place, reinforcing the suggestion that perception and production processes are highly

interdependent and co-constructed during a conversation.

1 | INTRODUCTION

As two individuals engage in social interaction, they become part of a

complex system whose information flow is mediated by visible behav-

ior, prior knowledge, motivations, inferences about the partner's men-

tal states, and history of prior interactions (Schilbach et al., 2013).

Linguistic communication is indeed, among other characteristics, a

mind-reading exercise requiring the formulation of hypotheses about

the mental states of the speaker (Sperber & Wilson, 1986). Although

dialog is undeniably the primary form of language use (Levinson,

2016), previous research has mostly investigated the neural processes

subtending either speech production or speech perception, separately

and almost ignoring the dynamics of the interaction (Price, 2012). This

approach has provided fundamental insight on the neural substrates

of the speech units for perception and production but the principles

and mechanisms that regulate their coordination during natural inter-

action are still unclear (Schoot et al., 2016).

The dynamical process of mutual adaptation which occurs at mul-

tiple levels is a key component of natural linguistic interaction that is

crucially missing in classical laboratory tasks. One interesting phenom-

enon during linguistic interaction is that of alignment. Alignment

refers to the interlocutors' tendency to converge toward similar men-

tal states as the conversation progresses. Conversational success is

indeed characterized by the shared understanding of the spoken con-

tent, speakers' mutual likability, background environment, and so

forth. (Pickering & Garrod, 2004; Garnier et al. 2013). More interest-

ingly, people involved in a dialog automatically and implicitly converge

at multiple linguistic levels (Bilous & Krauss, 1988; Pardo, Jay, &

Krauss, 2010) as well as with coverbal bodily gestures (West & Turner,

2010). For instance, agreeing interlocutors tend to copy each other's

choices of sounds, words, grammatical constructions as well as the
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temporal characteristics of speech. Nevertheless, this form of implicit

behavioral alignment is still poorly understood, especially regarding its

effects on communication efficacy, social and contextual determi-

nants, and neural underpinnings (Stolk et al., 2016).

Although the investigations of these phenomena at the brain level

are still sparse, few interesting studies ignited the exploration of inter-

brains neural synchrony during conversation by following a hypers-

canning approach (Hasson, Ghazanfar, Galantucci, Garrod, & Keysers,

2012). These studies showed that the speaker's brain activity is spa-

tially and temporally coupled with that of the listener (Silbert, Honey,

Simony, Poeppel, & Hasson, 2014), and that the degree of coupling

and anticipation from the listener's side predicts comprehension

(Stephens et al., 2010; Kuhlen et al., 2012; Dikker, Silbert, Hasson, &

Zevin, 2014; Liu et al., 2017). Other studies instead explored how

social factors affect the neurobehavioral pattern of communication.

For example, it has been shown that neural activity in the left-inferior

frontal cortex synchronizes between participants during face-to-face

interaction (Jiang et al. 2012) and social role does play an important

part in such interpersonal neural synchronization (Jiang et al., 2015).

While techniques such as fMRI and fNIRS, due to their poor tem-

poral resolution, are most suited to investigate alignment at the moti-

vational, emotional or semantic level, the higher temporal resolution

of EEG or magnetoencephalography (MEG) makes these techniques

more suitable to investigate the intrinsically, faster, dynamics inter-

vening during speech coordination. One aspect that has recently

received attention regards the online negotiation of each-other turns

during dialogs (turn-taking) which relies on an complex between-

speaker neurobehavioral coordination (Levinson, 2016). For instance,

in a task where subjects alternate in pronouncing letters of the alpha-

bet, interbrain EEG oscillations in the theta/alpha (6–12 Hz) bands

were synchronized in temporo-parietal regions as well as linked to

behavioral speech synchronization indexes (Kawasaki, Yamada, Ush-

iku, Miyauchi, & Yamaguchi, 2013). More recently, a dual MEG/EEG

study employing a similar number-counting task, reported alpha sup-

pression in left temporal and right centro-parietal electrodes during

speech interaction as opposed to a condition of speaking alone (Ahn

et al., 2018). Using a dual-MEG set-up during natural conversations

allowed to show that rolandic oscillations in the alpha (�10 Hz) and

beta (�20 Hz) bands depended on the speaker's versus listener's role

(Mandel, Bourguignon, Parkkonen, & Hari, 2016). In the left hemi-

sphere, both bands were attenuated during production compared with

listening. Before the speaker and listener swapped roles, power in the

alpha band was briefly enhanced in the listener. These studies have

thus begun to explore the intrabrain and interbrain oscillatory dynam-

ics underlying one key behavioral coordination aspect during speech

interaction, which is our ability to accommodate to the temporal prop-

erties of our partners' speech (Jungers & Hupp, 2009).

Beside temporal characteristics, speakers can shape how they

speak and listen to speech. In fact, interlocutors adjust both their

speech production and perception to their audience. For example,

important adjustments are introduced while speaking to infants

(Cooper & Aslin, 1990), to foreigners (Uther et al., 2007), or under

adverse conditions (i.e., hearing loss or environmental noise; Payton

et al., 1994). Adjustments in speech production consider listeners' per-

ceptual salience and effort in listening (Lindblom, 1990). Listeners

adapt to talker characteristics (Nygaard et al., 1994; Bradlow & Bent,

2008), suggesting also great flexibility in speech processing mecha-

nisms (Samuel & Kraljic, 2009). When engaged in a conversation

instead, interlocutors align (or converge) their phonetic realizations to

each other. Phonetic convergence then, amounts to the gradual and

mutual adaptation of our speech targets toward a phonetic space

shared by our interlocutor.

In the present study, we aimed at investigating the neural signa-

ture of such dynamic phonetic alignment. We asked pairs of partici-

pants to engage in an interactive speech game while dual-EEG was

recorded. By this manner, we aimed at investigating interpersonal

action–perception loops where one person's action (speech articula-

tion) transforms into the sensory input (speech sound) for the other

participant, and vice-versa. To this purpose, we used the Verbal Dom-

ino Task (VDT) (Bailly & Lelong, 2010), a fast-paced and engaging

speech game allowing a relatively well controlled interaction and

involving a turn-based phonetic exchange. At each turn, speakers are

presented with a pre-selection of two written words and have to

choose and read out the one that begins with the same syllable as the

final syllable of the word previously uttered by their interlocutor (see

Figure 1c). These constraints make the task different from a natural

conversation, but contain the fundamental phonetic interactive com-

ponent we needed for the present investigation. Before the interac-

tive task, each participant's initial phonetic fingerprint was statistically

modeled. The phonetic fingerprint was extracted from the individual

acoustic spectral properties. We then computed how well the model

of one speaker can identify the speech data of her/his interlocutor, at

the single word level. In this sense, identification performance of

these models allows to estimate how similar the two speakers are dur-

ing the interactive task. We adopted a conservative criterion for con-

vergence, which as defined as all instances where both participants

adapted their speech properties to get closer to each other. All other

cases were treated as nonconvergence.

The EEG analysis focused on the oscillatory power modulations

during phonetic convergence as compared to nonconvergence, in

three different epochs of interest. The first epoch, locked to speech

production onset, was selected to investigate the preparatory activi-

ties in the speaking brain. The second and third epochs targeted the

listening brain's activities: the ongoing brain activities prior to listening

and those induced by speech listening. We expect that phonetic con-

vergence could be associated with modulations of oscillatory activity

in the alpha and beta range, two prevalent rhythmic modes of the

brain, that have been already involved in natural conversation and, in

particular, in speech turn-taking (Mandel et al., 2016). In addition,

based on previous studies, we can hypothesize a dissociation between

effects in the alpha and beta ranges, depending on the role each par-

ticipant is playing at any given time point. The speaker role would

elicit greater suppression in the alpha range, as often reported in

behavioral synchronization tasks (Tognoli & Kelso, 2015). By contrast,

the listener role would produce beta desynchronization, which has

been associated to sensorimotor transformations during speech

listening tasks (Bartoli, Maffongelli, Campus, & D'Ausilio, 2016) and

top-down predictive coding of upcoming sensory signals (Cope

et al., 2017).
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2 | MATERIALS AND METHODS

2.1 | Participants

A total of 16 healthy participants took part in the task (8 females, age,

26 � 2.3 years; mean � SD). All participants were right-handed with

the exception of one male. They were all native Italian speakers

unaware of the purpose of the experiment. We asked dyads of partici-

pants to perform the task in English with a view to augmenting the

likelihood for these participants to converge toward each other at the

phonetic level. Previous studies have shown that the use of a nonna-

tive language induces greater phonetic convergence (Gambi & Picker-

ing, 2013; Trofimovich & Kennedy, 2014) and greater sensorimotor

compensatory activities while listening, compared with the native lan-

guage (Schmitz et al., 2018). We asked participants to self-rate their

English reading (7.87 � 1.08), writing (7.31 � 0.95), understanding

(7.56 � 1.03), and fluency (7.19 � 1.17, mean � SD) capabilities on a

1–10 scale. Self-reported proficiency in a nonnative language is rou-

tinely used in experimental psycholinguistic studies, and has been

repeatedly shown to be closely related to a large variety of objective

measures of proficiency (Gollan, Weissberger, Runnqvist, Montoya, &

Cera, 2012; Marian, Blumenfeld, & Kaushanskaya, 2007). Participants

were grouped into 8 pairs (pair 1 to 8) before the start of the experi-

ment. Groups consisted in 4 male–male and 4 female–female pairs.

Within each pair, speakers will be referred to as A and B in what fol-

lows. The participants did not know each other nor interacted before

the experiment. The study was approved by the local Ethics Commit-

tee and a written informed consent was obtained from the subjects

according to the Declaration of Helsinki.

2.2 | Task and stimuli

We used the Verbal Domino Task (VDT, Mukherjee, D'Ausilio,

Nguyen, Fadiga, & Badino, 2017; Mukherjee et al., 2018; adapted ver-

sion from Bailly & Lelong, 2010) with English words. The VDT is an

interactive, collaborative task jointly performed by two participants

who pronounce a sequence of disyllabic words with an alternation

between participants across words. Along the sequence, there is a

match between the last syllable of each word and the first syllable of

the following one, in its pronounced form, written form, or both. The

task shows some resemblance with verbal games that are popular

with children throughout the world, and that are referred to as

FIGURE 1 (a) Graphical depiction of the experimental setup. (b) Schematic illustration of the experimental timeline including two solo recordings

before and after four duet sessions. Here, a/b indicates recording the speech of a and b separately, whereas a ^B means recording of both
together. (c) An example of the sequences of words produced during the verbal domino task by the two speakers. (d) Schematic illustration of the
triggers for the EEG signals (red) and the temporal windows considered for the analyses (green) [Color figure can be viewed at

wileyonlinelibrary.com]
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“Grab on Behind,” “Last and First,” or “Alpha and Omega,” in English,

and “Shiritori” in Japanese (Bailly & Martin, 2014). It shares some char-

acteristics of conversational interactions, though fundamentally focus-

ing on the phonetic aspect. Interestingly, participants speak one at

time in alternating turns, while allowing us to both control the linguis-

tic material used by the participants, and to avoid overlaps between

the participants' turns. We are aware that the VDT shows important

differences with respect to a natural conversation, but the no-overlap

constraint is essential to temporally isolate brain activities associated

to speaking and listening (see section 4).

During the task, the two speakers are alternatively presented with

two words on a screen and must read aloud the word whose initial

syllable coincides with the final syllable of the word previously pro-

duced by the other speaker. For example, on having heard Speaker A

pronouncing the word “delay,” Speaker B is offered to choose

between “layoff” and “tissue” and is expected to pronounce “layoff”

(see Figure 1c). The task is collaborative in that participants have to

make the right choices for them to reach a common goal, that is, to

jointly go through the domino chain up to the end. The choice of pre-

senting the words visually, rather than allowing self-generation, was

required to avoid participants using (a variable amount of ) time

“searching” for possible candidate words. In fact, this would have

added a fundamental memory retrieval component that could not be

controlled. Word self-generation can also introduce frequent stops in

the chain. Moreover, the presentation of two alternatives, instead of a

single option, forced participant to actively listen to their partner to

select the correct word.

To build the word chain, we first selected disyllabic words from

the WebCelex English lexical database (http://celex.mpi.nl/). Then, we

sorted these words depending on spoken frequency (Collins Birming-

ham University International Language Database - COBUILD). The

chain was built using a custom-made iterative algorithm in Matlab.

The algorithm started from the highest frequency word and then

looked for the next highest frequency item that both fulfilled the

rhyming criterion and did not already occur in the chain. This fre-

quency criterion was introduced to avoid low frequency, and thus,

very specialized terminology that would have taxed participant second

language skills. By this manner, we generated sequences of at least

200 items that were manually checked to exclude those with crude or

offensive words. We finally selected one sequence of 200 unique

disyllabic words. This sequence is freely available online at https://

www.gipsa-lab.grenoble-inp.fr/~gerard.bailly/Resources/

DOMINOS.xlsx.

2.3 | Procedure

For each pair, we recorded the speech and EEG signals of the two

participants simultaneously. They were sitting in a quiet room with

the experimenter monitoring the whole experiment.

The experiment was divided into three main sections (Figure 1b).

Solo recordings were performed before (Solo_Pre) and after

(Solo_Post) the Duet session. Solo data were needed to establish a

participant-wise baseline. During the Solo task, the other participant

wore noise insulating headphones. The Solo task required participants

to pronounce 40 words randomly selected from the 200 word set of

the domino chain. Words were presented one after the other on a

black screen and subjects had to read them out. Voice onset for each

word triggered the appearance of the following word's written form

with a random delay (0.6–1.5 s). This random delay was introduced to

avoid anticipation and entrainment to an external rhythm of presenta-

tion. Each Solo session lasted about 2 min. The resulting dataset was

made up of a total of 1,280 words (including all subjects).

In the Duet session, the task started with one word visually pre-

sented on the screen of one of the two participants (e.g., Participant

A), while the other participant's screen was blank. When Participant A

read the word aloud, her/his screen went immediately blank and two

words appeared on Participant's B screen. Participant B chose that of

the two words which best fulfilled the rhyming criterion and, as soon

as she/he read that word aloud, her/his screen went blank, and two

other words appeared on Subject A's screen. This cycle was repeated

until the end of the list.

The 200 word Verbal Domino chain was divided into two lists of

100 words, both repeated twice so that the Duet part was composed

by four separate blocks. During Duet blocks 1 and 2, Participant A

started the Verbal Domino, whereas for Duet blocks 3 and 4, Partici-

pant B was the first. In each of the four blocks, the two participants

spoke 50 words each, summing up to 200 words per participant for

the Duet part and resulting in a total of 3,200 words. The duet session

lasted about 25 min.

After each of the four duet blocks, participants could rest for

about 2 min. After the resting period, we recorded 1 min of baseline

EEG activity by asking participants to fixate a cross at the center of

the black screen. The whole experiment was monitored by one experi-

menter who checked that participants correctly performed the tasks.

Whenever one participant chose the wrong word in a Duet session,

the task was halted. The experimenter would then tell the other par-

ticipant which word he/she was to continue with.

2.4 | Data acquisition

Neural activities were recorded by a dual-EEG recording setup con-

sisting of two Biosemi Active Two systems (Amsterdam, The Nether-

lands), each with 64 channels mounted onto an elastic cap according

to the 10–20 international system. The left mastoid was used as

online reference. EEG data were digitized at 1,024 Hz. Electrodes'

sensitivity, as expressed by the Biosemi hardware, was kept

below 20 μV.

Three Central Processing Units (CPU) were used for the whole

experiment: one master CPU for the control of experimental events,

and two other CPUs to acquire EEG data from the two Biosemi sys-

tems. The master CPU controlled the presentation of the stimuli and

the detection of the voice onset, and sent triggers to the two other

CPUs via a parallel port. All of the operations of the master CPU were

controlled with Psychtoolbox-3 running in the Matlab environment.

Speech data were also recorded by the master CPU (16 bits,

stereo, 44,100 Hz sampling frequency) using two high-quality micro-

phones (AKG C1000S) and an external dedicated amplifier (M-Audio

Fast Track USB II Audio Interface). Voice onset was detected using an

adaptive energy-based speech detector (Reynolds, Quatieri, & Dunn,

2000). This detector tracks the noise energy floor of the input signal
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and labels that signal as speech if any feature vector (computed over a

10 ms window) energy exceeds the current noise floor by a fixed

energy threshold. For each participant, and before the experiment, we

set up this threshold by controlling the microphone channel amplifier

gain (M-Audio Fast Track USB II Audio Interface).

3 | AUTOMATIC ANALYSIS OF
CONVERGENCE

3.1 | Acoustic data preprocessing

Trials in which automatic voice trigger was incorrect (e.g., premature

triggering by noise or failure of the triggering system because verbal

response was not loud enough, wrong choice of words) were excluded

from the analysis. This resulted in the removal of 33 out of 1,280 Solo

words, and 98 out of 3,200 Duet words. As a result, we collected an

average of 387.75 � 16.36 (mean � SD) words for each dyad in the

Duet session and an average of 68.19 � 18.76 (mean � SD) words

per participant in the Solo session. The number of incorrect word was

small 6.375 (SD = 5.677) and there was no correlation between num-

ber of incorrect word choice and number of convergence points

(R = 0.25; p = .54). The low number of incorrect word choices indi-

cates that the participants had little or no difficulty in performing the

task in English.

Acoustic feature extraction was performed as follows. Periods of

silence were discarded using an energy-based Speech Activity Detec-

tor. We then extracted MFCCs (Mel Frequency Cepstral Coefficients),

which are a short-term power spectrum representation of sounds,

based on a linear cosine transform of log power spectrum on a non-

linear mel-scale of frequency, widely used in speech technology appli-

cations (Kinnunen & Li, 2010). This choice allowed us not to make a

priori assumptions about which subset of acoustic features is associ-

ated with between-speaker phonetic convergence, and instead to

exploit the entire informational content of the acoustic spectrum.

MFCCs were derived using the speech signal, segmented into

10 ms frames (5 ms overlap) and a Hamming window. The short-time

magnitude spectrum, obtained by applying fast Fourier transform

(FFT), was passed to a bank of 32 Mel-spaced triangular bandpass fil-

ters, spanning the frequency region from 0 Hz to 3,800 Hz. The out-

puts of all 32 filters were transformed into 12 static, 12 velocity, and

12 acceleration MFCCs with the 0th coefficients resulting in 39 MFCC

dimensions in total. Velocity and acceleration features were included

to incorporate information about the way the 12 static vectors varied

over time. Finally, the distribution of these cepstral features was

wrapped (Pelecanos & Sridharan, 2001) per word to the standard nor-

mal distribution to mitigate the effects of mismatch between micro-

phones and recording environments.

3.2 | GMM-UBM

To extract unbiased measures of convergence, we used a data-driven,

text-independent, automatic speaker identification technique, based

on Gaussian Markov Modeling (GMM) Universal Background Model

(UBM). The Gaussian components model the underlying broad

phonetic features (i.e., MFCCs) that characterize a speaker's voice and

are based on a well-understood statistical model (Reynolds et al.,

2000). In previous work (Bailly & Martin, 2014), a similar method was

used to extract phonetic convergence, with some important differ-

ences. In Bailly and Martin (2014), the model was trained and tested

on phonemes, whereas we applied it at the whole word level.

We used the MSR Identity Toolbox (Sadjadi et al., 2013) for

GMM-UBM modeling. A 32-component UBM was trained with the

pooled Solo_Pre speech data of all the participants (a total of 124,068

speech frames). Then, individual speaker-dependent models were

obtained via maximum a posteriori (MAP) adaptation of the UBMs to

the Solo_Pre speech data of each speaker separately. The GMM-UBM

has multiple hyperparameters and different settings of these hyper-

parameters can affect the performance of speaker-dependent models.

A cross-validation technique was used to choose the optimum

hyper-parameter settings. Solo_Post speech data were used as a valida-

tion set, and each speaker-dependent model's performance was verified

against the UBM model (Figure 3a). Furthermore, to verify if there had

been any prepost change in the acoustic properties of speech, due to

the duet interaction, we further grouped the data within participant,

within dyad, and across dyads. In principle, if the interaction has been

able to affect the phonetic fingerprint of the participants, the cross-

validation performance should be better within than across dyads. Dif-

ferences were verified using Bonferroni corrected paired t tests.

3.3 | Phonetic convergence computation

Phonetic convergence is computed on word pairs. For a word pair to

be a convergent one, the acoustic properties of the words for the two

speakers must become more similar to each other.

First of all, speaker-dependent models are grouped together

according to their dyads, that is, if speaker A and speaker B interacted

in the experiment, speaker-dependent model A and speaker-

dependent model B are used for the following analysis (Figure 2a).

During the duet, each word (i.e., the MFCCs of the speech) is tested

with its corresponding grouped dyad models (Figure 2a). The test is

performed by using the log-likelihood ratio score (LLR) which allows

us to compare how well two statistical models can predict test sam-

ples. LLR of samples yx (y is the MFCCs and x is the speaker identity)

during the duet is computed using Equation (1):

LLRDUET yxð Þ¼ log
p yxjHAð Þ
p yxjHBð Þ

� �
, ð1Þ

where HA and HB are the speaker-dependent models of speaker A

and B, respectively. Now, when x is speaker A, LLR scores are positive

(numerator greater than the denominator), whereas if x is speaker B,

we get a negative score. The same computation, run on Solo_Pre data,

is then used to obtain the distribution of LLRPRE scores which repre-

sents the baseline for each subject.

Then, to define convergence, we set two criteria that must be ful-

filled at the same time. In the first one, we evaluate if the speech of both

participants in the dyad becomes more similar in two consecutive

words. A threshold on the LLRPRE scores distribution allows us to con-

sider only events for which LLRDUET(yx)becomes close to zero. In this

case, as logx ! 1(x) = 0, the value of zero means that both speaker-
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dependent models contribute equally to the prediction. In other words,

the test speech is similar to both speakers. When at least two consecu-

tive LLRDUET(yx)words fulfill this criterion, we consider them as Conver-

gent (see Figure 2b). All other words are considered instead as

NoChange. The second criterion controls that the convergent words in

the Duet are not random phenomena (Ramseyer & Tschacher, 2010;

Ward & Litman, 2007). We built 48 surrogate pairs (combining partici-

pants of the same gender only) from participants who never interacted

with each other in the task. We then ran the same computation as

before, on the newly built surrogate pairs. This provides the distribution

of surrogate consecutive LLRDUET(yx)difference scores, which we use to

threshold the real consecutive LLRDUET(yx)difference scores and thus

define true convergence. The threshold for both criteria was set at

1.5 SD. This threshold was set so that the words considered as Conver-

gent were at the same time (1) extreme values along the continuum and

(2) enough represented to be analyzed separately.

FIGURE 2 (a) Schematic diagram of GMM-UBM modeling and how LLR score of test speech is predicted. (b) Graphical depiction of how we

selected word pair points, based on how they relate to the distribution of PreSpeech LLR scores and how close they are to each other in the Duet
condition [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 (a) Speaker verification confusion matrix of all the speaker-dependent models against background UBM in the Solo_Post. Here the

diagonal positive score line indicates a good MAP adaptation. (b) The bar plot represents the same data in plot a, only by grouping the data within
participant, within dyads, and across dyads. This plot shows the obvious better fit of the model when it is tested on the same speaker (self-self )
and far lower performance when testing on another one [Color figure can be viewed at wileyonlinelibrary.com]
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4 | EEG DATA ANALYSIS

4.1 | Preprocessing

EEG data were analyzed using the EEGLAB software (Delorme &

Makeig, 2004), the Fieldtrip toolbox (Oostenveld, Fries, Maris, &

Schoffelen, 2011) and custom-made MATLAB code. EEG data were

first bandpass-filtered (two-pass Butterworth filter, fourth-order)

between 0.1 and 40 Hz and then down-sampled to 256 Hz. Data

recorded during speech production were discarded from the

analysis because of strong speech-related artifacts. The remaining

EEG data were first visually inspected for bad channels and/or arti-

facts in the time domain. Noisy channels were interpolated using a

distance-weighted nearest-neighbor approach. To identify and

remove artifacts related to participants' eye movements, eye blinks,

and muscle activity, we used Independent Component Analysis (ICA)

according to a consolidated approach (Delorme & Makeig, 2004).

Finally, data were rereferenced using a common average reference

over all electrodes.

EEG analyses of the Duet condition were constrained by the self-

paced structure of the task which, by definition, made the timing of

the events of interest (i.e., listening and speaking) not under experi-

mental control. Given that speaking and listening phases alternated at

a fast and variable rate, we restricted our analyses to short epochs of

500 ms that allowed us to avoid (1) artifacts due to speech produc-

tion, and (2) temporal superposition of speech-related and listening-

related neural processes.

We defined three 500 ms epochs of interest (Figure 1d):

1. Before speech production (PreSpeech): from −500 to 0 ms rela-

tive to (one's own) voice onset.

2. Before speech listening (PreListen): from −500 to 0 ms relative to

(the partner's) voice onset.

3. During speech listening (Listen): from 0 to +500 ms relative to the

partner's voice onset.

4.2 | Time-frequency analysis

Time-frequency representations (TFRs) for the three different epochs

(PreSpeech, PreListen, Listen) were calculated using a Fourier trans-

form approach applied to short sliding time windows. All the epochs

were zero-padded to avoid edge artifacts and spectral bleeding from

contiguous EEG signal possibly contaminated by speech-related arti-

facts. The power values were calculated for frequencies between

8 and 40 Hz (in steps of 2 Hz) using a Hanning-tapered adaptive time

window of 4 cycles (Δt = 4/f) that was advanced in steps of 50 ms.

This procedure results in a frequency-dependent spectral smoothing

of Δf = 1/Δt. As a consequence of analyzing 500 ms epochs (see

above) using 4 cycle time windows, the lowest frequency for which

we could derive a power estimate (based on the entire epoch) was

8 Hz. In other terms, the relatively fast and self-paced nature of our

task did not permit a reliable estimation of the power of slow oscilla-

tions (in the delta and theta frequency range).

4.3 | Statistical analysis

Statistical analysis was performed on the whole-brain oscillatory

power (between 8 and 40 Hz). To evaluate statistically whether Con-

vergence and NoChange data (as defined in the “Automatic analysis

of convergence” section) showed a difference in oscillatory power, we

performed a group-level nonparametric cluster-based permutation

test (Maris & Oostenveld, 2007), separately for each epoch of interest

(PreSpeech, PreListen, Listen). For every sample (here defined as

[channel, frequency, time] triplet), a dependent-sample t value was

computed. All samples for which this t value exceeded an a priori

decided threshold (uncorrected p < .05) were selected and subse-

quently clustered on the basis of temporal, spatial, and spectral conti-

guity. Then, cluster-level statistics was computed by taking the sum of

t values in each cluster. The cluster yielding the maximum sum was

subsequently used for evaluating the difference between the two data

sets (with the maximum sum used as test statistic). We randomized

the data across the two data sets, and for each random permutation

(10,000 iterations), we calculated again the test statistics in the same

way as previously described for the original data. This procedure gen-

erates a surrogate distribution of maximum cluster t values against

which we can evaluate the actual data. The p value of this test is given

by the proportion of random permutations that yields a larger test sta-

tistic compared to that computed for the original data.

5 | RESULTS

5.1 | Behavioral results and GMM-UBM
performance

Turn-taking reaction time (RT) during the Duet sessions, measured as

the time elapsed between visual presentation of words and voice

onset, did not differ between NoChange (427 � 262 ms, mean � SD)

and Convergence (426 � 298 ms, mean � SD) trials (Wilcoxon rank

sum test: z = −0.46, p = .64). Turn-taking was self-paced and thus RTs

are also a direct measure of the turn-taking pace and the rhythm

established by the dyad. This analysis suggests that Convergence and

NoChange trials share similar temporal turn-taking dynamics. Further-

more, the Pearson correlation between turn-taking RT and the num-

ber of convergence points did not show any significant relationship

(R = .57; p = .14).

As far as the GMM-UBM modeling was concerned, we verified

each speaker-dependent model's performance against the UBM

model (Reynolds et al., 2000). The confusion matrix for the Post

speech showed that modeling performance was good. This is mea-

sured using the equal error rate (EER) which indicates that the propor-

tion of false acceptances is equal to the proportion of false rejections.

The lower the EER value, the higher the accuracy of the classifiers.

EER for the training is 2.26% and validation is 10.55% as shown in

Figure 3a. As visible in Figure 3b, the speaker-dependent model's per-

formance was far better when tested on the same subject (self–self ).

Instead, testing on the Solo_Post of another speaker, led to critically

lower performances (self–self vs. self–partner, t(30) = 9.1; p < . 00001;

self–self vs. self–other, t(30) = 16.63; p < . 00001; self–partner
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vs. self–other, t(30) = 1.89; p = .07). This result suggests that the VDT

did not affect the phonetic fingerprint of the participants.

The proportion of convergence points that fulfilled both conver-

gence criteria in each dyad (see section on “automatic analysis of con-

vergence”) was on average 12.62 � 9.02% (mean � SD). The large

interindividual variability is consistent with previous reports showing

that convergence may not equally distribute across dyads (Pardo,

Urmanche, Wilman, & Wiener, 2017). It has also been reported that

female dyads tend to converge more than male dyads (Bailly & Martin,

2014; Pardo, 2006). However, gender differences may potentially be

affected by task and psycho-social factors and indeed in our data,

female (114 words in total; 22 � 15.56, mean � SD) and male dyads

(88 in total; 28.5 � 22.13, mean � SD), did not show any statistical

difference in convergence (Wilcoxon rank sum test, p = .68).

Finally, some studies in this area have modeled convergence as a

linear process, that is, it grows as the conversation proceeds (Natale,

1975; Suzuki & Katagiri, 2007). However, subjects do not remain

involved to the same degree over the whole course of a conversation,

suggesting that convergence can be a dynamic phenomenon (Edlund

et al., 2009; De Looze, Scherer, Vaughan, & Campbell, 2014). The

one-way repeated-measures ANOVA with session (Duet1, Duet2,

Duet3, Duet4) as within-subject factor did not reveal any significant

effect (F(3,21) = 2.63, p = .08), offering no conclusive evidence for a

change over the experimental blocks.

5.2 | EEG results

The comparison between the oscillatory power in the Convergent and

NoChange data sets for the three epochs of interest showed signifi-

cant results that are summarized in Figure 4. Specifically, in the epoch

preceding speech onset (PreSpeech), oscillatory power in the alpha/

low beta band (9–17 Hz) was attenuated for Convergence compared

to NoChange trials (p = .035; see Figure 5). This alpha/low beta power

suppression was more pronounced over left anterior scalp sites (F3,

F5, F7, FT7, FC5, T7) and during early stages of speech preparation

(from −400 to −150 ms relative to speech onset).

The observed power modulation did not depend on the reaction

time (possibly indexing task difficulty), as no difference in reaction

times was found between the two data sets (p = .64, see behavioral

results). Moreover, we ensured that trial-by-trial fluctuations in reac-

tions times were not associated with corresponding alpha/low beta-

band power fluctuations. In fact, in all turn-taking behaviors, a con-

founding factor could be related to the temporal aspects of behavioral

synchronization to the rhythm of the task (Fujioka, Trainor, Large, &

Ross, 2012).

To this end, we calculated the Pearson correlation between

single-trial reaction times and oscillatory power averaged across the

time points (from −400 to −150 ms), frequencies (from 9 to 17 Hz)

and electrodes (F3, F5, F7, FT7, FC5, T7) where we found the stron-

gest power modulations between Convergence and NoChange (see

above). Correlation was not significant for both data sets

(Convergence, r = −.05, p = .77; NoChange, r = −.02, p = .74), con-

firming that the oscillatory activity that is modulated by phonetic con-

vergence is not related to the (within-data set) variability in reaction

times.

We investigated the effect of convergence in the listener's brain,

before the interlocutor started speaking. With this analysis, we sought

to establish whether a specific neural state, as indexed by the ongoing

oscillatory power, preceded convergent words. We found a statisti-

cally significant difference in oscillatory power across data sets

(p = .02; Figure 6). Again, this difference consisted in a reduction of

power for the Convergence compared to the NoChange data set,

which was most consistent in the beta band (21–25 Hz), over right

centro-parietal electrodes (C4, C6, CP6, CP4) and between −290

and − 190 ms relative to the partner's voice onset.

The Pearson correlation showed no significant relationship

between beta-band power (averaged across significant frequencies,

electrodes, and time points) and reaction times at the single-trial level,

indicating that beta power before listening does not covary with reac-

tion time (Convergence: r = .08, p = .18; NoChange: r = .05, p = .2).

Finally, we also found a significant difference in oscillatory power

between Convergence and NoChange in the listener (p = .03;

Figure 7). In particular, Convergence trials showed a reduction in

power compared to NoChange trials that was most pronounced in the

beta band (21–29 Hz), over left frontal electrodes (F5, F7, FC5, FC3,

C5, CP5) and just after the partner's voice onset (50–120 ms; i.e., at

the very beginning of the listening phase).

FIGURE 4 Topographical plots of the relative power changes

between convergence and NoChange Convergence−NoChange
NoChange

� �
are shown

for the frequency ranges for which the cluster-based permutation test
yielded a significant difference. PreSpeech epoch refers to the
preparation to speak. PreListen and Listen epochs instead refers to
listener's brain activities, respectively, while the partner is speaking
and before he/she speaks. Each topographic plot shows the change in
power across the two data sets in 100 ms time windows, covering the
entire 500 ms epoch of interest. The white dots mark the channels for
which significant differences were found [Color figure can be viewed
at wileyonlinelibrary.com]
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Again, we checked whether oscillatory power was related to reac-

tion times in the two data sets. The Pearson correlation (calculated in

the same way as already described for the PreSpeech epoch) yielded

no significant relationship between trial-by-trial fluctuations in the

beta-band power (in the 21–29 Hz range) and reaction times for both

data sets (Convergence: r = −.17, p = .97; NoChange: r = .006,

p = .35). As for the other epochs, our results are not driven by the

rhythmic nature of the task and thus by behavioral synchronization in

the temporal domain.

6 | DISCUSSION

Phonetic convergence is the phenomenon by which participants in a

dialog tend to naturally align with each other in their phonetic charac-

teristics (Pardo, 2013). Although convergence (phonetic alignment) is

a well-known phenomenon, its quantitative assessment is still an open

area of research. Several studies have focused on subjective evalua-

tions (Pardo, 2013), whereas others have used a variety of objective

acoustic measures (Goldinger, 1998). Therefore, a great deal of incon-

sistency and variability still exists among studies (Pardo, Urmanche,

Wilman, & Wiener, 2017). One key novelty of our study is that we

implemented a quantitative method to extract phonetic convergence

from a game-like task, allowing an engaging, yet relatively constrained,

phonetic interaction. Phonetic convergence was computed using a

robust and automatic speaker identification technique applied to the

full acoustic spectrum, thus reducing the number of a priori hypothe-

ses about which acoustic feature shows alignment (Mukherjee et al.,

2017). This method was designed to specifically evaluate cooperative

speech behavior. Indeed, phonetic convergence is not extracted from

individual speech characteristics, but is rather computed out of the

combination of both speakers' speech production. Therefore, we

quantified participants' joint efforts to imitate each other's acoustic

targets.

The quantification of phonetic convergence as the result of a

joint-action behavior was the prerequisite to investigate its neural

markers. Here, convergence was associated to specific oscillatory

modulations in the alpha and beta bands. Convergent speech prepara-

tion in the speaker's brain was characterized by alpha/low beta power

suppression which was most prominent over left fronto-central elec-

trodes and early before speech onset (from −400 ms to −150 ms).

Convergence in the listener's brain, instead, showed significant beta

suppression peaking over left fronto-central sites just after the part-

ner's speech onset (from 50 to 120 ms). At the same time, phonetic

convergence is also characterized by lower power of the ongoing beta

rhythm over right centro-parietal electrodes before listening. Overall,

these findings suggest that alpha and beta oscillatory dynamics are

associated with phonetic convergence.

These results are in line with previous studies reporting modula-

tion of alpha (Kawasaki et al., 2013; Mandel et al., 2016; Pérez,

Carreiras, & Duñabeitia, 2017; Ahn, et al., 2018) and beta rhythms

(Mandel et al., 2016; Pérez et al., 2017) during speech-based

FIGURE 5 (a) Relative power changes between convergence and NoChange Convergence−NoChange
NoChange

� �
for the PreSpeech epoch, averaged over left

anterior channels (F3, F5, F7, FT7, FC5, T7; channels showing statistically significant differences according to the cluster-based permutation test)
and plotted as a function of time (−0.5–0 s) and frequency (8–40 HZ). The unshaded spectrotemporal region where converge trials show
strongest and statistically significant power decrease compared to NoChange trials (i.e., 9–17 Hz frequency range and − 0.4–0.15 s time
window). (b) Temporal evolution of the oscillatory power averaged across frequencies ranging from 9 to 17 Hz and left anterior channels F3, F5,
F7, FT7, FC5, T7 for convergence (blue line) and NoChange (red line). The gray horizontal line indicates the time points where the cluster-based
permutation test revealed a significant difference between data sets. Colored shaded areas indicate standard error of the mean [Color figure can
be viewed at wileyonlinelibrary.com]
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FIGURE 6 (a) Relative power changes between convergence and NoChange Convergence−NoChange
NoChange

� �
for the PreListen epoch, averaged over left

anterior channels (C4 C6 CP6 CP4; channels showing statistically significant differences according to the cluster-based permutation test) and
plotted as a function of time (−0.5–0 s) and frequency (8–40 HZ). The unshaded spectrotemporal region where converge trials show strongest

and statistically significant power decrease compared to NoChange trials (i.e., 21–25 Hz frequency range and − 0.3–0.2 s time window).
(b) Temporal evolution of the oscillatory power averaged across frequencies ranging from 21 to 25 Hz and right centro-parietal channels C4 C6
CP6 CP4 for Convergence (blue line) and NoChange (red line). The gray horizontal line indicates the time points where the cluster-based
permutation test revealed a significant difference between data sets. Shaded areas indicate SE of the mean [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 (a) Relative power changes between convergence and NoChange Convergence−NoChange
NoChange

� �
for the Listen epoch, averaged over left anterior

channels (F5, F7, FC5, FC3, C5, CP5; channels showing statistically significant differences according to the cluster-based permutation test) and
plotted as a function of time (0–0.5 s) and frequency (8–40 HZ). The unshaded spectrotemporal region where converge trials show strongest and
statistically significant power decrease compared to NoChange trials (i.e., 21–29 Hz frequency range and + 0.05–0.15 s time window).
(b) Temporal evolution of the oscillatory power averaged across frequencies ranging from 21 to 29 Hz and left anterior channels F5, F7, FC5,
FC3, C5, CP5 for Convergence (blue line) and NoChange (red line). The gray horizontal line indicates the time points where the cluster-based
permutation test revealed a significant difference between data sets. Shaded areas indicate SE of the mean [Color figure can be viewed at
wileyonlinelibrary.com]
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interaction tasks. However, one key aspect differentiates our study

with respect to prior hyperscanning investigation of speech interac-

tion. We used a joint-action behavioral feature as a searchlight for the

neural underpinnings of speech coordination. In fact, our EEG analysis

was driven by a behavioral index that cannot directly or independently

be controlled by any of the partners during the interaction, that is,

phonetic alignment.

6.1 | The sensorimotor nature of phonetic
convergence

As far as the alpha/low beta effect in the speaker is concerned, we

first observe that fronto-central desynchronization in the upper alpha

and lower beta bands, always precedes voluntary movements

(Leocani, Toro, Manganotti, Zhuang, & Hallett, 1997; Pfurtscheller &

Aranibar, 1979; Pfurtscheller & Berghold, 1989). Interestingly, similar

results can be observed across hyperscanning studies. Tognoli and

Kelso (2015) used an interactive finger movement task and manipu-

lated the subjects' view of each other's hands. The results showed

that neural oscillations in the alpha range (the phi complex) were mod-

ulated by the control of participants' own behavior in relation to that

of the partners. Following this pioneering dual-EEG study, a few

others have confirmed the role of alpha oscillations, overlaying senso-

rimotor regions, in behavioral coordination (Dumas, Nadel, Sous-

signan, Martinerie, & Garnero, 2010; Konvalinka et al., 2014). In

general, the comparison between interactive and noninteractive

behaviors has consistently shown the suppression of alpha range

oscillations (Tognoli & Kelso, 2015). However, task differences can

produce slightly different topographical maps of alpha/low beta sup-

pression. For instance, a centro-parietal topography in a joint atten-

tion task (Lachat & George, 2012), a frontal one in a finger-tapping

task (Konvalinka et al., 2014), while a central effect was present in a

nonverbal hand movement task (Ménoret et al., 2014). All in all, our

fronto-central effect matches similar hyper-scanning results, while its

left topography may be explained by the lateralization of the speech

production function.

To discuss about the functional meaning of our results, we refer

to the fact that a rolandic alpha desynchronization is usually found

during execution, observation, or mental imagery of movements, pos-

sibly reflecting the activation or release from inhibition of the sensori-

motor cortex (Caetano, Jousmäki, & Hari, 2007; Cochin, Barthelemy,

Roux, & Martineau, 1999; Pfurtscheller & Da Silva, 1999). In fact,

multi agent action coordination requires that participants produce

their own actions, while simultaneously perceiving the actions of their

partners. Similarly, a speech conversation creates the need for a tight

action-perception coupling (Hari & Kujala, 2009). In fact, the central

alpha band suppression has been proposed to be an index of action-

perception coupling (De Lange et al., 2008; Hari, 2006), and thus sen-

sorimotor information transfer during behavioral coordination. Within

this context, our study provides evidence that alpha suppression,

extending to the low beta range, is present also during speech interac-

tion, in a task that critically requires coordination of articulatory ges-

tures. More importantly, these EEG features were modulated by the

efficacy with which participants jointly (as opposed to independently)

managed to coordinate each other while converging toward a shared

phonetic space.

Moving to the listener's brain activities, phonetic convergence

leads to the suppression of beta oscillations. In general, as for the

rolandic alpha, fronto-central beta-band desynchronization has been

related to the activation of the sensorimotor cortices (Parkes, Bas-

tiaansen, & Norris, 2006; Salmelin, Hámáaláinen, Kajola, & Hari,

1995). However, using electrocorticography (ECoG) it was shown that

beta event-related desynchronization (ERD) is more focused and

somatotopically specific than alpha ERD (Crone et al., 1998). In this

sense, it has been proposed that the rolandic alpha ERD reflects the

unspecific activation of sensorimotor areas, while the beta ERD sig-

nals a relatively more focal motor recruitment (Pfurtscheller & Da

Silva, 1999; Pfurtscheller, Pregenzer, & Neuper, 1994). More specifi-

cally and in line with our findings, somatotopic beta attenuation has

also been shown for speech listening (Jenson et al., 2014; Bartoli

et al., 2016). In fact, specific sensorimotor regions recruited during

speech production are also activated during speech listening (Fadiga,

Craighero, Buccino, & Rizzolatti, 2002; Watkins et al., 2003; D'Ausilio

et al., 2014) and the perturbation of these sensorimotor centers

affects speech discrimination performance (Meister, Wilson, Deblieck,

Wu, & Iacoboni, 2007; D'Ausilio et al., 2009; D'Ausilio, Bufalari, Sal-

mas, & Fadiga, 2012; Bartoli et al., 2015; Möttönen & Watkins, 2009).

The beta ERD we observe after speech presentation may thus be

interpreted as supporting the perceptual discrimination processes.

The effect is localized in a left fronto-central cluster of electrodes,

supporting the claim that top-down sensorimotor predictions can

exert a functional contribution to the hierarchical generative models

underlying speech perception (Cope et al., 2017).

6.2 | Phonetic convergence and predictive coding

Beta ERD was also shown to precede speech listening, though with a

right centro-parietal topography. This pattern of lateralization is con-

sistent with a possible attentional role (Petit et al., 2007; Gao et al.,

2017). In agreement with this possibility, it has been proposed that

the functional role of the prestimulus beta rhythm is to convey motor

information (efferent copies) to suppress self-generated sensory stim-

ulations, freeing up resources to respond to external sensory stimuli

(Engel & Fries, 2010). The mechanism of action might be that beta

rhythms interact with other modality specific rhythms to anticipate

sensory events by boosting neural excitability at specific moments in

time when salient stimuli are expected to happen (Arnal, Wyart, &

Giraud, 2011). Such a predictive top-down influence is supposed to

play a key role in attentional selection (Bastos et al., 2015; Lee, Whit-

tington, & Kopell, 2013; Lewis, Wang, & Bastiaansen, 2015; Morillon &

Baillet, 2017). Interestingly, the pre-stimulus beta suppression has

shown to be involved in predictions about the precision of a specific

processing channel, thus, establishing the attentional context for per-

ceptual processing (Bauer, Stenner, Friston, & Dolan, 2014).

In this framework, the brain acts like a predictive engine (Friston,

Mattout, & Kilner, 2011), aiming at reducing the cost of analyzing the

full set of incoming information, by formulating specific perceptual

hypotheses that are tested against the temporal flow of sensory

evidences (Donnarumma, Costantini, Ambrosini, Friston, & Pezzulo,
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2017). In our turn-taking task, the organization of one's own speech

output could bias the subsequent active listening processes by allow-

ing faster or more efficient discrimination of similar acoustic targets.

On the other hand, motor activations elicited by speech perception

could in turn prime the organization of the immediately following

speech planning required in the task. Based on general principles of

neural reuse (Anderson, 2010) of action-perception circuits for speech

communication (Pulvermüller, 2018) phonetic convergence may

depend on the amount of sensorimotor detail extracted, while dis-

criminating the speech produced by the partner. In this sense, the

degree of neurofunctional sensorimotor overlap between speech per-

ception and production may translate into larger likelihood of motor

contagion (Bisio et al., 2014; Bisio, Stucchi, Jacono, Fadiga, & Pozzo,

2010; D'Ausilio et al., 2015).

6.3 | Predicting the “how” rather than the “when” of
speech interaction

Effective prediction however requires task predictability. In our interac-

tive task, the listeners have critical prior information to constrain per-

ceptual analysis. From the listener's point of view, the word spoken by

the partner shares one out of the two syllables of the word just pro-

duced by herself. The other syllable, the novel one, is contained in one

of the two words that the participant can now read on the screen, and

that she will have to pronounce. These task dependencies offer strong

anchoring points to predict the dynamics of the ongoing interaction.

Importantly, the listeners are forced into a predictive mode of opera-

tion regarding the phonetic content (i.e., what syllables I'm going to

hear) rather than the timing characteristics of the turn-taking action.

This aspect is of particular interest if we consider that previous studies

investigated the neural dynamics subtending the estimation of “when”

a partner is going to speak in a conversation (Mandel et al., 2016). In

fact, the estimation of this temporal information is fundamental in

establishing effective turn taking, as well as supporting word segmen-

tation and parsing sentence-level syntax. However, temporal predic-

tion may not be the only anticipatory mechanism at play during

speech interaction. In the present study, we took a different direction

by mixing a set of task constraints together with specific computa-

tional methods, to investigate how people engage in highly predictive

behaviors regarding the (phonetic) “how” component of speech inter-

action. In this regard, phonological convergence has been here consid-

ered as the tendency to align phono-articulatory tract gestures during

the interaction (Mukherjee et al., 2018).

Here, we show that phonetic convergence elicits specific patterns

of alpha and beta suppressions that dissociate the speaking, preparing

to listen and listening phases. The novelty of the current study arises

also from the characterization of phonetic convergence as a dynamic

and interactive process. In doing so, these results add to the few

recent studies aiming at the investigation of speech and language pro-

cesses during (quasi)-realistic verbal interactions. In fact, we need to

bear in mind that in fast-paced natural dialogs, comprehension and

production tend to greatly overlap in time (Levinson & Torreira, 2015).

Based on this evidence, it has been suggested that one key issue is to

which extent current models of language, developed for isolated indi-

viduals (Hickok & Poeppel, 2007), are still valid in interactive contexts

(Pickering & Garrod, 2013; Schoot et al., 2016). On one hand, turn-

taking involves multitasking comprehension and production (Levinson,

2016) and indeed the neural network for language production and

comprehension may at least partially overlap (Menenti et al., 2012).

On the other, the now classical neural entrainment to surface auditory

features during attentive listening (Luo & Poeppel, 2007; Schroeder &

Lakatos, 2009; Giraud & Poeppel, 2012; Ding & Simon, 2014; Park,

Kayser, Thut, & Gross, 2016) does not seem to fully explain interbrain

synchronization occurring during conversations (Pérez et al., 2017).

Therefore, when we extrapolate results to the complexity of ecologi-

cal scenarios, the listener, apart from speech comprehension, may

adapts the phono-articulatory properties of speech preparation

through substantially incomplete understanding and at the same time

may influence the speaker's brain processes through back-channeling.

7 | CONCLUSIONS

In conclusion, mutual understanding might be the result of a joint pro-

cess whereby alignment of situation models is facilitated when inter-

locutors align their behavioral output (Pickering & Garrod, 2004;

Schoot et al., 2016). Also, the fast-paced interactive nature of dialogs

suggests that speech and language understanding and production

form a shared process that is co-constructed by participants

(Donnarumma, Dindo, Iodice, & Pezzulo, 2017). Along these lines, an

emerging trend suggests that a complete grasp of the neural and cog-

nitive processes involved in speech-based communication cannot be

achieved without examining more realistic interactions among individ-

uals (Hasson et al., 2012; Pickering & Garrod, 2013; Schoot et al.,

2016). However, it is important to highlight that, to investigate the

phonetic aspect of linguistic convergence, the current study imple-

mented a series of task constraints to allow a moderate level of exper-

imental control. Eventually, the investigation of whether more realistic

and open-ended scenarios result in similar neurobehavioral phenom-

ena will have to be tackled by future studies.
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