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Abstract

Traumatic brain injury damages white matter pathways that connect brain regions,

disrupting transmission of electrochemical signals and causing cognitive and emo-

tional dysfunction. Connectome-level mechanisms for how the brain compensates

for injury have not been fully characterized. Here, we collected serial MRI-based

structural and functional connectome metrics and neuropsychological scores in

26 mild traumatic brain injury subjects (29.4 ± 8.0 years, 20 males) at 1 and 6 months

postinjury. We quantified the relationship between functional and structural con-

nectomes using network diffusion (ND) model propagation time, a measure that can

be interpreted as how much of the structural connectome is being utilized for the

spread of functional activation, as captured via the functional connectome. Overall

cognition showed significant improvement from 1 to 6 months (t25 = −2.15, p = .04).

None of the structural or functional global connectome metrics was significantly dif-

ferent between 1 and 6 months, or when compared to 34 age- and gender-matched

controls (28.6 ± 8.8 years, 25 males). We predicted longitudinal changes in overall

cognition from changes in global connectome measures using a partial least squares

regression model (cross-validated R2 = .27). We observe that increased ND model

propagation time, increased structural connectome segregation, and increased func-

tional connectome integration were related to better cognitive recovery. We inter-

pret these findings as suggesting two connectome-based postinjury recovery

mechanisms: one of neuroplasticity that increases functional connectome integration

and one of remote white matter degeneration that increases structural connectome

segregation. We hypothesize that our inherently multimodal measure of ND model

propagation time captures the interplay between these two mechanisms.
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1 | INTRODUCTION

Impaired cognitive abilities, particularly attention and memory, are the

most common and debilitating cognitive deficits following traumatic

brain injury (TBI) (Ashman, Gordon, Cantor, & Hibbard, 2006; Brenner,

2011; Willmott, Ponsford, Hocking, & Schönberger, 2009). More than

5.3 million persons in the United States alone are living with TBI-

related cognitive dysfunction (Langlois, Rutland-Brown, & Wald,

2006), with an estimated 1.5 million new cases each year, resulting in

a total annual medical cost of $77 billion. Recent increases in sports-

related and military-related mild TBI (mTBI) have propelled research

focus on this disease to the forefront. While both spontaneous and

rehabilitation-driven recovery is observed in some individuals after

mTBI (McCrea et al., 2009), between 10 and 20% of sufferers have

persistent cognitive or emotional dysfunction (McAllister, Flashman,

McDonald, & Saykin, 2006; Wood, 2004).

Diffuse axonal injury that occurs in mTBI can result in neurological

impairment by damaging the brain's structural white matter connections,

impacting their ability to transmit neuronal signals. Many studies have

found relationships between biomarkers of diffuse axonal injury, includ-

ing diffusion tensor imaging (DTI) summary statistics such as fractional

anisotropy, and cognitive impairment (Kuceyeski, Maruta, Niogi, Ghajar, &

Raj, 2011; Niogi et al., 2008; Sharp, Scott, & Leech, 2014; Yuh et al.,

2014). Diffuse axonal injury can also impact network-level measures of

structural connectivity (SC) and functional connectivity (FC). Con-

nectomics, a method that enables network-level analysis of anatomical

(measured via diffusion MRI [dMRI]) and physiological (measured via

functional MRI [fMRI], magnetoencephalography or electroencephalog-

raphy) connections between brain regions, has also been applied in a

range of neurological disorders, including mTBI (Chu et al., 2018; Irimia

et al., 2012; Sharp et al., 2014; Spielberg, McGlinchey, Milberg, & Salat,

2015). Pandit et al. (2013) found reduced overall FC, longer global char-

acteristic path length and reduced global efficiency in mTBI versus nor-

mal controls, while Nakamura, Hillary, and Biswal (2009) showed lower

small world indices in the resting-state FC network. A few publications

report improvements in SC related to recovery from severe brain injury

(Fernández-Espejo et al., 2011; Sidaros et al., 2008; Voss et al., 2006),

although another showed long-term impairment of white matter 5 years

postinjury even in those individuals that had recovered (Dinkel et al.,

2014). Correlations between network-level improvements in FC and

recovery postinjury are more widely reported (Demertzi et al., 2014;

Laureys & Schiff, 2012; Sharp et al., 2011; Soddu et al., 2011;

Vanhaudenhuyse et al., 2010).

While recovery from TBI depends on both the pattern of initial or

continued damage to the SC network and plasticity of the SC and FC

network, few studies analyze the two together (Caeyenberghs,

Leemans, Leunissen, Michiels, & Swinnen, 2013; Caeyenberghs,

Verhelst, Clemente, & Wilson, 2017). One study showed TBI patients

with more SC injury had less FC in the default mode network (Sharp

et al., 2011). Palacios et al. (2013) found increased FC in frontal areas

in chronic TBI patients compared to controls, which was also

positively correlated with better cognitive outcomes and negatively

correlated with SC measures.

While these studies shed light on the relationship between function,

structure, and recovery, they are statistical or phenomenological, and do

not utilize latest advances in modeling the relationship between func-

tional and structural connectomes. Recent work has focused on

implementing mathematical models that formalize the relationship

between SC and FC in both normal and pathological populations

(Cabral, Hugues, Sporns, & Deco, 2011; Chu, Parhi, & Lenglet, 2018;

Das et al., 2014; Deco, Senden, & Jirsa, 2012; Fernández Galán, 2008;

Honey et al., 2009; Messé, Rudrauf, Benali, & Marrelec, 2014;

Woolrich & Stephan, 2013). Some of the main goals in joint structure–

function modeling are to increase the accuracy of noisy connectivity

measurements, identify function-specific subnetworks (Chu, Parhi, &

Lenglet, 2018) or to predict one modality from the other (Honey et al.,

2009). One recent publication with the goal of predicting function from

structure used the network diffusion (ND) model (Abdelnour, Dayan,

Devinsky, Thesen, & Raj, 2018; Abdelnour, Voss, & Raj, 2014), which

assumes functional activation diffuses along white matter connections.

This model is linear, has a simple, closed-form solution and only one tun-

ing parameter, making it computationally more tractable and less prone

to overfitting than, for example, high-dimensional, nonlinear neural mass

models. The ND model has been applied to predicting patterns of atro-

phy in dementia (Raj, Kuceyeski, & Weiner, 2012), epilepsy (Abdelnour,

Mueller, & Raj, 2015) and a range of neurological disorders (Cauda et al.,

2018). The ND model's one tuning parameter, called ND model propa-

gation time, allows quantification of the FC–SC relationship. ND model

propagation time can be interpreted as the amount of model time that

is needed to “play out” the simulated activation propagation within the

SC network to best match the observed FC, that is, “network depth.”

ND model propagation time can be interpreted as a metric of “distance”

between SC and FC; the smaller the distance, the more trivially FC can

be explained by SC. Our recent cross-sectional study showed that ND

model propagation time was the only global connectome metric (includ-

ing FC and SC metrics) correlated with Coma Recovery Scale – Revised

(CRS-R) after severe brain injury (Kuceyeski et al., 2016). Specifically,

increased ND model propagation time was correlated with better level

of consciousness as measured by CSR-R, a finding that we also repli-

cated in numerical simulations of injury and recovery. In that work, we

interpreted the observed relationship between increased ND model

propagation time and better recovery as evidence for global cerebral

neuroplasticity in recovery, that is, reorganized functional connections

to compensate for irrevocably damaged structural connections. Here,

we test for multimodal connectomic reorganization mechanisms by

examining if longitudinal increases in ND model propagation time, as

well as other global functional and structural connectome measures, are

associated with better cognitive recovery in mTBI patients, using tests

of attention and memory (see Figure 1). If our multimodal connectomic

measures can predict longitudinal recovery, it will enable a highly parsi-

monious and potentially clinically relevant biomarker of the mechanism

of cognitive recovery post-mTBI. Studies in this population have histori-

cally been beset with small effect sizes, diffuse and subtle structural

effects, and heterogeneous presentations. To our knowledge, this type
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of model-based exploration of the longitudinal evolution of the con-

nectomes has not before been reported in mTBI.

2 | MATERIALS AND METHODS

2.1 | Data

Data from 51 subjects (29.6 ± 8.6 years of age, 35 males) that incurred

mTBI was collected at 1 week, 1 month, 6 months, and 12 months

postinjury. Our hypothesis is that most recovery occurs between the

1 and 6 month time points (Losoi et al., 2016), so we chose to focus on

the data from those two time points only. A total of 27 subjects had

complete datasets (neuropsychological test scores and MRI data) from

both 1 and 6 months (29.1 ± 8.1 years of age, 21 males). The condi-

tions for inclusion were blunt, isolated mTBI, defined as Glasgow Coma

Scale of 13–15 at injury, loss of consciousness less than 30 min and

post-traumatic amnesia less than 24 h. No imaging was used to define

mTBI. The conditions for exclusion were pregnancy or other contraindi-

cation to MRI, a history of neurological/psychiatric diagnosis, prior sei-

zure, or drug/alcohol abuse. MRIs were collected on a 3T GE Sigma

F IGURE 1 Increased network diffusion (ND) model propagation time in overall cognitive recovery after mild traumatic brain injury (TBI). We
hypothesize that the interval increase in ND model propagation time is reflecting two processes that track with recovery: Increased structural
segregation and decreased functional segregation. The bottom three panels show the univariate correlations between change in recovery
measures from 1 to 6 months and (1) change in ND model propagation time, (2) change in structural connectome segregation (characteristic path
length), and (3) change in functional connectome segregation (characteristic path length). Pearson correlation and uncorrected p values are given
in the panel inserts [Color figure can be viewed at wileyonlinelibrary.com]
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EXCITE scanner and included structural scans (FSPGR T1,

1 × 1 × 1 mm3 voxels), resting-state fMRI (7 min, 3.4 × 3.4 × 4.0 mm3

voxels, 2 s sampling rate) and 55-direction high angular resolution dMRI

(b = 1,000 s/mm2, 1.8 × 1.8 × 1.8 mm3 voxels). Neuropsychological

testing of attention and learning/memory consisted of nine subscores

within the Attention Network Test (ANT) (Fan, McCandliss, Sommer,

Raz, & Posner, 2002), as well as 16 subscores of the California Verbal

Learning Test-II (CVLT-II) (Jacobs & Donders, 2007), including measures

of short delay/long delay/free/cued recall and total intrusions/repeti-

tions/recognition. The same MRI sequences were acquired in 34 age-

and gender-matched normal controls (28.6 ± 8.8 years, 25 males) for

comparison.

2.2 | Image processing

Gray matter and white matter tissues were classified and the gray

matter further parcellated into 86 anatomical regions of interest using

the semiautomated FreeSurfer software (Fischl & Dale, 2000). Cortical

and subcortical parcellations were then used in the construction of

the SC and FC networks.

2.2.1 | Extraction of the functional connectomes

All data were analyzed in MATLAB using SPM12 and the CONN func-

tional connectivity toolbox 17f (http://www.nitrc.org/projects/conn)

(Whitfield-Gabrieli & Nieto-Castanon, 2012). Preprocessing of the

fMRI data was performed using the CONN toolbox “Direct normaliza-

tion to Montreal Neurological Institute (MNI)-space” pipeline, which

includes motion correction (simultaneous realignment and unwarping),

slice-timing correction, and coregistration/normalization to MNI space

(3 mm voxels). Outlier volumes were removed automatically using the

Artifact Detection Tools within the CONN toolbox. The toolbox per-

forms a rigorous regression of head motion (24 total motion

covariates: six motion parameters plus temporal derivatives and

squared terms) and physiological artifacts (10 total CompCor

eigenvariates: five each from eroded white matter and cerebrospinal

fluid masks [Behzadi, Restom, Liau, & Liu, 2007)]. Notably, this den-

oising does not regress out global signal, allowing for interpretation of

anticorrelations (Chai, Castañón, Ongür, & Whitfield-Gabrieli, 2012).

Band-pass filtering (0.008–0.09 Hz) of the residual blood oxygen

level-dependent contrast signal was also conducted. Each subject's

cortical and subcortical parcellation from FreeSurfer was coregistered

and transformed into MNI space, and these parcels were used to

extract average functional time series for each anatomical region of

interest. The pairwise FC between two regions was defined as the

Pearson correlation coefficient between these time-dependent

regional signal averages after removing the first five volumes. Correla-

tion coefficients with a corrected p value of greater than .05 were set

to 0. Correction for multiple comparisons was performed for each

individual using the linear step-up procedure for false discovery rate

correction introduced in (Benjamini & Hochberg, 1995).

2.2.2 | Extraction of the structural connectomes

dMRIs were linearly motion corrected using a modified version of

FSL's eddy_correct and the linear correction applied to the gradient

directions. The dMRIs were then corrected for eddy currents using

FSL's eddy_correct. Orientation distribution functions were con-

structed using FSL's BEDPOSTX (two fiber orientations, 1,000 sample

burn in), gray/white matter masks linearly transformed to dMRI space

and streamline tractography performed from each voxel in the gray

matter/white matter interface (linear interpolation, Euler tracking,

step size = 0.625, threshold for fractional anisotropy >0.15, curve

threshold = 70, curve interval = 2). SC matrices were calculated as the

number of streamlines connecting any given pair of regions.

2.3 | Global Connectome metrics

Global metrics of average degree, characteristic path length, global and

local efficiency, clustering coefficient, modularity, small-world index, tran-

sitivity, average mean first passage time (Goñi et al., 2013), and mean

navigation time (based on both connectivity strength and Euclidean dis-

tance) (Seguin, van den Heuvel, & Zalesky, 2018) were calculated for the

weighted SC and FC networks using the Brain Connectivity Toolbox

(Rubinov & Sporns, 2010). The ratio of between to within-module con-

nection strength was taken to be the ratio of the average strength of

edges between nodes in different modules divided by the average

strength of edges between nodes in the same module. Before calculation

of clustering coefficient, local efficiency, and transitivity, entries in the

connectomes were rescaled between 0 and 1 by dividing each entry in

the matrix by the maximum value. Negative entries in the FC matrices

were removed for connectome metric calculations. Each edge in the SC

matrices was divided by the sum of the volumes of the two regions, all-

owing correction for different sized regions that would have proportion-

ally more/fewer number of seeds in the tractography algorithm. It also

adjusts the patient SC to account for any damage-related atrophy in the

gray matter regions, allowing for better comparison of graph theoretical

measures, since the normalized connection strength is a measure of

amount of connectivity proportional to the amount of gray matter that

remains. Small-world index s was calculated as

s =
c=�crand
p=�prand

where c and p are the clustering coefficient and characteristic path

length, respectively, of the individual's network. The variables �crand

and �prand are the means of the clustering coefficient and characteristic

path length values, respectively, of 100 different matrices, each

obtained by randomly permuting the original connectivity network's

edges 10 times while preserving degree distribution.

2.4 | ND model propagation time

The ND model, detailed in Abdelnour et al. (2014), relates FC to SC by

assuming that neuronal activity (functional activation) diffuses within the

4444 KUCEYESKI ET AL.

http://www.nitrc.org/projects/conn


SC network. In other words, functional activation is modeled as a random

walk within the SC network. Therefore, the rate of change of activation

at any node i, denoted xi, is related to the difference between the level of

activation at that node and its connected neighbors, relative to the sum

of outgoing connections of each node (node degree). That is,

dxi tð Þ
dt

=
βffiffiffiffi
δi

p
X
j

cij
1ffiffiffiffi
δj

p xj tð Þ−xi tð Þ ð1Þ

where the coefficients cij are the elements of the SC matrix C, δi =
P

jcij

is the degree of node i, and β is the rate constant of the exponential

decay. This relationship is extended to the entire brain network x(t)

dx tð Þ
dt

= −βLx tð Þ ð2Þ

where L is the well-known network Laplacian. The network Laplacian

can have different formulations depending on the normalization factor.

We choose, as in Abdelnour et al. (2014) and Kuceyeski et al. (2016), to

normalize by node degree, resulting in the Laplacian L= I−Δ−1=2

CΔ−1=2, where Δ is the diagonal matrix with entries δi. We chose to nor-

malize by node degree in order to control for different sized regions in

the gray matter parcellation. Therefore, the matrix C in the calculation of

the Laplacian is the SC matrix based on streamline count. For any initial

configuration, or activation pattern, x0, the solution to Equation (2) is:

x tð Þ= exp −βLtð Þx0 ð3Þ

Let A be the observed FC network and Â be the predicted FC net-

work from the ND model. We define the estimated FC of region

i with all other regions at time t as the evolution on the graph of an

initial configuration involving only region i, that is, âi tð Þ= exp −βLtð Þei,
where ei is the unit vector in the ith direction. If we collect all

regions/unit vectors together, we obtain â1 tð Þj� � �jâ1 tð Þh i= exp −βLtð Þ
e1j� � �jeNh i, or

Â tð Þ= exp −βLtð Þ ð4Þ

which gives the prediction for the observed FC matrix A. The accuracy

of this prediction depends on t and β. We do not have an empirical

value for β, so we absorb it into the estimation (by setting it to 1) and

allowing t to vary. The special cases Â 0ð Þ= I and Â ∞ð Þ=D, where

D= u0uT0 is the steady-state solution (outer product of the eigenvector

of L that has a corresponding eigenvalue of 0). Between those cases, a

range of functional networks exists. The t that gives the most accurate

predicted FC compared to the subject's observed FC is called ND model

propagation time, denoted tm. Specifically, ND model propagation time

is the t that maximizes

c tð Þ=
cov A, Â tð Þ

� �

σAσÂ tð Þ
ð5Þ

Here A and Â are vectorized versions of the matrices after exclud-

ing values on the diagonal. In summary, this procedure uses the ND

model to estimate an individual's FC from their SC and then identifies

the t that gives the best agreement between the predicted and

observed FC, which we call model propagation time. We understand

model propagation time, which is unitless and not related to actual

time, as the measure of how much of the SC network is being used

for the spread of functional activation as captured with the observed

FC network.

2.5 | Statistical analysis

Changes in network metrics from 1 to 6 months in the mTBI patients

were calculated using a two-tailed, paired t test (degrees of free-

dom = 25), while differences between mTBI (at both 1 and 6 months)

and healthy controls were assessed using an unpaired t test (degrees

of freedom = 58). Quantile-quantile plots of the connectome mea-

sures were used to verify normality of the connectome measures. p-

Values for all three sets of t tests were corrected for multiple compari-

sons using Benjamini–Hochberg false discovery rate correction and

assessed for significance using a threshold of α = .05. Pearson's corre-

lation was calculated between the FC and SC at 1 and 6 months, and

between the change in network metrics between 1 and 6 months to

evaluate the evolving relationship of FC and SC network metrics

(degrees of freedom = 25). Two-tailed p values were again Benjamini–

Hochberg false discovery rate corrected and assessed for significance

using a threshold of α = .05.

For analysis of the relationship between recovery and

connectome measures, we first used principal components analysis

(PCA) on the 25 subscores of attention (from ANT) and mem-

ory/learning (CVLT-II) on the concatenated data from all 27 subjects'

from both 1 and 6 months. The first principal component was calcu-

lated and taken to be a measure of overall cognition; differences

between this measure at 1 and 6 months were compared using a two-

tailed, paired t test (degrees of freedom = 25) and assessed with a sig-

nificance level of α = .05. Once an overall measure of recovery was

identified, partial least squares regression (PLSR), a regression tech-

nique that can accommodate correlated input variables, was used to

model the relationship between changes in global connectome mea-

sures and changes in overall cognitive function. Specifically, we esti-

mated change in overall cognitive recovery (ΔPCA = PCAFU − PCABL)

from the various demographics and connectome metrics. The input

variables included in the model were those of age, gender, change in

ND model propagation time and change in the FC and SC global net-

work metrics of average node degree, characteristic path length,

global and local efficiency, clustering coefficient, modularity, transitiv-

ity, mean first passage time, mean navigation time on the structural

connectome, and mean navigation time based on Euclidean distance

(Δm = mFU − mBL) that had trends for correlations (p < .10

uncorrected) with the change in overall cognition. We performed this

step as to not include any variables that were clearly not related to

change in overall cognition. We used a nested cross-validation

KUCEYESKI ET AL. 4445



procedure to select and fit the models and perform predictions. The

outer loop consisted of leave-one-out cross-validation; each observa-

tion was held out in turn and the following procedure performed on

the remaining training data to select and fit the model. First, the num-

ber of components in the PLSR model was chosen as the one that

most frequently minimized the predicted residual sum of squares

(Krishnan, Williams, McIntosh, & Abdi, 2011), calculated via k-fold

(k = 5) cross-validation with 50 Monte Carlo repetitions, over 1,000

bootstrapped samples. Once the optimal number of components was

identified, bootstrapping was again employed (with 10,000 resamples

having 50 Monte Carlo repetitions each) using the entire training data

set to calculate the regression coefficients and the bias corrected and

accelerated 95% confidence intervals (CIs) (Efron, 1987). The mean of

the regression coefficients over the bootstrapped samples was then

used to make a prediction for the single set of hold-out test data. We

assessed model performance by calculating the coefficient of determi-

nation (R2 = 1−SSres/SStot) of the predicted values from the leave-

one-out cross-validation. The data that support the findings of this

study are available from the corresponding author upon reasonable

request.

3 | RESULTS

3.1 | Post-mTBI cognitive recovery

Figure 2 shows the first PCA component's coefficients for the nine

subscores of the ANT and the 16 subscores (standardized) of the

CVLT-II over the 27 subjects' data from 1 and 6 months. Black lines

indicate the 95% CIs of each subscore's PCA coefficient, calculated

via bootstrapping; the weights used in the analysis are all well within

the CIs. The first PCA component explained 48% of the variance,

while the second and third components explained only 16 and 8%,

respectively. The red bars signify that lower scores on that subtest

indicate better function while blue bars signify that higher scores on

F IGURE 2 Principal component analysis (PCA) coefficients of overall recovery. The coefficients of the first component of the PCA analysis
using 27 subjects' data from 1 to 6 months, with 95% bootstrapped confidence intervals superimposed as black lines. Attention Network Test
(ANT) scores are on the left and California Verbal Learning Test II (CVLT-II) scores are on the right. Red indicates that subscore's values are
smaller = better and blue indicates that subscore's values are higher = better [Color figure can be viewed at wileyonlinelibrary.com]

4446 KUCEYESKI ET AL.

http://wileyonlinelibrary.com


that subtest indicate better function. All of the red bars have negative

PCA coefficients (except for CVLT-II “repetitions,” which has a rela-

tively small positive coefficient) and all blue bars are positive. This

indicates that positive values of the PCA component indicate better

cognitive scores, and increases over time indicate improvements in

cognition. A paired t test showed a significant increase in the PCA

measure of overall cognition from 1 to 6 months (t25 = −2.15, p = .04;

see Figure 3). In a secondary analysis (Supplementary Analysis S1), we

included all available neuropsychological data from all time points and

reperformed the PCA analysis (see Figure S1), which was almost iden-

tical to the PCA results in Figure 2. Figure S2 also shows violin plots

of overall cognition from 1 week to 1 month and 6 months to

12 months, neither of which showed significant changes over time,

supporting our hypothesis that most recovery would occur between

1 and 6 months.

3.2 | ND model prediction

Figure 4a,b shows the trajectories of the correlation between the

observed FC and the ND model's predicted FC over model time, with

the individual's maximum correlation (i.e., ND model propagation time)

indicated with a red point, for the TBI and control subjects. Histo-

grams of the final correlations between observed and predicted FC

are given in Figure 4b,c (TBI subjects and control subjects, respec-

tively). Videos S1 (control subject) and S2 (TBI subject) show a time-

lapsed video of the observed FC, observed SC, the ND model's

predicted FC and the correlation between observed and predicted FC

over model time for a particular individual. The point at which the cor-

relation curve reaches its maximum is the final ND model propagation

time. Correlations between the ND model's predicted FC and

observed FC range between 0.17 and 0.30, which is on par with the

two previous studies using the ND model (Abdelnour et al., 2014;

Kuceyeski et al., 2016), and similar to other studies of models

predicting FC from SC (Falcon et al., 2016). For comparison, we corre-

lated the SC network with the observed FC and in all TBI and control

subjects, the ND model prediction correlations with observed FC

were higher (see Figure S3). In fact, a paired t test of the sets of corre-

lations revealed that the ND model predictions had significantly

higher correlations with observed FC than a model based only on SC

(t = 42.3, p ≈ 0).

3.3 | Predicting overall recovery from changes in
global network metrics

One subject had an improvement in cognitive function between

1 and 6 months that was more than 1.5 times the interquartile range

above the third quartile and therefore was excluded from the ana-

lyses. The final 26 mTBI patients with data from 1 and 6 months had

demographics (29.4 ± 8.0 years of age, 20 males) that were not sig-

nificantly different from the entire mTBI population or the control

group. There were no significant differences in any of the global SC

and FC network metrics from 1 to 6 months and no significant dif-

ferences at either time point when compared to healthy controls

(p > .05, corrected for all t tests; see Table S1 for details). Correla-

tions between demographics, change in graph network metrics, and

change in overall cognition are listed in Table S2. The variables that

showed trends for a relationship with change in cognition

(uncorrected p < .10) were change in ND model propagation time,

SC characteristic path length, SC global efficiency, SC small

worldness, FC degree, FC characteristic path length, FC modularity,

and FC ratio of between to within-module connection strength.

These variables were then used as inputs to the PLSR models. All

26 PLSR models (over the leave-one-out cross-validation outer loop)

included one component only. The predicted values versus observed

values are provided in Figure 5a (hold-out coefficient of determina-

tion R2 = .27). Because we had one PLSR model for each of the

leave-one-out iterations (which itself is the mean over the 10,000

bootstrapped samples), we report the mean regression coefficient

over all 26 models and list the number of times the CI for the regres-

sion coefficient did not include 0 in Table 1. Violin plots of the

regression coefficients for each input variable over each PLSR model

is given in Figure 5b, where color indicates coefficient sign (red = pos-

itive, blue = negative).

4 | DISCUSSION

We did not detect any significant FC or SC network metric differences

between mTBI and healthy control groups, or any significant changes

from 1 month to 6 months within the mTBI group. However, we

observe that increases from 1 month to 6 months postinjury in ND

model propagation time, a measure of the relationship between FC

and SC, was one of the predictors of improvements in overall

F IGURE 3 Longitudinal improvement in overall cognition. The
violin plots describe the overall cognitive scores (first principal
component analysis [PCA] component) at 1 and 6 months, with lines
indicating individuals (N = 27). Individuals with increases in cognition
from 1 to 6 months are plotted in green, solid lines while decreases in
cognition are plotted in red, dashed lines. *Significant improvement in
overall cognitive scores from 1 to 6 months (p < .05) [Color figure can
be viewed at wileyonlinelibrary.com]
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cognitive function. ND model propagation time can be interpreted as

a measure of the amount of SC that is utilized for the spread of func-

tional activation that is captured via the FC network. The model coef-

ficient was positive, indicating that increases in this value were

associated with more improvement in cognitive functioning. ND

model propagation time is inherently multimodal, capturing longitudi-

nal changes in both SC and FC. In a post hoc analysis, we investigated

the Pearson correlation between the changes in the various global FC

and SC network metrics. Figure S4 shows that longitudinal increases

in ND model propagation time had (uncorrected) correlations with,

among other measures, increased SC characteristic path length

(r = .44, p = .02) and decreased FC characteristic path length (r = −.46,

p = .02), both of which were also related to better recovery. It is

important to note that the individual FC and SC metrics included in

the PLSR model and ND model propagation time have similar contri-

butions to overall cognitive recovery, as suggested by the magnitude

of the PLSR coefficients in Table 1. ND model propagation time is a

model-based, higher order measure of both SC and FC and thus likely

has less precision than the individual FC or SC metrics. The moderate

correlation between FC metrics, SC network metrics, and ND model

propagation time also may dampen the contribution of any metric

over another.

We conjecture that ND model propagation time captures the inter-

play between two biological post-TBI mechanisms, one of longitudinal

segregation of the structural connectome and integration of the func-

tional connectome (see Figure 1). The first, continued degeneration of

white matter, is also evidenced by increased measures of segregation in

the structural connectome in patients with better recovery, that is,

increased characteristic path length and decreased efficiency. This

mechanism of remote degeneration may be more prevalent in the TBI

patients with worse injuries that have more baseline impairment and

thus more room for improvement. While some DTI studies of longitudi-

nal white matter changes post-TBI have shown continued white matter

degeneration (Mayer, Mannell, Ling, Gasparovic, & Yeo, 2011; Niogi &

Mukherjee, 2010; Palacios et al., 2018), others have shown no change

or elevations in summary statistics of white matter microstructural

F IGURE 4 Network diffusion (ND) model prediction Panels (a) (traumatic brain injury [TBI] subjects) and (b) (controls) show the trajectories of
the correlation between the observed functional connectivity and the ND model's predicted functional connectivity over ND model time, with
the individual's maximum correlation (i.e., ND model propagation time) indicated with a red point. Panels (c) (TBI subjects) and (d) (controls)
show the histograms of the final correlations between observed functional connectivity and the ND model's predicted functional connectivity
[Color figure can be viewed at wileyonlinelibrary.com]
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integrity (Eierud et al., 2014). These discrepancies may be due to the

limitations of DTI in that it assumes Gaussian diffusion and the single

modeled tensor used to calculate summary statistics does not accu-

rately represent underlying complex white matter architecture, that is,

crossing and kissing fibers (Jones & Cercignani, 2010). The second

post-TBI recovery mechanism we conjecture is captured by increased

ND model propagation time is one of neuroplasticity, in which

increased integration of the functional connectome, also evidenced by

decreased FC characteristic path length and modularity and increased

ratio of between to within-module mean edge strength, may be a

F IGURE 5 Partial least squares regression (PLSR) model of change in global network metrics predicting recovery. (a) Observed versus
predicted change in overall cognition post-mild traumatic brain injury (TBI; the line of identity, x = y, is in red for reference), in normalized
principal component units. The corresponding coefficient of determination (R2) is reported in the upper left corner. (b) Violin plots indicating the
shape of the distribution of coefficients over the 26 leave-one-out PLSR models predicting overall cognitive recovery post-mild TBI from changes
in various FC and SC global network metrics. Red lines indicate the median while the blue lines indicate the mean. Violin plots are colored red or
blue to indicate direction of relationship with recovery, where red indicates negative coefficients (decreases over time related to better recovery)
while blue indicates positive coefficients (increases over time related to better recovery) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 The mean of the PLSR coefficients over the 26 leave-one-out models predicting change in overall cognitive recovery from 1 to
6 months post-mTBI. The second column lists the number of times the 95% CI (calculated via the bias corrected and accelerated method) for the
PLSR coefficients over the bootstrapped samples did not include 0 (out of 26). Longitudinal changes in both the input and outcome variables
were calculated as follow-up minus baseline, so positive coefficients indicate increases in that variable were related to better recovery while
negative coefficients indicate decreases in that variable were related to better recovery

Mean PLSR coefficient
Number of times the 95% CI did not
include 0 (out of 26)

ΔND model propagation time 0.12 12

ΔSC characteristic path length 0.11 25

ΔSC global efficiency −0.12 26

ΔSC small-world metric −0.12 13

ΔFC degree 0.094 26

ΔFC characteristic path length −0.10 26

ΔFC modularity −0.11 26

ΔFC ratio of between to within-module

connection strength

0.14 26

Abbreviations: ANT, Attention Network Test; CI, confidence interval; CVLT-II, California Verbal Learning Test II; FC, functional connectome; mTBI, mild

traumatic brain injury; ND, network diffusion; PLSR, partial least squares regression; SC, structural connectome.

KUCEYESKI ET AL. 4449

http://wileyonlinelibrary.com


compensatory mechanism in response to the initial injury and/or con-

tinued white matter degeneration.

To our knowledge, this study is one of the first to quantify the lon-

gitudinal relationship between the functional and structural con-

nectomes in the context of global cerebral reorganization after TBI. It

can be appreciated from Figure 3 that the amount of recovery in this

mTBI population is relatively small, although significant. Thus, the

change in cognition has a relatively weak signal-to-noise ratio and

may be quite difficult to predict. The fact that we were able to explain

over 25% of this minor change with our global network measures in a

moderate-sized cohort is an argument for the strength of our findings.

We hypothesize that a longitudinal study of moderate to severe TBI

would reveal similar relationships. In fact, our recent publication

(Kuceyeski et al., 2016) performed cross-sectional analyses in severe

brain injury patients (most of which had TBI etiology) to show that

ND model propagation time was positively correlated with better

measures of recovery of consciousness while other global measures

of FC and SC were not. There, we also simulated injury and postinjury

recovery using healthy connectomes to explore their impact on ND

model propagation time. We simulated injury by removing random

entries in the SC network and reducing the magnitude of FC in those

same entries by a varying percent (25–100%). We simulated recovery

by removing random entries in the SC and leaving the FC of those

region-pairs intact. Using these simulated networks, we showed that

ND model propagation time had decreases in injury and increases in

recovery that were proportional to the amount of injury and recovery

(see Kuceyeski et al., 2016, fig. 6), which provides further support for

our claim that increased ND model propagation time may capture

multimodal postinjury mechanisms of increased structural segregation

and increased functional integration. As compared to this previous

study, our current study is: (a) longitudinal (the previous paper was

cross-sectional), (b) in patients with TBI (the previous paper's cohort

had varying etiology of injury), (c) in patients with mild injury (the pre-

vious paper's cohort had severe injury), and (d) based on cognitive

measures ANT/CVLT-II that are sensitive to much lesser degrees of

brain dysfunction (previously we used the CRS-R measure that

assesses consciousness). Yet, we still observe that ND model propaga-

tion time increases with measures of recovery. This robust finding

lends confidence that our observations in mTBI are not a result of

chance and that ND model propagation time is indeed capturing some

mechanism of global network-level neuroplasticity that is related to

recovery after injury.

4.1 | Comparison to previous work

Studies that have investigated global network metrics in mTBI have

found mixed results (see Caeyenberghs et al., 2017 for a review),

probably due in part to the heterogeneity of the disorder and the

populations studied in addition to the complicated relationship

between FC/SC and impairment and recovery. Many studies have

found no groupwise differences when comparing mTBI and healthy

controls' global network metrics or when comparing longitudinal

changes in the mTBI group (Hillary et al., 2014; van der Horn, Kok,

et al., 2017), which agree with our findings here. While van der Horn,

Kok, et al. (2017) found no differences in SC global network metrics

between TBI and controls, lower global and mean local efficiency

were found in the SC networks of TBI patients without post-traumatic

complaints when compared to those with post-traumatic complaints,

which is the cross-sectional analog of our longitudinal result that

decreased SC global efficiency over time was related to better cogni-

tive recovery. In contrast, other studies have found groupwise differ-

ences between mTBI and healthy controls' global network measures.

For example, Pandit et al. (2013) found reduced overall FC, longer

characteristic path lengths and reduced efficiency in mTBI patients

versus controls, while Nakamura et al. (2009) showed lower small

world indices in the resting-state FC network. Another study showed

that moderate to severe TBI patients had lower global SC network

efficiency than normal controls and that lower global efficiency was

also correlated with worse scores on an executive function task

(Caeyenberghs et al., 2014). The discrepancy between their findings

and our results could be due to the difference in populations, that is,

moderate to severe versus mTBI. Kim et al. (2014) showed no differ-

ences in transitivity and modularity between mTBI and controls, but

showed longer SC characteristic path lengths were moderately corre-

lated with worse performance on executive function and verbal learn-

ing tasks in the mTBI group. However, multiple comparisons

corrections were not performed in this cross-sectional, preliminary

study.

Only a few studies have investigated the interplay between FC

and SC changes in recovery after mTBI. One such study showed TBI

patients with more SC injury had less FC in the default mode network

(Sharp et al., 2011). They also showed that higher resting-state FC in

the posterior cingulate cortex was correlated with more efficient

response speeds. Another analysis of task-based FC and SC networks

in mTBI showed that there were no correlations between FC and SC

network metrics, no differences in the SC network metrics and signifi-

cant increases in FC strength in patients versus controls

(Caeyenberghs et al., 2013). In another study of chronic TBI patients,

Palacios et al. (2013) found increases in FC in frontal areas compared

to controls that was positively associated with better cognitive out-

comes and negatively associated with a measure of SC. They con-

cluded that altered SC between brain regions could be partly

compensated for by increased FC. This result is also supported by

Bonnelle et al. (2012), wherein the authors showed a failure of default

mode network deactivation was associated with impairment after TBI,

and that this abnormal default mode network FC could be predicted

by the amount of SC disruption in salience network regions, specifi-

cally right anterior insula to pre-supplementary motor area and dorsal

anterior cingulate. These cross-sectional studies are compatible with

our current findings of longitudinal increases in ND model propaga-

tion, increases in FC degree, decreases in FC characteristic path

length, increases in SC characteristic path length, and decreases in SC

efficiency in recovery. Also in line with these findings are the moder-

ate associations we observed between measures of SC network seg-

regation and FC network integration over time (Figure S4), for
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example, SC global efficiency and FC degree (r = −.41, p = .04) and SC

characteristic path length and FC global efficiency (r = 0.41, p = .04).

4.2 | Post hoc regional connectivity analysis

In a post hoc analysis, we calculated regional node strength (sum of all

connections per node) for both FC and SC and calculated the differ-

ences in the mTBI patients versus the controls and the change over

time in the mTBI subjects. To improve the signal-to-noise ratio of

node strength and reduce the number of comparisons/model inputs,

we first averaged node strength over the left and right hemispheres

and performed the analyses over 43 ROIs. We calculated node

strength over the original FC, which included positive and negative

values. Tables S3 and S4 and Figure S5 give the t-statistics of the

three groupwise comparisons for functional and structural node

strength. None of the t-statistics had corrected p values that were

significant, likely due to the small sample size and large number of

comparisons. Here, we only discuss trends in the group comparisons.

In general, we see more regions with greater FC node strength and

more regions with weaker SC node strength in the mTBI population

compared to controls. This weaker SC node strength was particularly

evident in the cerebellum; the temporal pole displayed a trend for

stronger SC node strength in mTBI compared to controls. We see

trends for increased SC node strength over time in the mTBI subjects

in the caudal middle frontal and precuneus, while weaker trends exist

for decreased SC node strength in the paracentral gyrus and posterior

cingulate. We see especially large FC node strength in the mTBI

patients compared to controls in the caudal anterior cingulate, while

FC appeared to be lower in mTBI in the inferior temporal region. FC

node strength tended to increase over time in the mTBI population in

the fusiform gyrus and decrease over time in the thalamus, inferior

parietal, caudal middle frontal, and precuneus regions.

F IGURE 6 Partial least squares regression (PLSR) model of change in regional node strength predicting recovery PLSR model results for
change in regional node strength predicting the change in (a) overall cognition (principal component analysis [PCA]), (b) Attention Network Test
(ANT's) mean reaction time, and (c) California Verbal Learning Test II (CVLT-II's) mean over Trials 1–5. Top panels are scatterplots of the observed
versus predicted cognitive function (line of identity, x = y, is in red for reference). Bottom panels are violin plots for the 26 coefficients created in
each of the leave-one-out models. Violin plots are colored red or blue to indicate direction of relationship with recovery, where red indicates
negative coefficients (decreases over time related to better recovery) while blue indicates positive coefficients (increases over time related to
better recovery) [Color figure can be viewed at wileyonlinelibrary.com]
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Finally, to quantify the relationship between change in regional

node strength and recovery, we built PLSR models in the same man-

ner described above to predict: (a) overall recovery, (b) ANT's mean

reaction time (attention), and (c) CVLT-II's mean of Trials 1–5 (working

memory) from change in FC and SC node strength over time. Figure 6

shows the scatterplots of predicted versus observed recovery mea-

sures for the three different outcome measures, with violin plots of

the regression coefficients in the bottom panel. Figure 7 visualizes the

regional regression coefficients for the models of each cognitive

recovery measure, with blue indicating increases in that region's func-

tional or structural node strength were related to better recovery and

red indicating that decreases in node degree were related to better

recovery. The model of overall cognition and ANT's mean reaction

time are almost identical, which is likely due to the PCA component

having such a large coefficient for these cognitive subscore. We see

that increased SC node strength in the superior temporal sulcus and

decreased SC node strength in sensory-motor regions, including

precentral and postcentral gyrus, was related to better overall

cognitive/attention recovery. Increases in many regions' FC node

strength, including the thalamus, hippocampus, inferior temporal, pars

triangularis, supramarginal gyrus, and insula were related to better

overall cognitive/attention recovery, while decreases in FC node

strength in the caudal anterior cingulate were related to better overall

cognitive/attention recovery. The regions whose improved FC are

associated with better cognitive recovery consist of well-known

connectome hubs, including subcortical (thalamus) and archicortical

(hippocampus), as well as key components of the default mode net-

work (supramarginal gyrus and inferior temporal gyrus) and salience

network (insula). Hence, these particular regions are postulated to be

the greatest beneficiaries of increased functional integration in

recovery.

The role of thalamus in attention and recovery post-TBI has

been well-documented (Schiff et al., 2007). The thalamus and the

caudal anterior cingulate are also part of the anterior mesocircuit,

which is hypothesized to play an integral part in attention recovery

after TBI (Fridman, Beattie, Broft, Laureys, & Schiff, 2014; Schiff,

F IGURE 7 Glassbrain visualization of the regional partial least squares regression (PLSR) coefficients. Three PLSR models were constructed to
predict change in (a) overall cognition, (b) Attention Network Test (ANT's) mean reaction time, and (c) California Verbal Learning Test II (CVLT-II's)
mean of Trails 1–5, from change in FC and SC node strength over time in the TBI population (1–6 months). The PLSR coefficient for each region
(node strength was averaged over hemispheres) is represented by a sphere, where the size is proportional to the magnitude of the PLSR
regression coefficient. Blue regions indicate those regions where increases in node strength were related to better recovery, while red indicates
those regions where decreases in node strength were related to worse recovery. Results shown for left cerebral hemisphere only due to the
combination of left/right region pairs in the analysis [Color figure can be viewed at wileyonlinelibrary.com]
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2010). Interestingly, mTBI patients showed a nonsignificant trend

toward greater caudal anterior cingulate FC than controls at

1 month postinjury (see Table S4), and those patients with an inter-

val decrease in FC of that region by 6 months after mTBI experi-

enced better cognitive recovery, especially for visuospatial

attention as measured by the ANT (Figure 6b). This agrees with the

known role of the anterior cingulate in attentional focus and cogni-

tive control, with elevated functional activation early after TBI and

progressively reduced activation associated with improving task

performance (Cazalis et al., 2011; Scheibel, 2017). Increases in SC

node strength in temporal regions (superior temporal sulcus and

middle temporal gyrus) were related to better recovery of verbal

memory, which is in agreement with the known role of the temporal

lobe in memory and language function.

4.3 | Limitations

A limitation of the current work is the relatively small sample size. To

combat the effects of the small sample size, we performed leave-one-

out cross-validation and bootstrapping for model selection and infer-

ence. There are also some limitations in the data processing. We did

not have fieldmaps with which to perform echo planar imaging distor-

tion correction for dMRI. However, the degree of anatomical distor-

tion was low in this data due to relatively strong gradients with a

short TE of 63 ms, as well as the high spatial resolution of 1.8-mm iso-

tropic voxels. Tractography algorithms have issues reconstructing

fibers that are crossing and kissing—here, we use multitensor fitting of

the dMRI to minimize this issue.

The FC networks represent correlations of time series and not

physical connections. Therefore, although they are widely used in

the literature (Wang, Zuo, & He, 2010), interpretation of some of

the network metrics like characteristic path length and efficiency

may not be as straightforward as the same measures in structural

connectivity networks. Interpretation is particularly challenging

when considering negative entries, which is why we remove them in

our current analyses. Finally, previous studies in mTBI have shown

correlations between attention, memory and depression measures,

and connectivity metrics in particular brain regions (Bonnelle et al.,

2011; Hampson, Driesen, Skudlarski, Gore, & Constable, 2006;

Sharp et al., 2011; van der Horn, Liemburg, et al., 2017). We

focused here on global connectomic measures since our sample size

was not large and we wanted to minimize the effect of heterogene-

ity of injury patterns and reduce the number of statistical

tests/input variables. We believe global network metrics would be

more robust to the heterogeneity in patient injury patterns and the

global nature of diffuse axonal injury. Therefore, we only perform a

post hoc analysis of regional abnormality/changes in FC and SC

node strength, and interpret the findings with caution. We believe

that investigating functional reorganization on a regional basis

would be an excellent area of research, and we plan to do this with

larger sets of data.

4.4 | Conclusions and future work

Gaining a clear picture of the mechanism driving cerebral reorganiza-

tion for a particular individual's pattern of brain injury will enable the

development of biomarkers for more accurate prognoses and devel-

opment of personalized treatment plans using a Precision Medicine

framework (Collins & Varmus, 2015). These personalized treatments

could be based on cognitive or physical therapeutic approaches, or

they could be physiological, for example, noninvasive brain stimula-

tion. Noninvasive brain stimulation has been shown to modify the

brain's FC networks to boost recovery from stroke, depression, and

mTBI (Demirtas-Tatlidede, Vahabzadeh-Hagh, Bernabeu, Tormos, &

Pascual-Leone, 2013; Grefkes & Fink, 2011). It is not clear how

neuromodulation techniques influence the brain, but increases in FC

between regions have been shown in high-frequency repetitive trans-

cranial magnetic stimulation (rTMS) (Thut & Pascual-Leone, 2010).

Currently, the choice of targets for brain stimulation is not well

defined; many times, it depends on population-level observations. If

we can fully understand the mechanism of postinjury cerebral organi-

zation in terms of the structural and functional connectome relation-

ship, then we may be able to identify region pairs in a particular

individual that, if functionally connected, would have the largest influ-

ence on improvements in attention and memory. We would be able to

explicitly identify the structural pathways that could be used to estab-

lish this functional connection. Such regions and pathways would then

be optimal targets for rTMS. This method for personalized target

selection could be applied in a variety of neurological disorders,

improving recovery, and quality of life for patients with a range of

neurological diseases.
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