
R E S E A R CH A R T I C L E

A comparison of denoising pipelines in high temporal
resolution task-based functional magnetic resonance
imaging data

Andrew R. Mayer1,2,3 | Josef M. Ling1 | Andrew B. Dodd1 | Nicholas A. Shaff1 |

Christopher J. Wertz1 | Faith M. Hanlon1

1The Mind Research Network/Lovelace

Biomedical and Environmental Research

Institute, Albuquerque, New Mexico

2Departments of Neurology and Psychiatry,

University of New Mexico School of Medicine,

Albuquerque, New Mexico

3Department of Psychology, University of

New Mexico, Albuquerque, New Mexico

Correspondence

Andrew Mayer, The Mind Research Network,

Pete & Nancy Domenici Hall, 1101 Yale Blvd.

NE, Albuquerque, NM 87106.

Email: amayer@mrn.org

Funding information

National Institutes of Health, Grant/Award

Numbers: 1R01NS098494-01A1,

1R01MH101512-01A1

Abstract

It has been known for decades that head motion/other artifacts affect the blood

oxygen level-dependent signal. Recent recommendations predominantly focus on

denoising resting state data, which may not apply to task data due to the different

statistical relationships that exist between signal and noise sources. Several blind-

source denoising strategies (FIX and AROMA) and more standard motion parame-

ter (MP) regression (0, 12, or 24 parameters) analyses were therefore compared

across four sets of event-related functional magnetic resonance imaging (erfMRI)

and block-design (bdfMRI) datasets collected with multiband 32- (repetition time

[TR] = 460 ms) or older 12-channel (TR = 2,000 ms) head coils. The amount of

motion varied across coil designs and task types. Quality control plots indicated

small to moderate relationships between head motion estimates and percent signal

change in both signal and noise regions. Blind-source denoising strategies elimi-

nated signal as well as noise relative to MP24 regression; however, the undesired

effects on signal depended both on algorithm (FIX > AROMA) and design

(bdfMRI > erfMRI). Moreover, in contrast to previous results, there were minimal

differences between MP12/24 and MP0 pipelines in both erfMRI and bdfMRI

designs. MP12/24 pipelines were detrimental for a task with both longer block

length (30 ± 5 s) and higher correlations between head MPs and design matrix. In

summary, current results suggest that there does not appear to be a single den-

oising approach that is appropriate for all fMRI designs. However, even

nonaggressive blind-source denoising approaches appear to remove signal as well

as noise from task-related data at individual subject and group levels.
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1 | INTRODUCTION

Although the exact mechanisms of the blood oxygen level-dependent

(BOLD) signal remain actively debated (Petzold & Murthy, 2011;

Attwell et al., 2010), most functional magnetic resonance imaging

(fMRI) studies attribute BOLD changes to glutamate-mediated signal-

ing in neurons/astrocytes and associated hemodynamic response.

However, it has been known for decades (Friston, Williams, Howard,

Received: 22 August 2018 Revised: 15 March 2019 Accepted: 6 May 2019

DOI: 10.1002/hbm.24635

Hum Brain Mapp. 2019;40:3843–3859. wileyonlinelibrary.com/journal/hbm © 2019 Wiley Periodicals, Inc. 3843

https://orcid.org/0000-0003-2396-5609
mailto:amayer@mrn.org
http://wileyonlinelibrary.com/journal/hbm


Frackowiak, & Turner, 1996) that fluctuations in the BOLD signal are

also related to head motion, physiological noise, and other scanner

artifacts (Power, Schlaggar, & Petersen, 2015; reviewed in Caballero-

Gaudes & Reynolds, 2017). Head motion is perhaps the largest single

problem, reducing intersubject and intrasubject reliability (Lund,

Norgaard, Rostrup, Rowe, & Paulson, 2005; Van Dijk, Sabuncu, &

Buckner, 2012) and increasing signal variance (Bullmore et al., 1996;

Friston et al., 1996; Power et al., 2014). Excessive head motion is

especially prevalent in young, very old and neuropsychiatric samples

(Fair et al., 2007; Greicius, 2008; Power et al., 2015), and exhibits a

complex interaction with individual variability in functional organiza-

tion that may partially be biologically based (i.e., trait) rather than arti-

factual (Siegel et al., 2016; Zeng et al., 2014).

Although prospective motion correction techniques, externally

monitored techniques with and without real-time feedback, and multi-

echo acquisition schemes have all been developed (Gonzalez-Castillo

et al., 2016; Maclaren, Herbst, Speck, & Zaitsev, 2013), retrospective

correction algorithms remain the most prevalent techniques for miti-

gating the impact of motion artifacts on signal. Retrospective motion

correction techniques typically occur in two distinct steps: motion

detection and the subsequent correction of this motion using a rigid

body transformation based on various cost functions (reviewed in

detail in Johnstone et al., 2006; Oakes et al., 2005; Mayer, Franco,

Ling, & Canive, 2007). The motion parameters (MPs) themselves are

typically referred to as capturing “absolute” displacement from a refer-

ence image, whereas the N − (N − 1) derivative of each MP has been

operationally defined as framewise displacement (FD; Power et al.,

2014) or relative motion (Mayer et al., 2007). The six original MPs,

their respective derivatives and squares (24 total) are frequently used

as nuisance-based regressors (i.e., denoising) to account for additional

motion-related variance from the time series (Power et al., 2014;

Satterthwaite et al., 2013). However, motion affects fMRI measure-

ments in a complex fashion for several seconds after the actual physi-

cal displacement occurs (Friston et al., 1996; Power et al., 2014).

Therefore, other techniques for removing motion-related variance,

including “scrubbing” (i.e., the direct censoring or removing of individ-

ual images with high motion), scrubbing plus interpolation, and scrub-

bing plus band-pass filtering and/or spike regression, have also been

suggested (Power et al., 2015; Caballero-Gaudes & Reynolds, 2017).

More sophisticated blind-source separation techniques have also

been applied to solely remove head motion artifacts (Pruim et al.,

2015) or motion plus other physiological, hardware, or thermal noise

sources from fMRI data, including multiband artifact (Burgess et al.,

2016; Dong, Huang, Yang, Weng, & Wang, 2009; Griffanti et al.,

2014; Salimi-Khorshidi et al., 2014; Tohka et al., 2008). Most blind-

source approaches have utilized independent component analysis

(ICA), which has been applied to both resting state and task-related

fMRI data (Calhoun, Adali, Pearlson, & Pekar, 2001; Smith et al.,

2009). During ICA, a predetermined number of components are gen-

erated and subsequently labeled (manual or through classification) as

belonging to an “artifact” or “signal” class. Artifact components are

then regressed against the original time series to partial out associated

variance. ICA procedures have been observed to denoise data at a

level that is superior to nuisance-based regression approaches

(Kochiyama et al., 2005; Pruim et al., 2015), with inclusion of global

signal estimates producing the best result in connectome-style acqui-

sitions (Burgess et al., 2016). These improved denoising results could

be secondary to the fact that ICA approaches can regress out addi-

tional artifacts in the data other than those that are specific to head

motion (Iacovella & Hasson, 2011). ICA-based denoising techniques

also reduce false positive classification relative to motion scrubbing

(Middlebrooks et al., 2017) and improve group level statistical power

potentially through denoising (Pruim et al., 2015) or by increasing cor-

relation with the design matrix (Dong et al., 2009).

Importantly, the majority of recent studies have focused on the

effects of denoising on resting state (rsfMRI) scans (Power et al.,

2015) with a single recent publication on task data (Glasser et al.,

2018). Importantly, the optimal strategy for reducing motion-related

variance and other artifacts may be dependent on task design

(Johnstone et al., 2006), with different strategies potentially more

appropriate for rsfMRI, block-design (bdfMRI) and event-related

(erfMRI) tasks (Caballero-Gaudes & Reynolds, 2017). Critically, the

relationships between intrinsic neural activation (i.e., measured during

rsfMRI) and head motion/physiological artifacts are much more diffi-

cult to quantify given the lack of an explicit model (i.e., design matrix)

differentiating “signal” from noise (Power et al., 2014; Saad et al.,

2012), and the potential relationship that exists between the two

(i.e., respiratory-related bulk head movement; Iacovella & Hasson,

2011). Head motion can either be correlated (i.e., time-locked with

stimuli), anticorrelated (i.e., time-locked with “baseline” states) or inde-

pendent of the primary regressors of interest in task-based fMRI

(Mayer et al., 2007), a relationship that may vary with stimulus dura-

tion. Moreover, the average (i.e., global) gray matter (GM) signal is also

frequently correlated with the design matrix in task-based fMRI (espe-

cially bdfMRI), which further complicates recent discussions regarding

the removal of global signal in rsfMRI (Burgess et al., 2016; Power,

Plitt, Laumann, & Martin, 2017). Thus, in contrast to previously dis-

cussed positive results (Glasser et al., 2018; Griffanti et al., 2014;

Pruim et al., 2015), it is not surprising that several other studies have

reported marginal or significant signal loss from various denoising

approaches across a variety of different fMRI designs (Bright & Mur-

phy, 2015; Pujol et al., 2014; Tohka et al., 2008).

The current experiment therefore examined the effects of MP

nuisance-based regression analyses (0, 12, or 24 parameters), motion

only ICA denoising (Pruim et al., 2015) and more global ICA denoising

approaches (Griffanti et al., 2014) on multiband, high temporal resolu-

tion (TR = 460 ms) erfMRI and bdfMRI data. Similar to previous stud-

ies (Dong et al., 2009; Johnstone et al., 2006), our primary variable of

interest was a direct statistical comparison of percent signal change

(PSC) values in brain regions with known signal (i.e., task-related acti-

vations) and regions that typically exhibit artifacts (i.e., ventricles,

white matter [WM], and edges) at the group level. This metric was pri-

marily selected due to the simplicity in terms of interpreting signifi-

cance of results compared to the complexity associated with

interpreting other motion-based metrics (Power et al., 2015). Based

on previous studies (Kochiyama et al., 2005; Pruim et al., 2015), we
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predicted that ICA denoising techniques would outperform MP only

nuisance-based regression, resulting in higher statistical values in sig-

nal areas and variation in noise regions in task-based fMRI data. We

also predicted that erfMRI data would benefit more from denoising

than bdfMRI (Johnstone et al., 2006). Secondary analyses examined

the effect of denoising on single-subject contrasts. Finally, given the

time-consuming nature of manual classification, we also determined

the generalizability of classifiers derived from one design type to

other fMRI tasks (e.g., bdfMRI, erfMRI, and rsfMRI).

2 | METHODS

2.1 | Participants

The primary dataset consisted of 46 healthy participants (28 males; mean

age = 31.8 ± 7.4 years; mean education = 15.2 ± 1.9 years) collected dur-

ing an erfMRI (AX Continuous Performance Test [AX-CPT]) and rsfMRI

paradigm on a 32-channel coil with multiband capabilities (Ryman et al.,

2019). Forty-four of these subjects also completed a relatively short dura-

tion bdfMRI (multimodal attention task [MMAT]). Secondary replication

and extension analyses were conducted on data from (a) an additional

unique sample of 64 healthy participants (35 males; mean age = 29.33

± 8.23 years) who completed the MMAT task using a 12-channel coil

(Mayer, Ryman, Hanlon, Dodd, & Ling, 2016) and (b) 30 adolescents

(21 males; mean age = 14.23 ± 1.76 years) on the same 32-channel coil

using a bdfMRI task with longer block duration (CO2 challenge). All partic-

ipants provided informed consent according to institutional guidelines at

the University of NewMexico School of Medicine.

2.2 | Task descriptions

An intermodal version of the AX-CPT was used as our erfMRI design

(Ryman et al., 2019). Briefly, participants were exposed to a continu-

ous stream of letters that were presented in either the visual (i.e., the

cues) or auditory (i.e., the probes) modality. Participants responded

with their right index finger if the target sequence was completed

(i.e., “yes” response) and with their right middle finger for all other cases

(i.e., “no” response). Letter sequences were presented in a pseudorandom

order, such that within each run target trials (AX) occurred with 70% fre-

quency and each of the nontarget trials (AY, BX, and BY) occurred with

10% frequencies. A variable delay was used between the cue offset and

probe onset (interstimulus interval: 2,760–3,680 ms), as well as between

the probe offset and subsequent cue onset (intertrial interval:

3,790–4,980 ms) to decrease temporal expectations and allow better

modeling of the hemodynamic response function (HRF). The design

matrix was well-conditioned with minimal evidence of collinearity.

Primary bdfMRI analyses were based on a previously published task

with shorter block lengths (Mayer et al., 2016). All multisensory stimuli

(cues and targets) were presented foveally and binaurally via a rear pro-

jection screen and headphones (head-centered). Each block began with a

multisensory (audiovisual) cue indicating the sensory modality for

focused attention (“HEAR” = attend-auditory; “LOOK” = attend-visual;

300 ms duration). After 1,000 ms, cues were followed by a string of

congruent or incongruent multisensory numeric stimuli (target

words = “ONE,” “TWO,” or “THREE”; 300 ms duration) at either low

(0.33 Hz; three trials per block) or high (0.83 Hz; six trials per block) rates of

stimulus frequency over a 6,300 ms duration (entire block

length = 7,600 ms). Participants were asked to maintain constant head

and eye positioning (visual fixation on a centrally presented cross) and to

respond with a right-handed button press. The interblock interval varied

between 3,900 and 5,740 ms. The design matrix was well-conditioned

with minimal evidence of collinearity.

These specific erfMRI and bdfMRI tasks, and associated contrasts,

were selected primarily because of their wide use and evidence of

replicability in the cognitive neuroscience literature, the robustness of

activation with chosen contrasts, and the availability of selected task

data across multiple coil and TR configurations.

2.3 | Imaging acquisition and analyses

High-resolution 5-echomultiechomagnetization prepared rapid acquisition

gradient echo (MPRAGE) T1-weighted data (TR = 2,530 ms; echo times

[TE] = 1.64, 3.5, 5.36, 7.22, and 9.08 ms; inversion time = 1,200 ms; flip

angle = 7�; number of excitations [NEX] = 1; slice thickness = 1 mm; field

ofview [FOV]=256 mm;matrix size=256 × 256; isotropic voxels =1mm3)

were collected for structural images on a 3T Siemens Trio Tim scanner for

all tasks. Echo-planar imaging (EPI) for the AX-CPT, MMAT, rsfMRI, and

CO2 challenge data were collected using a single-shot, gradient-echo echo-

planar pulse sequence (TR = 460 ms; TE = 29 ms; flip angle = 44�;

multiband acceleration factor = 8; NEX = 1; slice thickness = 3 mm;

FOV = 248 mm; matrix size = 82 × 82; resolution = 3.02 × 3.02 ×

3.00 mm3 voxels). Fifty-six interleaved transversal slices were selected to

provide whole-brain coverage. The first three images of each run were

eliminated to account for T1 equilibrium effects. A single-band reference

image (SBREF) was also acquired to facilitate registration with the T1

image. Two EPI spin-echo distortion mapping prescan sequences

(TR = 7,220 ms; TE = 73 ms; flip angle = 90�; refocus flip angle = 180�; slice

thickness = 3 mm; FOV = 248 mm; matrix size = 82 × 82; 56 interleaved

slices; 3.02 × 3.02 × 3.00 mm3 voxels) with reversed phase encoding

directions (anterior! posterior; posterior! anterior) were also collected

to correct for susceptibility-related artifacts.

For the 12-channel data, a high-resolution 5-echo multiecho

MPRAGE T1 sequence (TR = 2.53 s, 7� flip angle, NEX = 1, slice thick-

ness = 1 mm, FOV = 256 mm, resolution = 256 × 256) was collected.

EPIs were collected using a single-shot, gradient-echo echo-planar

pulse sequence (TR = 2,000 ms; TE = 29 ms; flip angle = 75�;

FOV = 240 mm; matrix size = 64 × 64). Foam padding and paper tape

were used with all participants across 12- and 32-channel coils to pro-

phylactically reduce the likelihood of head motion.

Preprocessing steps for functional data were conducted individually

for each run (Figure 1). Anomalous time series data were first identified

and replaced based on values from the previous and subsequent image

using Analysis of Functional NeuroImages's (AFNI) despiking protocol

(Cox, 1996). All timeseries data were then temporally interpolated to the

first slice to account for differences in slice acquisition. Data were then

spatially registered in two- (2dImReg) and three-dimensional (3dvolreg)
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space using AFNI software programs to the SBREF image to reduce the

effects of head motion. The initial six motion regressors (three rotational

and three translational) were directly estimated from the rigid registra-

tion of each image to SBREF followed by computation of derivatives and

squares. Susceptibility-induced field distortion was subsequently esti-

mated and corrected using FMRIB Software Library (FSL) Topup

(Andersson, Skare, & Ashburner, 2003; Smith et al., 2004). The next set

of preprocessing steps varied based on the different denoising protocols

described in detail below (Figure 1).

After each individual denoising pipeline, each run of task data was

then concatenated, converted to standard stereotaxic coordinate

space (Talairach & Tournoux, 1988) using a nonlinear algorithm (AFNI

3dQwarp; template = TT_N27) and spatially blurred using a 6-mm

Gaussian full-width at half-maximum filter.

2.4 | FIX denoising

Individual runs of preprocessed AX-CPT and MMAT data were pre-

pared for FSL FIX according to the FSL documentation (Griffanti et al.,

2014; Salimi-Khorshidi et al., 2014) to prevent signal intensity shifts

between runs affecting the time series. Data were high-pass filtered

(cutoff period: 100.0 s) prior to running MELODIC. Following

MELODIC, the resulting components (ICAall) from 20 individuals (i.e., a

single run from the AX-CPT task) were manually classified as noise

(ICAnoi) or signal (ICAsig) by two independent raters based on previ-

ously described criteria (Salimi-Khorshidi et al., 2014). Any discrepan-

cies between the two raters were resolved by a third party, with the

final results subsequently used to train the classifier.

A secondary aim of the study was to determine whether classifica-

tion accuracy depended on experimental design (erfMRI vs. bdfMRI

vs. rsfMRI) or whether classifiers generalized across designs. A

completely independent set of 20 AX-CPT, 21 MMAT, and 20 resting

state runs were therefore manually classified using the same method-

ology as a “gold standard” from which to determine classification

accuracy for each task. The classification probability output of FIX

requires a threshold to provide a binary classification into noise or sig-

nal. To determine an appropriate threshold, our training set was evalu-

ated with the FIX leave-one-out accuracy testing which charts the

true positive rate (TPR) and true negative rate (TNR) at several thresh-

olds. A threshold of 20% for classifying noise components was

selected as the best balance of TPR and TNR using previously

described methodology (Griffanti et al., 2014).

Following classification, motion regressors in the FIX pipeline were

high-pass filtered to match the imaging data. MPs were then mean-

centered and variance normalized. Next, each run of the task data was

denoisedwith the FIX “soft-clean”method, a three-step method to remove

the variance unique to the noise components while attempting to avoid

the removal of variance that may be shared with signal components

(Griffanti et al., 2014). The first step of the soft-clean method regresses out

24 different MPs corresponding to the six rigid body adjustments, their

derivatives, and their squares (Cmot) from the task data (Yall). Importantly,

the constant term (β0) is eliminated from the model to maintain scale

(Yres = Yall − Cmot). Similarly, MPs were also regressed against each individ-

ual component, again excluding β0 from the model (ICAres = ICAall − Cmot).

To estimate the contribution of all components, the residualized task data

was modeled against the residualized component time series to acquire

beta weights (Yres = β0 + βICAres). Finally, the sums of the weighted noise

components were subtracted from the residualized task data to remove

the unique contribution of the artifact components and derive the final

denoised data (Yclean = Yres −
P

βICAnoi).

2.5 | AROMA denoising

To make ICA denoising pipelines comparable, preprocessed AX-CPT and

MMAT individual run data were denoised with the procedure rec-

ommended in the AROMA manual (nonaggressive option) using the

MELODIC data from the first step of the FIX processing. This therefore

included high-pass filtering of the data. The AROMA denoising proce-

dure automates the selection of motion-related artifacts by assessing

four features of each component: high-frequency content, correlation to

the MPs, edge fraction, and cerebrospinal fluid (CSF) fraction (Pruim

et al., 2015). A component exceeding either a CSF fraction >10%, a high-

frequency content >35%, or a combined maximumMP correlation/edge

F IGURE 1 The individual steps within the preprocessing,
denoising, and subject-level (Level 1) analyses for the FIX, AROMA,
and motion parameter (MP; 0, 12, or 24 parameters) pipelines utilized
in the current study. Based on current published recommendations,
each run for the FIX and AROMA pipelines was individually denoised
(denoted by dashed box in figure)
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fraction threshold was subsequently classified as a noise artifact by the

AROMA algorithm. Noise component time series were subsequently fil-

tered from the data using FSL fsl_regfilt based on the following algorithm

(Ydenoised = Y − Xnβn).

2.6 | Regression-based denoising approaches

Our MP pipelines directly regressed motion from task data using a general

linear model (ordinary least squares). Specifically, either 0 MPs (baseline

model: MP0), 6 MPs and their derivatives (MP12), or 6 MPs, their deriva-

tives and their squares (MP24) were included as nuisance regressors in a

general linear model at the subject level for each of the various tasks.

2.7 | Task comparisons and primary outcome
variables

Following each denoising pipeline, a voxel-wise deconvolution analy-

sis (AFNI's 3dDeconvolve) generated a single HRF for each trial type

relative to the baseline state. Error trials were modeled separately to

eliminate error variance (Mayer et al., 2012). For our erfMRI AX-CPT

task, the HRF was modeled for the first 13.8 s following onset of cues

or probes. MMAT HRFs were based on the first 22.08 s following

block onset. Based on our previous publications (Mayer et al., 2016;

Ryman et al., 2019), PSC was calculated by summing all beta coeffi-

cients between 3.68 and 5.06 s (AX-CPT) or 4.14 and 8.28 s (MMAT)

post-onset, corresponding to the peak period of the HRF, then divid-

ing by the average of the constant term across the individual runs.

The primary outcome variable was a t-statistic resulting from

pairwise PSC comparisons at the group level. This metric informs as to

whether differences in the denoising pipelines were statistically mean-

ingful and robust enough to be detected using standard thresholding

criteria. Secondary analyses examined whether denoising pipelines dif-

ferenceswere driven by changes in themean or variance of PSC. The lat-

ter were further quantified with Pitman–Morgan tests, which specifically

test for differences in paired samples based on the bivariate normal dis-

tribution. Importantly, denoising algorithms may have different effects in

noise regions such as the ventricles or edge of the brain (reducing ampli-

tude and/or variance) versus task-related activations (ideally reducing

only variance). All voxel-wise resultswere corrected formultiple compar-

isons at p < .05 based on 10,000 Monte Carlo Simulations (parametric

value <0.001 and cluster threshold = 1,664 μL) using the spherical auto-

correlation correction in AFNI (Cox, Chen, Glen, Reynolds, & Taylor,

2017). More liberal thresholding (i.e., voxels below family-wise error

(FWE)-corrected threshold values) are presented in figures solely to pro-

vide amore nuanced depiction of potential pipeline differences.

Quality control PSC plots (QC PSC) plotted mean FD and absolute

displacement relative to PSC values in both signal and noise regions of

interest (ROIs; Power et al., 2015). GM, WM, and CSF tissue masks were

generated using SPM (v12) and the TT_N27 template (i.e., our registra-

tion target) from AFNI (see Supplemental Methods). The primary sensori-

motor cortex (SMC) and supplementary motor area (SMA) were

empirically defined as signal regions based all tasks/trials commonly

involving a button press. The ventrolateral prefrontal cortex (VLPFC) was

defined using a 12-mm sphere (Talairach coordinates: 49, 28, and 10)

and has been shown to be active across all selected contrasts (Dolcos,

Wang, & Mather, 2014; Mayer et al., 2016; Mayer, Franco, Canive, &

Harrington, 2009; Ryman et al., 2019). Thus, any potential effects on sig-

nal should be greatest within motor regions with differential motor

requirements (MMAT task; frequency contrast) whereas the VLPFC

should be more sensitive for cognitive contrasts (AX-CPT: AY vs. AX tri-

als; MMAT: incongruent vs. congruent trials) and frequency effects.

Secondary analyses examined the impact of various denoising pipelines

on t-statistics at the individual subject-level and how this relationship was

moderated by head motion. For subject-level t-statistics, the numerator

represents a comparison of the magnitude of beta coefficients associated

with different conditions of interest (i.e., incongruent vs. congruent trials;

high vs. low frequency trials) whereas the denominator of the t-statistic

represents trial-by-trial variability. Subject-level t-statistics were averaged

across the same three signal (SMC, SMA, and VLPFC) and noise (edge,

CSF, and WM) ROI used in group-level comparisons, and plotted against

each other based on the different denoising pipelines.

3 | RESULTS

3.1 | Classification accuracy as a function of design

Our first objective was to determine whether results from a classifier

trained on one design type (here erfMRI) generalized to other experimen-

tal designs (bdfMRI and rsfMRI) using identical acquisition parameters.

Results (Table 1) from the classifier on the erfMRI AX-CPT data indicated

a mean TPR of 99.2% and a mean TNR of 97.5% at the selected threshold

of 20% across our manually classified testing runs. Results from the classi-

fication of the bdfMRI MMAT task were similar with a mean TPR of

99.5% and a mean TNR of 96.9%. Classification accuracy was also high

for rsfMRI data (TPR = 99.3%; TNR = 95.3%). An average of 77.43% of all

components (range 62.32–94.87%) from the FIX pipeline were classified

as noise across both runs and subjects for the erfMRI, 78.23% (range

63.51–95.28%) for the bdfMRI task and 79.34% (range 65.22–92.47%)

for the rsfMRI task (see Supplemental Materials for actual component

numbers). In summary, current results suggest that artifacts and signal

components are relatively consistent across rsfMRI, erfMRI, and bdfMRI

designs when the same scanning parameters are applied. Thus, it may

only be necessary to train a classifier once for a single acquisition

sequence and generalize this classifier to other design types.

3.2 | Denoising effects in erfMRI design

No clusters survived FWE correction during paired comparisons of

MP24 versus MP0 (Figure 2a) or MP24 versus MP12 (Supplemental

Figure S2A) during the AX-CPT task. Uncorrected data (i.e., all voxels

p < .05) are displayed in figures to provide a more nuanced view of pipe-

line differences. Quantitative comparisons indicated a reduced variance

mostly in edge areas for MP24 versus MP0 suggestive of improvement

in denoising in noise regions with additional MPs. Not surprisingly, the

PSC density functions (Figure 2a) from the MP24 and MP0 pipelines

were predominantly overlapping in both signal and noise ROI.
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To maximize consistency across comparisons, data from the

MP24 pipeline results were next compared to FIX and AROMA pipe-

line results for the AX-CPT task. Results indicated that PSC values

were significantly higher following FWE corrections within the bilat-

eral dorsolateral prefrontal cortex (BA 9), anterior insula/VLPFC (BAs

13/47), auditory cortex (BAs 21/22), and the thalamus for MP24 rela-

tive to FIX pipeline (Figure 2b). Importantly, several of these regions

are commonly activated during reactive cognitive control tasks

(Braver, 2012) or corresponded to the sensory modality of the audi-

tory target (i.e., signal regions). A cluster of significantly lower PSC for

MP24 relative to FIX was present in the right parahippocampal gyrus

(BA 19). Similarly, the MP24 pipeline resulted in significantly higher

PSC in the right auditory cortex (BAs 21/22) and thalamus when com-

pared to AROMA (Figure 2c), with evidence of increased signal

(i.e., subthreshold) also present in the bilateral anterior insula/VLPFC

and left auditory cortex. Quantitative assessment indicated that PSC

variance was increased for MP24 relative to AROMA pipeline primar-

ily around volume edges, with FIX showing similar but more global

reductions in variance relative to the MP24 pipeline across the entire

brain. Both FIX and AROMA denoising resulted in a more peaked PSC

density distribution within signal areas whereas variable effects were

observed in noise ROI (Figure 2b,c). Signal loss is most evident within

the VLPFC, where a clear leftward shift is observed in the distribution

function comparing AY relative to AX trials.

In summary, in contrast to previous results (Johnstone et al.,

2006), current results indicated statistically similar performance

regardless of whether 0, 12, or 24 MPs were utilized to remove arti-

fact during an erfMRI task. Moreover, utilization of various ICA

approaches (FIX and AROMA) resulted in small (mean) but statistically

significant decreases in PSC (t-statistics) in task activated regions as

well as significant reductions in the variance for both task-activated

and noise (greater reduction) regions.

3.3 | Denoising effects in bdfMRI design

Similar to erfMRI, no clusters survived FWE correction during voxel-

wise paired comparisons of MP24 versus MP0 or MP24 versus MP12

for either the cognitive (congruent vs. incongruent; Figure 3a and

Supplemental Figure S2B) or frequency (high frequency vs. low fre-

quency; Figure 4a and Supplemental Figure S2C) contrasts. PSC den-

sity functions were also mostly overlapping across the three different

MP pipelines. Quantitatively, the variance was again consistently

lower in the volume edge area for the MP24 relative to MP0 pipeline

for the frequency contrast. However, the cognitive task, results were

more mixed with both increased and decreased variance for the

MP24 relative to MP0 pipeline. As a result, FIX and AROMA pipelines

were again compared only to MP24 pipeline.

MP24 PSC values were consistently higher relative to FIX fol-

lowing FWE corrections within the cognitive control network during

congruent versus incongruent contrasts (Figure 3b) and within sen-

sory and motor areas when examining effects associated with stim-

ulus frequency (Figure 4b). Specifically, a single cluster of

significantly higher PSC was present in the red nucleus for the cog-

nitive control contrast for MP24 relative to FIX (Figure 3b, present

in X = −4). Statistically significant increased PSC was observed in

the medial frontal gyri (BA 6), anterior cingulate gyrus (BAs 24/32),

bilateral primary motor cortex (BAs 3/6), auditory cortex (BAs

22/41), visual cortex (BAs 17–19), bilateral putamen and thalamus,

and Lobule VI of the cerebellum for the MP24 relative to FIX

pipelines.

There were no statistically significant differences between the

AROMA and MP24 pipelines during the cognitive control contrast

(Figure 3c). However, the MP24 pipeline was associated with signifi-

cantly higher PSC relative to the AROMA pipeline (Figure 4c) within

the bilateral auditory cortex (BAs 22/41), left primary motor cortex

(BAs 3/40), and putamen and lentiform nucleus for high relative to

low frequency stimuli. A quantitative assessment of images and their

underlying distributions showed widespread, increased variance of

the MP24 PSC relative to both FIX and AROMA. Reduction in the

mean amplitude of PSC was also more evident for the stimulus fre-

quency relative to cognitive control contrasts for both FIX and

AROMA pipelines, and corresponded to regions where significant sta-

tistical differences relative to the MP24 pipeline were detected.

Finally, the VLPFC PSC density functions were shifted left for cogni-

tive contrasts whereas the SMC and SMA were shifted left for stimu-

lus frequency contrasts for the FIX (larger shift present in most ROI)

TABLE 1 Single run FIX classification
accuracies across a range of thresholds.
Values are presented as mean across
tested datasets. Accuracies are given as
mean of signal (TPR) and noise (TNR)
components correctly classified when
compared to manual classification

Threshold 1 2 5 10 20 30 40 50

AX-CPT (remainder of runs)

TPR 100.0 100.0 100.0 100.0 99.2 98.7 97.5 95.3

TNR 93.9 94.7 95.7 96.6 97.5 98.0 98.5 98.8

MMAT

TPR 100.0 100.0 100.0 100.0 99.5 98.7 97.4 97.4

TNR 93.3 93.7 94.7 95.8 96.9 97.9 98.6 98.8

Resting state

TPR 100.0 100.0 100.0 100.0 99.3 99.0 99.0 98.3

TNR 90.0 91.2 92.8 94.1 95.3 96.5 97.0 97.3

Note. The AX-CPT task results were validated on a different set of participants than those used to train classifier.

Abbreviations: AX-CPT, AX Continuous Performance Test; MMAT, multimodal attention task; TNR, true negative rate; TPR, true positive rate.
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and AROMA (smaller shift only present in certain ROI) pipelines

(Figures 3b,c and 4b,c).

3.4 | QC PSC results

The QC PSC plots comparing mean FD with PSC data indicated a min-

imal relationship between motion and noise ROI (r = .02) in the mini-

mally denoised (MP0) pipeline for the AX-CPT data (Figure 5a). A

positive but relatively weak relationship (small effect size) was also

observed between mean FD and PSC in signal ROI (r = .12) for MP0,

which was subsequently reduced or completely eliminated following

the various denoising pipelines (MP12, MP24, FIX, and AROMA). In

general, the QC PSC plots indicated that stronger relationships may

exist between FD and noise ROI in the minimally denoised (MP0)

pipeline for both the cognitive (I − C; r = −.17) and stimulus frequency

(H − L; r = .18) contrasts for the bdfMRI data. Somewhat surprisingly,

this relationship was variably affected by the denoising pipelines, with

a reduction in the correlation for the H − L contrast whereas AROMA

and FIX increased the correlation for the I − C contrast. The strength

of the relationship between motion and signal ROI varied as a func-

tion of contrast in the MP0 pipeline (I − C: r = −.22; H − L: r = .09)

and followed the same pattern in terms of an increased (FIX and

AROMA for I − C) or reduced (all pipelines for H − L) correlation fol-

lowing denoising. These results were largely the same when absolute

displacement was compared with PSC data (Supplementary Figure 3).

In summary, current results showed minimal differences at the group

level for the inclusion of either 12 or 24 MPs in a regression model rela-

tive to no regressors. Similar to erfMRI findings, the use of two denoising

algorithms (FIX and AROMA) eliminated signal as well as noise during

our bdfMRI task, with the amount of signal loss being largest during the

FIX pipeline. QC PSC plots indicated complex relationships between

head motion and PSC values in both noise and signal regions, which

were variably affected by the different denoising algorithms.

3.4.1 | Potential confounding effects from
estimation of constant coefficient

Our principle analyses compared various denoising algorithms using

PSC as the dependent variable as is typically performed in the majority

of task-related analyses reported in the literature. However, the calcu-

lation of PSC depends not only on the magnitude of the beta coeffi-

cients corresponding to task regressors (PSC numerator), but also on

the magnitude of the constant coefficient (PSC denominator). To

ensure that the various denoising algorithms were not differentially

affecting baseline calculations, analyses were repeated across erfMRI

and bdfMRI designs utilizing the baseline coefficient as the dependent

variable rather than PSC. Results (Supplemental Figure S4) indicated

significant differences (i.e., surviving FWE correction) in the baseline

coefficient duringMP24 versus FIX andMP24 versus AROMA compar-

isons around the edge of the brain for both erfMRI and bdfMRI designs.

In contrast, there were no significant clusters that survived following

false positive correction in the MP24 versus MP0 comparisons. The

edge regions are prone to partial voluming effects, and are known to be

particularly affected by head motion (Power, Barnes, Snyder,

Schlaggar, & Petersen, 2012). Importantly, these same regions also

exhibited higher PSC standard deviation (SD) for the MP24 pipeline

(see Figures 2–4), further highlighting the potential benefits that ICA-

based denoising algorithms have in these regions. However, there were

no significant differences in baseline coefficients within signal regions,

minimizing the likelihood that a differential estimate of baseline coeffi-

cients explains our findings of signal loss at the group level.

3.4.2 | Effects of denoising pipelines on single-
subject statistical values

Previous results focused on the effects of denoising pipelines on

group level statistics. However, the methods and the metrics for mea-

suring the efficacy of denoising strategies are actively debated and

may vary across individuals due to their relative degree of motion

(Ciric et al., 2017; Power et al., 2015). We therefore examined how

denoising pipelines differentially affected single-subject statistics by

directly plotting t values from the congruent versus incongruent and

high versus low stimulus frequency contrasts across the tested pipe-

lines. Equivalent performance across the various denoising pipelines

should theoretically result in an X = Y reference line on subject-level

t-statistics (see Figure 6). Participants were further divided into three

groups based on their mean FD. Results were collapsed across the

three signal and noise ROI utilized for presenting group level results.

F IGURE 2 Results comparing the 24 motion parameter (MP24) pipeline relative to the 0 motion parameter pipeline (MP0; Panel a), the FIX
pipeline (Panel b), and the AROMA pipeline (ARO; Panel c) for the AY–AX trial contrast of the AX continuous performance test (AX-CPT). For

each panel, the first row corresponds to the paired t-score results comparing percent signal change (PSC) values across pipelines at the group
level, the second row average change (Δ) scores in the mean, and the third row the Pitman–Morgan test (PMT) results. Axial (Z) and sagittal
(X) slices correspond to the Talairach atlas. All pipeline comparisons are fully corrected for family wise error for formal reporting of results in the
paper. In contrast, AX-CPT results are presented at multiple uncorrected p values (.05 = red or dark blue coloring; .005 = dark orange or light blue
coloring; .001 = yellow or cyan coloring) in the figure to provide a more nuanced view of potential pipeline differences. The magnitude of mean
change values across pipelines are also represented with various color coding (Δ > ±0.05 = red or dark blue coloring; Δ > ±0.10 = dark orange or
navy blue; Δ > ±0.15 = dark yellow or light blue; Δ > ±0.20 = yellow or cyan). For all panels, greater MP24 values are always depicted with warm
colors. The right side of each panel presents density plots for PSC values within a priori selected regions of interest (see Supplemental Figure S1),
predominantly corresponding to either task-related signal (SMC, sensorimotor cortex; SMA, supplementary motor area; VLPFC, ventrolateral
prefrontal cortex) or artifacts (WM, white matter; CSF, cerebrospinal fluid; Edge, perimeter of brain mask). Density plots are color-coded based on
the direction of subtraction of pipelines (i.e., MP24 values always plotted in red) in the left side of the panels [Color figure can be viewed at
wileyonlinelibrary.com]
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The noise ROI followed the expected X = Y pattern, with minimal

effects from the different denoising pipelines and generally decreased

scatter around the reference line. These results could potentially be

due to reduced variance in the t-statistics for noise regions (i.e., the t-

statistic is expected to approximate the null distribution in noise

regions during task contrasts). In contrast, the FIX pipeline resulted in

reduced t-statistic values relative to the MP24 pipeline (i.e., rightward

shift of points from the reference line) in signal ROI, which was

greater for the frequency (large shift) relative to the congruency

(smaller shift) contrast. Increased variability in data scatter around the

reference line was also evident for signal ROI, although this did not

appear to be related to the individual's degree of head motion as mea-

sured by mean FD. In contrast to group level results, there were mini-

mal discernable differences in terms of deviation from the reference

line between the MP24 and AROMA pipelines.

3.5 | Replication and extension of motion parameter
denoising in bdfMRI

In contrast to previous work (Johnstone et al., 2006), current data pro-

vide no clear evidence of detriments or advantages for motion-based

regressors as part of standard denoising protocols in erfMRI relative

to bdfMRI designs. To ensure that current results were not limited to

the associated factors of increased temporal resolution, multiband fac-

tor, and/or head-coil diameter used in newer sequences, the MP0 and

MP24 nuisance regressor pipelines were repeated on a dataset of

64 healthy controls who performed an identical bdfMRI task using a

standard 12-channel coil without multiband acceleration and

TR = 2,000 ms (Mayer et al., 2016).

The inner diameter of the Siemens 32-channel head coil is known

to be much smaller than the 12-channel coil. Therefore, it was not sur-

prising that FD was significantly greater for the 12- relative to

32-channel cohort (t116.5 = 5.6; p < .001), even when FD was

corrected for differences in TR acquisition time (see Supplemental

Results). Similar to our principal analyses, the cognitive contrast

resulted in a single significant cluster of higher PSC in right cingulate

gyrus for MP0 relative to MP24 (Supplemental Figure S5A) whereas

the comparison of MP24 to MP0 for the sensory contrast was nonsig-

nificant for the 12-channel/slower TR data (Supplemental

Figure S5B). A quantitative assessment of images again showed the

expected decrease in the variance of PSC for the MP24 relative to

MP0 pipeline primarily around brain edges. These findings therefore

represent either a full (MP0 vs. MP12) or partial replication (MP0

vs. MP24) of the motion regression analyses across two independent

datasets with different TRs and head coil configurations.

Next, we considered whether the differences between previous

and current findings could result from the correlation structure

between the design matrix and MPs. The overall design matrix (i.e., all

trial types) from each erfMRI and bdfMRI task across both 12- and

32-channel coils was therefore correlated with each of the primary six

motion regressors (Table 2). The mean correlation across the six

motion regressors in our bdfMRI was 0.07 (SD = 0.02; maxi-

mum = 0.11), with a similar value observed for our erfMRI task

(mean = 0.04; SD = 0.02; maximum = 0.07). Thus, the magnitude of

correlation between task and motion regressors in both our erfMRI

and bdfMRI designs was similar to previously reported erfMRI

(mean = 0.09; SD = 0.02; maximum = 0.13) designs (Johnstone et al.,

2006), whereas the correlation was much larger in previously reported

bdfMRI (mean = 0.22; SD = 0.06; maximum = 0.36) designs

(Johnstone et al., 2006). Correlations between the design matrix and

FD were of decreased magnitude relative to absolute displacement,

and also similar in magnitude across erfMRI and bdfMRI designs.

Another potential difference between current and previous find-

ings was the shorter block length used in our bdfMRI design. We

therefore examined the effects of motion regressor denoising on an

additional dataset of 30 healthy adolescents during an extended

(block length = 35 s) inhalation of a 5% CO2 gas mixture relative to

room air (block length = 30 ± 5 s). These data were collected using the

same multiband sequence and were preprocessed identically to the

primary datasets for nuisance-based MP regression pipelines only.

Results following FWE correction indicated reduced PSC for MP24

relative to MP0 within the bilateral precentral gyri (BAs 4/43), post-

central gyri (BAs 2/3), medial frontal gyri (BA 6), the inferior parietal

lobule (BA 40), middle frontal gyri (BA 9), insula (BA 13), and basal

ganglia (Figure 7a). The MP12 pipeline also indicated statistically sig-

nificant increased signal in several regions relative to MP24

(Figure 7b). QC PSC plots indicated a similar magnitude in relationship

between mean FD and PSC in signal/noise ROI (Figure 7c) relative to

the shorter block task (MMAT; Figure 5b, c), with minimal effect of

MP12 and MP24 on the magnitude of the relationship. However, in

contrast to the shorter MMAT task, the mean correlation between

the CO2 challenge task and motion regressors was much higher

(r = .25; SD = 0.14; maximum = 0.71).

4 | DISCUSSION

The field of fMRI continues to rapidly progress both in terms of data

acquisition techniques (e.g., simultaneous multislice selection; Barth,

Breuer, Koopmans, Norris, & Poser, 2016) and novel analyses to

improve on signal-to-noise and contrast-to-noise properties (Griffanti

F IGURE 3 Results comparing the 24 motion parameter (MP24) pipeline relative to the MP0 (Panel a), the FIX pipeline (Panel b), and the
AROMA pipeline (ARO; Panel c) for the incongruent minus congruent (I − C) trial contrast of the multimodal attention task at the group level
(MMAT). The selected axial (Z) and sagittal (X) slices from the Talairach atlas were changed to best represent data for this contrast. However, all
other aspects of the figure are identical to Figure 2. Δ, change; CSF, cerebrospinal fluid; Edge, perimeter of brain mask; PMT, Pitman-Morgan test;
PSC, percent signal change; SMA, supplementary motor area; SMC, sensorimotor cortex; VLPFC, ventrolateral prefrontal cortex; WM, white
matter [Color figure can be viewed at wileyonlinelibrary.com]
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et al., 2014; Power et al., 2014; Pruim et al., 2015; Satterthwaite et al.,

2013). Current results suggest that alterations in both pulse sequences

(i.e., shorter TR) as well as hardware (i.e., smaller 32- vs. 12-channel

coil) directly impact the physical measurement of head motion in the

scanning environment, indicating that appropriate “cutoffs” for accept-

able head motion requires constant reevaluation (Power et al., 2015)

and may be better determined in a sample-specific fashion (Ling et al.,

2012; Mayer et al., 2007). Previous studies have reported benefits

(Glasser et al., 2018; Griffanti et al., 2014; Pruim et al., 2015) as well as

costs (Bright & Murphy, 2015; Pujol et al., 2014; Tohka et al., 2008) for

various denoising algorithms, with the majority of more recent studies

focused on rsfMRI data (Power et al., 2015).

In contrast to a priori predictions, current results utilizing a relatively

straightforward metric (PSC magnitude) and QC PSC plots indicated that

both FIX (Griffanti et al., 2014) and AROMA (Pruim et al., 2015) denoising

algorithms removed task-related activity (“signal”) as well as noise

(reduced variance in edge regions) from high-temporal resolution erfMRI

and bdfMRI paradigms relative to a 24 MP approach at the group level.

The loss of signal was not a result of differential effects of denoising on

the baseline coefficient in these task-activated regions. In general, the

degree of signal loss was greater for FIX relative to the AROMA algorithm

for both individual and group level statistics relative to MP regression.

The degree of signal loss was relatively consistent across the cog-

nitive contrasts in both erfMRI and bdfMRI designs at the group level,

F IGURE 4 Results comparing the 24 motion parameter (MP24) pipeline relative to the MP0 (Panel a), the FIX pipeline (Panel b), and the
AROMA pipeline (ARO; Panel c) for the high minus low (H − L) frequency trial contrast of the multimodal attention task at the group level
(MMAT). The selected axial (Z) and sagittal (X) slices from the Talairach atlas were changed to best represent data for this contrast. However, all
other aspects of the figure are identical to Figure 2. Δ, change; CSF, cerebrospinal fluid; Edge, perimeter of brain mask; PMT, Pitman-Morgan test;
PSC, percent signal change; SMA, supplementary motor area; SMC, sensorimotor cortex; VLPFC, ventrolateral prefrontal cortex; WM, white
matter [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Quality control (QC) percent signal change (PSC) plots for the event-related functional magnetic resonance imaging (fMRI) AY–AX
contrast (Panel a) and block-design fMRI incongruent − congruent (I − C; Panel b) and high − low (H − L; Panel c) contrasts for the 0 (MP0),
12 (MP12), and 24 (MP24) motion parameter, FIX, and AROMA pipelines. Each plot expresses the relationship between mean framewise
displacement (FD) and PSC separately for both signal (red dots/highlighting) and noise (blue dots/highlighting) regions of interest (ROI; see
Supplemental Figure S1) across all participants. The magnitude of the relationship is expressed by the correlation coefficient (r) and graphically
depicted with a linear regression line [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 6 Results comparing subject-
level t-scores of the 24 motion parameter
(MP24; x axis) pipeline relative to the
MP0, FIX, and AROMA pipelines (y axis)
for the cognitive (incongruent [I]
− congruent [C]; Panel a) and frequency
(high [H] − low [L]; Panel b) contrasts of
block-design functional magnetic
resonance imaging. The solid black line
represents the X = Y reference line, which
should be the expected pattern if the
denoising pipelines resulted in equivalent
t statistics. Participant data are plotted
across the three signal (sensorimotor
cortex, supplementary motor area, and
ventrolateral prefrontal cortex) and noise
(white matter, CSF, and edge) ROI within
each individual panel (each participant is
represented by three points). Participants
are divided into three groups based on
mean framewise displacement (FD) from
the multimodal attention task (MMAT)
task. Participants with mean FD below
the 25th percentile are plotted in green,
those between the 25th and 75th

percentile are plotted in blue, and those
above the 75th percentile are plotted in
red. Results indicated that the FIX
pipeline resulted in signal loss relative to
the MP24 pipeline (i.e., rightward shift of
points from the reference line), which was
most evident in signal regions and for the
frequency contrast [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 2 Correlation of design matrix
with the mean of translational and
rotation MP for both absolute and
framewise displacement

Absolute displacement Framewise displacement

Source Design Mean SD Max Mean SD Max

Johnstone et al. (2006) erfMRI 0.09 0.02 0.13 – – –

AX-CPT 32-ch erfMRI 0.04 0.02 0.07 0.01 0.01 0.03

Johnstone et al. (2006) bdfMRI 0.22 0.06 0.36 – – –

MMAT 32-channel bdfMRI 0.07 0.02 0.11 0.02 0.01 0.04

MMAT 12-channel bdfMRI 0.10 0.02 0.14 0.04 0.01 0.07

CO2 32-channel bdfMRI 0.25 0.14 0.71 0.02 0.01 0.04

Abbreviations: AX-CPT, AX Continuous Performance Test; bdfMRI/erfMRI, block-design/event-related

functional magnetic resonance imaging; CO2, CO2 challenge; Max: Maximum; MMAT, multimodal

attention task; SD, standard deviation.
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F IGURE 7 Results comparing the 24 motion parameter (MP24) pipeline relative to the MP0 (Panel a) and MP12 parameters (Panel b) pipeline
during the CO2 challenge task at the group level. The selected axial (Z) and sagittal (X) slices from the Talairach atlas were changed to best
represent data for this contrast. However, all other aspects of Panels a and b of the figure are identical to Figure 2. Panel c shows quality control
(QC) PSC plots for the CO2 challenge task, depicting the relationship between mean framewise displacement (FD) and PSC separately for both
signal (red dots/highlighting) and noise (blue dots/highlighting) regions of interest (ROIs; see Figure 5) for the MP0, MP12, and MP24 pipelines. Δ,
change; CSF, cerebrospinal fluid; Edge, perimeter of brain mask; PMT, Pitman-Morgan test; PSC, percent signal change; SMA, supplementary
motor area; SMC, sensorimotor cortex; VLPFC, ventrolateral prefrontal cortex; WM, white matter [Color figure can be viewed at
wileyonlinelibrary.com]
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with a noticeable increase in signal loss for a comparison with highest

contrast-to-noise properties (i.e., the robust manipulation of stimulus

frequency rate). Both FIX and AROMA algorithms quantitatively

decreased noise (as measured by signal variance) in task-related

regions as well as ROI susceptible to artifacts, particularly in the edge

of the brain (Pruim et al., 2015). Importantly, given the lack of a gro-

und truth in fMRI analyses, and the higher susceptibility of certain

regions to artifact, we cannot rule out that the decrement in task-

related activity following ICA-based denoising strategies within a

priori signal regions was not the removal of other physiological noise

sources. However, the loss of activity may be particularly detrimental

in patient studies, where large between-subject variance renders the

testing of smaller group-wise effect sizes particularly challenging,

especially in light of more stringent false positive corrections (Eklund,

Nichols, & Knutsson, 2016).

Importantly, our denoising approach was conservative both in

terms of the inclusion of artifact components in our FIX training set

and the utilization of the “nonaggressive” or “soft-clean” settings for

both methods. Aggressive cleaning has been shown to reduce mean

amplitude in lower frequency ranges of rsfMRI data relative to soft

cleaning (Griffanti et al., 2014). Although not directly tested in the cur-

rent experiment, signal loss may be greater in task-based data if more

aggressive denoising methods/options are utilized depending on the

correlation structure of the data. It is recommended that the FIX clas-

sifier be first trained with local data whereas AROMA automates arti-

fact component selection (Pruim et al., 2015). As both FIX and

AROMA resulted in signal loss relative to more standard motion

regression, it is therefore unlikely that errors in component identifica-

tion (i.e., incorrect manual classification of signal as noise components)

during the training of the FIX classifier accounted for current results.

In addition, FIX attempts to remove multiple noise sources from the

data (Griffanti et al., 2014), whereas AROMA is designed to be more

specific to motion artifact (Pruim et al., 2015). Collectively, these

results suggest that ICA-based denoising procedures, as currently rec-

ommended, may not sufficiently isolate the noise from task-related

signal in both erfMRI and bdfMRI designs.

In contrast to the previous seminal study on nuisance-based MP

regression in task-based fMRI (Johnstone et al., 2006), we did not

observe any statistically significant detriments or benefits for using

12 or 24 MPs relative to no parameters in erfMRI and more typical

(i.e., block length of less than 10 s) bdfMRI designs across two inde-

pendent samples. Current results also indicated a benefit for reducing

edge noise that monotonically increased with the addition of MP esti-

mates to the denoising procedure (edge noise MP0 > MP24 ≈ MP12)

across most task designs and contrasts. Signal loss was observed with

the inclusion of additional MPs (MP12 and MP24 pipelines) in a

bdfMRI design that involved much longer block lengths (30 ± 5 s).

Importantly, the correlation between the task regressor and MPs was

approximately double in the long bdfMRI design relative to both

erfMRI and short bdfMRI designs. Considered collectively, current

and previous (Johnstone et al., 2006) results suggest that the degree

of correlation between absolute displacement and task regressors is a

critical factor for determining whether or not MPs should be included

in task-based fMRI designs, and how the removal of MPs will affect

group-level results. The relationship with FD may be less critical. Thus,

MP regression may confer limited benefits for shorter duration block

designs in adults (Churchill et al., 2012) but may improve signal detec-

tion in higher motion cohorts (Evans, Todd, Taylor, & Strother, 2010).

There are several limitations to our study. First, in order to more

directly compare pipelines, MELODIC was performed on unsmoothed

data followed by smoothing of denoised data as recommended for

FIX (Griffanti et al., 2014) but not AROMA (Pruim et al., 2015). Thus,

the order and inclusion (time-slice correction, high-pass filtering, run

concatenation, etc.) of data preprocessing steps (Caballero-Gaudes &

Reynolds, 2017; Ciric et al., 2017; Glasser et al., 2018), as well as the

choice of group-based relative to single-subject ICA (Du et al., 2016),

are important considerations for any denoising pipeline. However, it is

beyond the scope of the current study to examine all potential permu-

tations of preprocessing steps or task type/length that could be

employed in task-based data analyses. Similarly, as succinctly stated in

several recent review articles (Ciric et al., 2017; Power et al., 2015),

the methods and the metrics for measuring the “success” of various

denoising strategies are being actively developed and evaluated at

both the single-subject and group level. Previous results indicate that

“different metrics” favor “different methods” (i.e., multiple tradeoffs), a

finding that was also observed in the current study in primary ana-

lyses, single-subject results and the QC PSC plots. Finally, the utiliza-

tion of a medical gas administration task for the longer bdfMRI

analyses may have confounded effects on respiration rate and associ-

ated BOLD fluctuations (Birn, Diamond, Smith, & Bandettini, 2006)

with increased head motion. Future studies should consider utilizing

extended cognitive, motor, or sensory tasks where this confound does

not exist.

In summary, the field of fMRI denoising is rapidly evolving with no

clear indication on which techniques are truly superior (Caballero-

Gaudes & Reynolds, 2017; Power et al., 2015). It is likely that there will

not be a one-size fits all approach, especially when contrasting the vari-

ous properties of task-related versus rsfMRI and the multiple tradeoffs

(e.g., distance-dependent artifacts, loss of degrees of freedom) that

occur with different denoising methods. Current results suggest that

even the nonaggressive options of several ICA approaches appear to

remove signal as well as noise from task-related data relative to

nuisance-based motion regression approaches at both the single-

subject and group level. Finally, in contrast to long-standing recommen-

dations (Johnstone et al., 2006), nuisance-based MP regression

approaches may be appropriate for bdfMRI designs if minimal correla-

tion exists betweenMPs and the designmatrix.
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