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Abstract
Concussion pathophysiology in humans remains incompletely understood. Diffusion tensor

imaging (DTI) has identified microstructural abnormalities in otherwise normal appearing brain

tissue, using measures of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity

(RD). The results of prior DTI studies suggest that acute alterations in microstructure persist

beyond medical clearance to return to play (RTP), but these measures lack specificity. To better

understand the observed effects, this study combined DTI with neurite orientation dispersion

and density imaging (NODDI), which employs a more sophisticated description of water diffu-

sion in the brain. A total of 66 athletes were recruited, including 33 concussed athletes, scanned

within 7 days after concussion and at RTP, along with 33 matched controls. Both univariate and

multivariate methods identified DTI and NODDI parameters showing effects of concussion on

white matter. Spatially extensive decreases in FA and increases in AD and RD were associated

with reduced intra-neurite water volume, at both the symptomatic phase of injury and RTP, indi-

cating that effects persist beyond medical clearance. Subsequent analyses also demonstrated

that concussed athletes with higher symptom burden and a longer recovery time had greater

reductions in FA and increased AD, RD, along with increased neurite dispersion. This study pro-

vides the first longitudinal evaluation of concussion from acute injury to RTP using combined

DTI and NODDI, significantly enhancing our understanding of the effects of concussion on

white matter microstructure.
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1 | INTRODUCTION

Concussion is a “mild” form of traumatic brain injury, in which the

transmission of impulsive force to the brain leads to altered function,

including disturbances in cognition, physical function, mood and sleep

(McCrory et al., 2013). The clinical management of sport-related

concussion is primarily based on symptom assessments and brief cog-

nitive testing, with the determination of return to play (RTP) made

when symptoms are resolved following a graded exercise protocol.

Despite symptom dissipation at RTP, there is growing evidence

that concussion may lead to long-term deficits, including elevated

risk of cognitive and behavioral problems (Guskiewicz et al., 2005;

Guskiewicz, Ross, & Marshall, 2001). These sequelae are well docu-

mented, but much remains unknown regarding the evolution of brain

physiology from the symptomatic phase of injury to medical clearance,

limiting the ability of neuroimaging to inform clinical practice.

Concussion is rarely associated with findings on conventional

radiological imaging; however, there is mounting evidence that con-

cussion and its sequelae are associated with subtler alterations in

brain tissue (McCrea et al., 2017). In this respect, advanced magnetic

resonance imaging (MRI) using diffusion tensor imaging (DTI) is a

promising tool for assessing the effects of mild traumatic brain injury

(TBI). Alterations in tissue microstructure may lead to significant

changes in the rate and directionality of water diffusion within white
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matter tracts, where fiber bundles exhibit highly restricted and aniso-

tropic water diffusion. DTI is able to detect these changes and has

been widely used in studies involving more severe TBI, as a biomarker

of axonal injury and degeneration (Hulkower, Poliak, Rosenbaum, Zim-

merman, & Lipton, 2013).

In recent years, diffusion-weighted imaging of concussion has

become an active area of research, with a growing body of literature

examining longitudinal recovery after a concussion (Cubon, Putukian,

Boyer, & Dettwiler, 2011; Meier et al., 2016; Murugavel et al., 2014),

along with the subtler effects of sub-concussive impacts (Bazarian,

Zhu, Blyth, Borrino, & Zhong, 2012; McAllister et al., 2014). In a

recent study, DTI was used to examine the white matter of concussed

athletes longitudinally, from the first week post-injury to medical

clearance to RTP (Churchill, Hutchison, et al., 2017b). The primary

findings were decreased fractional anisotropy (FA) and increased

mean diffusivity (MD) relative to uninjured controls at the early symp-

tomatic phase of injury, which were effects that remained present at

RTP. However, standard DTI metrics are based on a simplistic model

of brain tissue microstructure, consisting of a single water compart-

ment with anisotropic Gaussian diffusion of water molecules. Thus,

traditional DTI measures lack specificity, with differences in FA and

diffusivity potentially arising from multiple mechanisms, including

changes in cell morphology and packing density, along with alterations

in white matter fiber orientation. The interpretation of differences in

FA and diffusivity may also be confounded by changes in the partial

volume contribution of free water from cerebrospinal fluid (CSF).

The present study addressed these limitations by applying the dif-

fusion MRI model known as neurite orientation dispersion and density

imaging (NODDI) (Zhang, Schneider, Wheeler-Kingshott, & Alexander,

2012). This method acquires data for multiple different diffusion

weightings, with each acquisition sampling many different spatial ori-

entations at a high angular resolution. These data, along with a three-

compartment model of diffusion, are used to estimate the water con-

tributions of different tissue types within each voxel. The NODDI

model also calculates the orientation dispersion index (ODI), which

quantifies angular deviation between neurites, which can more accu-

rately assess neurite dispersion than FA, particularly in areas of com-

plex neurite geometry (e.g., fanning or crossing fibers). The NODDI

model shows promise as a tool for investigating concussion, with evi-

dence that it is sensitive to the effects of repeated head impacts

(Mayer et al., 2017). More recently, NODDI was used to characterize

the long-term effects of concussion (Churchill, Caverzasi, Graham,

Hutchison, & Schweizer, 2017a), showing that a history of concussion

is associated with elevated FA and decreased MD, along with concur-

rent increases in neurite water volume and decreases in ODI.

The principal aim of this study was to determine whether alter-

ations in DTI measures of FA and diffusivity among concussed ath-

letes, seen at the early symptomatic phase of injury and RTP, are

associated with concurrent changes in advanced NODDI measures.

An important secondary aim was to determine whether individual var-

iations of diffusion parameters within the concussed group were asso-

ciated with clinical covariates of interest. Researchers have

investigated the relationship between symptom burden and DTI

parameters, but have largely focused on persistent post-concussive

symptoms (Dean, Sato, Vieira, McNamara, & Sterr, 2015; Messé et al.,

2013; Smits et al., 2011). To date, there has been limited investigation

of the relationship between acute symptom burden and diffusion

imaging parameters. Similarly, a meta-analysis of DTI and mild TBI

reported significant effects of time post-injury (Eierud et al., 2014),

but the relationship between diffusion imaging and time to RTP

remains under-studied. Therefore, the present study examined the

relationship between diffusion imaging parameters and clinical covari-

ates, including time to RTP and acute symptom severity. Analyses

were performed using both nonparametric univariate methods and a

multivariate approach, termed N-way partial least squares (NPLS)

(Bro, 1996), which identifies simultaneous changes in distributed brain

areas across multiple imaging parameters.

2 | METHODS

2.1 | Study participants

A total of 66 athletes were recruited from seven university teams (vol-

leyball, hockey, soccer, football, rugby, basketball, and lacrosse) at a

single institution, via the university sport medicine clinic. This included

33 concussed athletes and 33 controls, individually matched to con-

cussed athletes on age, sex and prior concussion history. For con-

cussed athletes, diagnosis was determined by staff physician following

events where athletes sustained direct or indirect contact to the head

with the presence of signs and/or symptoms. The concussed athletes

were scanned at two time-points: the early symptomatic phase of

injury (1–7 days post-concussion) and following medical clearance to

return to play (RTP). From the initial design, 2 athletes could not be

scanned at symptomatic injury (N = 31 remaining) and 5 athletes had

missing RTP data (N = 27 remaining). All athletes were recruited and

imaged at the start of their respective seasons, and had pre-season

assessments with the Sport Concussion Assessment Tool 3 (SCAT3)

(Guskiewicz et al., 2013) to evaluate symptoms, cognition and balance,

ensuring that there were no significant deficits in controls or in con-

cussed athletes prior to their injury. The study procedures were

approved by institutional review boards at the University of Toronto

and St. Michael's Hospital in Toronto, and all athletes gave written

informed consent prior to study participation.

2.2 | Magnetic resonance imaging

Participants were imaged at St. Michael's Hospital using an MRI sys-

tem operating at 3 Tesla (Magnetom Skyra, Siemens, Erlangen, Ger-

many) with the standard multi-channel head receiver coil. To assess

for structural lesions, 3D T1-weighted Magnetization Prepared Rapid

Acquisition Gradient Echo (MPRAGE) images were acquired with

field-of-view (FOV) = 24 × 24cm, 240 × 240 × 192 acquisition matrix,

0.9 mm isotropic voxels, bandwidth = 250 Hz/Pixel, inversion time

(TI)/echo time (TE)/repetition time (TR) = 850/2.63/2,000 ms, and flip

angle (FA) = 8�. Fluid attenuated inversion recovery imaging (FLAIR)

was also obtained with FOV = 22 × 18.6 cm, 256 × 196 acquisition

matrix, 1.1 × 0.9 × 3.0 mm voxels, TI/TE/TR = 2,200/96/9,000 ms.

To assess for potential vascular abnormalities, susceptibility-weighted

imaging (SWI) was also performed with FOV = 22 × 19.2 cm, 0.6 ×
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0.6 × 1.2 mm voxels with an encoding gap of 0.2 mm, TR/TE = 28/20

ms, FA = 15�, and 384 × 307 acquisition matrix. Structural scans

were first reviewed by an MRI technologist; if abnormalities were

identified, they were then reviewed by a neuroradiologist and

reported. Statistical outlier testing was also performed to further

check for structural abnormalities: from the control group, global sta-

tistics were calculated on the masked brain images (mean, variance,

skew, and kurtosis) of T1, FLAIR, and SWI scans. For each statistic

and scan type, a gamma distribution was fit to the control data and

subsequent testing identified any athletes, control or concussed, that

were outliers at p < 0.05 (Bonferroni-adjusted). No athletes showed

evidence of structural abnormalities, based on visual inspection or sta-

tistical analysis.

A two-shell protocol was used for diffusion MRI, to enable stan-

dard estimation of single-shell DTI parameters as well as the multi-

shell NODDI parameters (FOV = 24 × 24 cm, 120 × 120 acquisition

matrix, 66 slices, 2 × 2 × 2 mm voxels, bandwidth 1,736 Hz/Px). The

first acquisition consisted of 30 diffusion-weighting directions at

TR/TE = 7,800/83 ms and b = 700 s/mm2, along with 9 b0 scans.

The second acquisition consisted of 64 diffusion-weighting directions

at TR/TE = 12,300/91 ms and b = 2,000 s/mm2, along with

1 b0 scan.

2.3 | Preprocessing

For diffusion-weighted MRI data, the FMRIB Software Library (FSL;

www.fmrib.ox.ac.uk/fsl) was used to perform simultaneous correction

of eddy current distortions and rigid-body head motion using the FSL

eddy protocol, and nonbrain voxels were masked out by applying FSL

bet to the subject b0 images. The data were then analyzed to extract

voxel-wise DTI metrics including fractional anisotropy (FA), axial diffu-

sivity (AD), and radial diffusivity (RD) using FSL dtifit. The diffusivity

components were analyzed instead of mean diffusivity (MD), as they

provide a more detailed representation of water diffusion; in multivar-

iate analysis MD is also redundant, as it can be represented as a linear

combination of AD and RD. The results presented in this article are

based on the b = 700, 30-direction shell, thereby avoiding signal

attenuation and restricted diffusion effects in the b = 2,000,

64-direction shell acquired at the higher b-value. Univariate analyses

of the DTI parameters derived from the 64-direction data found no

significant effects of concussion and are therefore not further dis-

cussed in this article.

Because the two diffusion imaging shells had different TR/TE

values, they were normalized prior to NODDI analyses by dividing

diffusion-weighted voxel values by the corresponding voxel value of

the initial b0 scan in each shell, an approach that has been previous

applied (Chang et al., 2015; Churchill, Caverzasi, et al., 2017a; Owen

et al., 2014). As part of this study, simulations were performed dem-

onstrating that this correction strategy may mitigate the fitting error

induced by mismatched TR/TE between shells (Supporting Informa-

tion Appendix S1). The NODDI analyses were conducted on the nor-

malized data using the Matlab toolbox (nitrc.org/projects/noddi_

toolbox) with a “WatsonSHStickTortIsoV_B0” model parameterization

and default values of neural diffusivity (1.7 μm/ms) and isotropic diffu-

sivity (3.0 μm/ms).

In the NODDI model, tissue water within each voxel is partitioned

into three volume fractions: free water contributed by CSF, having

isotropic Gaussian diffusion (VISO); intracellular water in neurites, hav-

ing anisotropic restricted diffusion (VIC); and extracellular water, hav-

ing anisotropic hindered diffusion (VEC). Since total volume fraction

sums to unity, this is expressed as:

VISO + 1−VISOð Þ VIC + VECð Þ ¼ 1

For which the anisotropic compartments also sum to unity, i.e.,

VEC + VIC = 1. The intracellular signal is modeled as a Watson distribu-

tion over cylinders of zero radius, with a mean orientation parameter

μ and a concentration parameter κ 2 (0, ∞) indicating sharpness of

the distribution around μ. The concentration parameter is transformed

into the orientation dispersion index, ODI = (2/π) arctan(κ), which is a

bounded value ranging from 0 (completely parallel neurites) to

1 (completely random neurite orientation). Because of unknown,

potentially complex evolving brain pathophysiology, this study exam-

ined multiple DTI parameters (FA, AD, RD) and NODDI parameters

(ODI, VISO, VIC), with VEC excluded because of its reciprocal relation-

ship with VIC.

To enable comparisons of the diffusion MRI parameters between

athletes, data were co-registered to a common group-specific tem-

plate, using the DTI-TK software package (dti-tk.sourceforge.net),

which shows robust performance when aligning diffusion-weighted

data by aligning directly on the tensor (Wang et al., 2011). To avoid

subject bias in this longitudinal design, the initial template was con-

structed using each control subject, and one timepoint (symptomatic

injury or RTP) from each concussed athlete. The timepoint was ran-

domly selected per athlete, to also avoid biasing the template fit

toward a specific time post-injury. Template bootstrapping was con-

ducted using the IXI Aging DTI Template 3.0 (www.nitrc.org/frs/

download.php/5518/ixi_aging_template_v3.0.tgz). A stepwise proce-

dure was then conducted: (1) a bootstrapped template was estimated

using dti_template_bootstrap; (2) tensor data were aligned affinely to

update the bootstrap template using dti_affine_population with the

Euclidean distance squared (EDS) similarity metric and three itera-

tions; this was followed by diffeomorphic alignment using dti_diffeo-

morphic_population with ftol = 0.002 and six iterations. For the

remaining concussed athlete maps, transforms to the pre-defined

group template were obtained by sequentially applying dti_rigid_sn

and dti_affine_sn with the EDS metric, followed by dti_diffeomorphic

_sn with six iterations and ftol = 0.002. The net transforms for all

datasets were then computed using dfRightComposeAffine and applied

to DTI and NODDI parameter maps via deformationScalarVolume with

resampled voxel dimensions of 2 × 2 × 2 mm isotropic.

For DTI and NODDI parameter maps, a mask of voxels with mean

FA ≥ 0.30 was constructed to restrict analyses to white matter tracts.

To reduce the impact of fine-grained local variation in anatomy

between individuals, voxels within the mask region were then con-

volved with a 6 mm FWHM 3D Gaussian smoothing kernel. Regions

outside the mask were given zero weights during convolution, to

reduce confounds due to nonwhite matter tissue. In addition, the

brainstem and cerebellum were manually segmented and removed

before analysis, to avoid confounds due to substantial magnetic field

inhomogeneity in these regions.
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2.4 | Analyses

2.4.1 | Univariate analysis

For each DTI and NODDI parameter, analysis was performed on

(1) the voxel-wise mean difference between symptomatic concussed

athletes (SYM) and controls (CTL), along with (2) the voxel-wise mean

longitudinal change from SYM to RTP. Significance was evaluated

nonparametrically by bootstrapping the mean in a repeated-measures

design (1,000 iterations), where resampling units consisted of a SYM

athlete scan and their matched CTL or RTP scan. Voxels were then

identified where the bootstrapped 95% confidence intervals (CIs) did

not include zero effect, after adjusting for multiple comparisons. This

was done by retaining all voxels where the 99.5% CI did not include

zero (p = 0.005 two-tailed significance), then cluster-size thresholding

at p = 0.05 using the Analysis of Functional NeuroImages (AFNI)

3dFWHMx function to estimate spatial smoothness, followed by AFNI

3dClustSim to estimate the corresponding minimum cluster-size

threshold. For significant brain voxels, effect size was reported as the

bootstrap ratio (bootstrapped mean/standard error). Post-hoc testing

was also done to evaluate between-group differences in diffusion

parameters, averaged over significant brain regions, including the

mean and 95%CI, along with p-values based on nonparametric paired-

measures Wilcoxon tests.

2.4.2 | Multivariate analysis

The data were also examined using a multivariate approach termed N-

way Partial Least Squares (NPLS) (Bro, 1996). This is an extension of

standard PLS (Krishnan, Williams, McIntosh, & Abdi, 2011), which

identifies latent covariance relationships between brain imaging and

behavioral data. Whereas PLS quantifies two-way relationships

(e.g., between voxel values and behavior, for a single diffusion param-

eter), NPLS accounts for higher-order relationships in input data

(e.g., between voxel values and behavior, over multiple diffusion

parameters). This model was used to test for white matter regions

showing simultaneous effects of concussion for the 6 DTI/NODDI

parameters. The approach has greater sensitivity than univariate

methods, as NPLS can detect distributed patterns in the brain and

leverage shared information across diffusion parameters. As a latent

variable model, it is also robust to high-dimensional, highly-correlated

data (Churchill et al., 2013), where standard regression methods may

be ill-posed and require careful regularization for a stable solution.

The NPLS model is described below.

In neuroimaging PLS, two multivariate datasets are analyzed for

subjects s = 1…S, including a (V × 1) vector of voxel values xs (e.g., a

diffusion parameter map) and a (B × 1) vector of behavioral values ys

(e.g., condition labels or clinical variables). The model quantifies shared

information between x and y, by decomposing the data into k = 1…K

pairs of latent variables cxk , c
y
k

� �
that have greatest covariance. For the

kth latent variable pair, the PLS model seeks weighting vectors wx
k and

wy
k that produce latent variables cxk sð Þ ¼ xsTwx

k and cyk sð Þ ¼ ys
Twy

k , which

maximize the covariance:

cov cxk , c
y
k

� � ¼ cov wx
k
Txs,w

y
k
Tys

� �
, such that wx

k

�� �� ¼ wy
k

�� �� ¼ 1:

usually under the constraint that wx
k ,w

y
k

� �
are orthogonal to the pre-

ceding k − 1 weighting vectors.

This approach may be extended to input data with higher-order

structure using NPLS (Bro, 1996), as in the case where m = 1…M dif-

ferent brain maps have been acquired (e.g., diffusion parameter maps).

This can be expressed as a (V × M) matrix Xs for each subject. The

NPLS model now seeks weighting vectors wx
k 1ð Þ, w

x
k 2ð Þ, and wy

k , produc-

ing latent variables cxk sð Þ ¼ wx
k 1ð Þ

TXswx
k 2ð Þ and cyk sð Þ ¼ ys

Twy
k , which maxi-

mize the covariance:

cov cxk , c
y
k

� � ¼ cov wx
k 1ð Þ

TXswx
k 2ð Þ, ys

Twy
k

� �
, such that wx

k 1ð Þ
���

��� ¼

wx
k 2ð Þ

���
��� ¼ wy

k

�� �� ¼ 1

These components are estimated using an iterative update algo-

rithm (Bro, 1996), producing k = 1…K orthogonal component sets

wx
k 1ð Þ,w

x
k 2ð Þ,w

y
k

n o
, where for high-dimensional neuroimaging data, the

maximum number of components is generally K ≤ rank (Y).

For the main analysis of this study, the input data matrix Xs con-

sisted of the six diffusion parameter maps, and the response variable

yn was the set of binary labels denoting membership to CTL, SYM, or

RTP groups. Thus, for a CTL scan yn = [1 0 0], for a SYM scan yn = [0

1 0] and for an RTP scan yn = [0 0 1]. The NPLS “voxel saliences”

wx
k 1ð Þ and “diffusion parameter saliences” wx

k 2ð Þ reflect the combination

of brain regions and DTI/NODDI parameters that have maximal

covariation between athlete groups, with group weightings given by

“behavioral saliences” wy
k . The reliability of the saliences was assessed

via bootstrapping on subjects (1,000 iterations). The significant voxel

saliences were then identified at an adjusted p = 0.05 using the

cluster-size correction procedure described for univariate methods

above. The diffusion parameter and behavioral variable saliences were

also identified for cases where the bootstrapped 95% CIs did not

include zero. These values were corrected for multiple comparisons at

a False-Discovery Rate (FDR) of 0.05. To be considered valid, a com-

ponent was required to have significant saliences for voxels, diffusion

parameters and behavior. The “brain scores” cxk were also plotted as a

function of athlete group and the mean between-group differences

and 95%CI reported, with significant group differences reported when

bootstrapped 95% CIs did not include zero after FDR adjustment.

A secondary analysis was conducted within the concussed cohort,

to test whether the longitudinal evolution of diffusion imaging mea-

sures from SYM to RTP is affected by clinical covariates. For this anal-

ysis, the input data matrix was the pairwise change from SYM to RTP

X
0
n ¼ X RTPð Þ

n −X SYMð Þ
n and the response variables were two clinical mea-

sures: (1) symptom severity and (2) days to RTP. Symptoms were

assessed based on the SCAT3 total severity score, which was

obtained by summing across a 22-item symptom scale, each with a

7-point Likert scale rating (Guskiewicz et al., 2013). Days to RTP was

determined as the number of days from the concussion event to com-

plete symptom resolution, following a graded exertional protocol

(McCrory et al., 2017). To ensure robust covariance estimates, rank-

normalization was applied to both symptom severity (kurtosis = 4.27,

significantly non-normal at p = 0.039) and days to RTP (kurtosis =

4.87, p = 0.016), as heavy distribution tails in behavioral data may

lead to unstable bootstrap estimates. The MRI data were not trans-

formed, as rank-normalization showed no significant effect on NPLS

saliences. This was expected, as all diffusion parameters had a median
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kurtosis ≤3.47 (p = 0.139). As in the previous section, significant

voxel, diffusion parameter and behavioral saliences were identified

after adjusting for multiple comparisons.

3 | RESULTS

3.1 | Participant demographics

The athlete demographics and clinical data are summarized in

Table 1, for control and concussed athlete groups. For concussed

athletes, the median time to RTP was 19 days (interquartile range:

13–58) and ranged from a minimum of 4 days to a maximum of

236 days. At the initial symptomatic timepoint, concussed athletes

had significantly elevated total symptoms and symptom severity

compared with their pre-season baseline (median and interquartile

range, symptoms: 5, [2, 11], p = 0.006; severity: 7, [2, 27], p = 0.012,

paired-measures Wilcoxon tests), and relative to the matched con-

trol athletes (symptoms: 5, [1, 12], p = 0.001; severity: 6, [0, 31];

p = 0.004). All effects were significant at an FDR of 0.05. At RTP,

total symptoms and symptom severity were no longer significantly

increased relative to baseline or controls (p ≥ 0.45 for all tests). Bal-

ance and cognition scores were not significantly different between

symptomatic injury and baseline, nor were they different from

matched controls (p ≥ 0.361 for all tests).

3.2 | Univariate analysis

Figure 1 depicts the results of univariate analysis. The top row shows

the mean unsmoothed brain map for each parameter, calculated

voxel-wise across all control subjects. The second row depicts areas

of significant difference for concussed athletes at SYM relative to

CTL (see Table 2 for clusters and Table 3 for group comparison sta-

tistics). Sparse decreases in FA were seen within the corpus callo-

sum, while elevated AD was observed within the corona radiata.

More spatially extensive areas of increased RD were also observed,

including the corona radiata, corpus callosum, and external capsule.

In contrast, among the NODDI parameters only VIC showed signifi-

cant effects at SYM, including decreases within the corona radiata

and longitudinal fasciculus. For all identified brain regions, the differ-

ences relative to CTL were significant at SYM and remained signifi-

cant at RTP, but there was no evidence of significant longitudinal

change.

The third row depicts areas of longitudinal change from SYM to

RTP (see Table 2 for clusters and Table 4 for group comparison sta-

tistics). Decreased FA was seen in the internal capsule, corpus callo-

sum and corona radiata, along with reduced AD near the external

capsule. Effects on RD were more spatially complex, including

increases in the splenium of the corpus callosum and posterior tha-

lamic radiation, but also decreases in the body of the corpus callo-

sum and internal capsule. For the NODDI parameters, only ODI

showed a significant longitudinal increase over time, near the unci-

nate fasciculus. While these diffusion parameters had significant

longitudinal effects, the identified areas were not significantly dif-

ferent from CTL at SYM or RTP, after adjusting for multiple

comparisons.

3.3 | Multivariate analysis

Results of the NPLS analysis of concussion effects are depicted in

Figure 2, where only a single component was identified after

adjusting for multiple comparisons (68.9% of NPLS covariance),

with clusters reported in Table 5. For this component, a widespread

set of white matter regions showed significant concussion effects

(Figure 2a), with two bilateral clusters centered on the superior

corona radiata and a smaller cluster near the posterior thalamic

radiation. Within these regions, decreased FA was observed con-

currently with increased diffusivity for both AD and RD, along with

decreased VIC (Figure 2b), whereas ODI and VISO effects were non-

significant. As depicted in Figure 1c, the mean response was signifi-

cantly elevated in concussed athletes relative to the CTL group, at

both SYM (mean difference and 95%CI: 0.659 [0.213, 1.07];

p = 0.008) and RTP (mean difference and 95%CI: 0.738 [0.294,

TABLE 1 Demographic data for athletes with concussion and matched controls, along with symptom and cognitive scores, based on the sport

concussion assessment tool (SCAT3)

Control Concussion

Age (mean � SD) 20.5 � 1.7 20.3 � 2.0

Female 17/33 (52%) 17/33 (52%)

Previous concussion 19/33 (58%) 19/33 (58%)

Days to RTP – 19 [13, 58]

Baseline SYM RTP

Total symptoms 2 [0, 5] 2 [0, 5] 8 [4, 15]** 0 [0, 2]

Symptom severity 2 [0, 5] 2 [0, 7] 9 [4, 31]** 0 [0, 2]

Orientation 5 [5, 5] 5 [5, 5] 5 [5, 5] 5 [5, 5]

Immediate memory 15 [14,15] 14 [14, 15] 15 [14, 15] 15 [15, 15]

Concentration 4 [3, 4] 3 [2, 4] 4 [3, 5] 4 [3, 4]

Delayed memory 4 [4, 5] 4 [3, 5] 4 [3, 5] 5 [4, 5]

Balance Total errors 2 [1, 3] 3 [0, 4] 3 [1, 5] 1 [0, 2]

The SCAT3 scores are represented as the median [Q1, Q3]. “**” indicates a significant difference in scores for the symptomatic time-point (SYM), relative
to all other groups. Only Total symptoms and symptom severity were significantly elevated at SYM, relative to baseline and matched controls.
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1.15]; p = 0.002), although only 3 SYM scans and 2 RTP scans

exceeded the normal 95% CIs of the CTL group (i.e., the horizontal

dashed lines). Although the median brain score was higher at RTP

than SYM, longitudinal changes were nonsignificant (mean change

and 95%CI: 0.037 [−0.137, 0.200]; p = 0.66).

For the NPLS covariate analysis of the change in diffusion imaging

from SYM to RTP, only a single significant component was found after

adjusting for multiple comparisons (63.3% of NPLS covariance). For this

component, brain areas showing significant covariate effects (Figure 3a)

were spatially limited to a single cluster, reported in Table 5, which was

centered on the superior longitudinal fasciculus. Within this cluster, con-

current longitudinal decreases in FA and increases in AD and RD were

observed, along with increased ODI (Figure 3b), whereas VIC and VISO

showed nonsignificant effects. The diffusion imaging effects were associ-

ated with elevated acute symptom severity and longer time to RTP

among concussed athletes (Figure 3c). As shown by the plot of brain and

behavior scores (Figure 3d) these effects had a strong multivariate asso-

ciation (correlation and 95%CI: 0.758, [0.578, 0.890]; p < 0.001).

FIGURE 1 (Top row) Mean voxel-wise DTI and NODDI diffusion parameter maps, averaged over the control group (CTL). The DTI parameters

include fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). The NODDI parameters include the orientation dispersion index
(ODI), along with both intracellular water (VIC) and isotropic free water (VISO) volume fractions. (Middle row) Plots depicting significant univariate
group differences comparing symptomatic concussed athletes (SYM) to CTL. (Bottom row) Plots depicting significant univariate group differences
comparing SYM to concussed athletes medically cleared to return to play (RTP). Effects sizes are reported as bootstrap ratios, with cluster size
correction at p = 0.05. Results of group comparisons are shown as maximum intensity projections (MIPs) in sagittal and axial planes, centered on
MNI coordinates (x = +12, z = +6) [Color figure can be viewed at wileyonlinelibrary.com]

CHURCHILL ET AL. 1913

http://wileyonlinelibrary.com


TABLE 2 Cluster report for univariate analysis of diffusion parameters in Figure 1

Cluster Center of mass Brain region
Cluster size
(mm3)

Peak value
(bootstrap ratio)

SYM - CTL FA 1 21 −51 22 Corpus callosum, splenium R 664 −4.71

AD 1 −27 −5 22 Superior corona radiata 2,408 5.52

2 −29 −41 22 Posterior corona radiata L 1,000 4.14

RD 1 −29 −39 24 Posterior corona radiata L 3,416 5.14

2 17 −45 26 Corpus callosum, splenium R 1,120 4.35

3 −29 7 16 External capsule L 656 3.80

4 −21 1 30 Superior corona radiata L 616 3.55

ODI n/a

VIC 1 −39 −35 32 Superior longitudinal fasciculus L 856 −4.19

2 −29 −31 22 Posterior corona radiata L 736 −3.95

VISO n/a

SYM - RTP FA 1 25 −31 14 Internal capsule, retrolent. Part R 920 −4.74

2 15 −49 26 Corpus callosum, splenium R 832 −4.90

3 27 −59 20 Posterior corona radiata R 696 −4.93

AD 1 −23 15 −8 External capsule L 600 −3.98

RD 1 17 −51 14 Corpus callosum, splenium R 912 5.37

2 31 −41 12 Posterior thalamic radiation R 680 4.15

3 5 5 22 Corpus callosum, body R 624 −4.44

4 21 −23 14 Internal capsule, posterior limb R 536 4.04

ODI 1 −39 −1 −18 Uncinate fasciculus L 624 5.27

VIC n/a

VISO n/a

Clusters are identified, with centers of mass in MNI coordinates and brain region based on nearest labeled white matter tract in the Johns Hopkins Univer-
sity (JHU) atlas. Peak values are reported as the highest bootstrap ratio within each cluster.

TABLE 4 Analysis of diffusion parameter values for brain areas identified in univariate between-group analysis of concussed athletes at medical

clearance to return to play (RTP) relative to when they were symptomatic (SYM) in Figure 1 (bottom row)

SYM-CTL p RTP-CTL p RTP-SYM p

FA (×10−2) 0.22 [−0.36, 0.84] 0.673 −0.81 [−1.56, 0.01] 0.041 −0.90 [−1.18, −0.62] <0.001

AD mm2/s (×10−5) 1.13 [0.13, 2.17] 0.039 −0.10 [−1.13, 0.99] 0.923 −1.53 [−2.16, −0.92] <0.001

RD mm2/s (×10−5) 1.05 [−0.93, 3.15] 0.290 −1.52 [−0.91, 3.97] 0.259 0.49 [−0.10, 1.16] 0.136

ODI (×10−2) 0.37 [−1.82, 2.57] 0.586 3.24 [0.97, 5.55] 0.013 2.48 [1.55, 3.51] 0.001

VIC n/a

VISO n/a

Pairwise comparisons are conducted between controls (CTL), SYM, and RTP. Results are reported as mean and repeated-measures bootstrapped 95% con-
fidence interval, along with empirical p-values. Diffusivity values AD and RD are reported in units of mm2/s, while all other measures are dimensionless
and range from 0 to 1.

TABLE 3 Analysis of diffusion parameter values for brain areas identified in univariate between-group analysis of symptomatic concussed

athletes (SYM) relative to controls (CTL) in Figure 1 (middle row)

SYM-CTL p RTP-CTL p RTP-SYM p

FA (×10−2) −2.07 [−3.00, −1.19] <0.001 −2.39 [−3.27, −1.41] <0.001 −0.29 [−0.65, 0.05] 0.202

AD mm2/s (×10−5) 2.89 [1.93, 3.88] <0.001 2.48 [1.44, 3.56] <0.001 0.03 [−0.88, 0.24] 0.301

RD mm2/s (×10−5) 2.45 [1.55, 3.39] <0.001 2.40 [1.32, 3.49] 0.001 0.01 [−0.41, 0.30] 0.738

ODI n/a

VIC (×10−2) −2.55 [−3.69, −1.42] <0.001 −2.41 [−3.73, −1.20] 0.001 −0.10 [−0.89, 0.77] 0.605

VISO n/a

Pairwise comparisons are conducted between CTL, SYM, and concussed athletes at medical clearance to return to play (RTP). Results are reported as mean
and repeated-measures bootstrapped 95% confidence interval, along with empirical p-values. Diffusivity values AD and RD are reported in units of mm2/s,
while all other measures are dimensionless and range from 0 to 1.
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FIGURE 2 Brain regions and diffusion parameters that distinguish between athlete groups, including uninjured controls (CTL) and concussed

athletes while symptomatic (SYM) and at medical clearance to return to play (RTP), based on multivariate NPLS analysis. For the single significant
component, we report (a) regions with significant voxel saliences. (b) Diffusion parameter saliences that distinguish between groups in these brain
regions, with error bars denoting bootstrap standard error. Significant saliences are denoted by “**.” (c) Brain scores, indicating how much each
subject expresses this salience pattern, along with distribution quartiles for each athlete group. The solid horizontal line = mean of CTL group
scores, along with 95% confidence bounds (dashed lines), for evaluation of individual datapoints. The brain map is shown as maximum intensity
projections (MIPs) in sagittal, coronal and axial planes, centered on MNI coordinates (x = +12, y = +8, z = +6) [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 5 Cluster report for NPLS between-group analysis (Figure 2) and covariate analysis (Figure 3)

Cluster Center of Mass Brain region Cluster size (mm3)
Peak value
(bootstrap ratio)

Between-group analysis 1 −27 −15 22 Superior corona radiata L 49,168 9.26

2 27 −15 23 Superior corona radiata R 44,608 9.16

3 −23 −77 0 Posterior thalamic radiation L 872 6.35

Covariate analysis 1 31 −27 28 Superior longitudinal fasciculus R 1,608 4.10

Thirteen clusters are identified, with centers of mass in MNI coordinates and brain region based on nearest labeled white matter tract in the Johns Hopkins
University (JHU) atlas. Peak values are reported as the highest bootstrap ratio within the cluster.

FIGURE 3 Brain regions and diffusion parameters where the longitudinal change in values is associated with clinical covariates, of SCAT

symptom severity and time to RTP, based on multivariate NPLS analysis. For the single significant component, we report (a) regions with
significant voxel saliences. (b) Diffusion parameter saliences that show significant covariate effects, with error bars denoting bootstrap standard
error. (c) Behavioral saliences, indicating how much each covariate contributes to the relationship. Significant saliences are denoted by “**.”
(d) Brain and behavior scores, indicating how much each subject expresses these salience patterns. The solid line = linear regression fit, along with
95% confidence bounds (dashed lines), for evaluation of individual datapoints. The brain map is shown as maximum intensity projections (MIPs) in
sagittal, coronal and axial planes, centered on MNI coordinates (x = +12, y = +8, z = +6) [Color figure can be viewed at wileyonlinelibrary.com]

CHURCHILL ET AL. 1915

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


4 | DISCUSSION

This study represents, to our knowledge, the first use of NODDI in

the longitudinal evaluation of concussion, from the early symptomatic

phase of injury to RTP. The neurobiological response to concussion is

complex, and its relationship with the course of clinical recovery

remains incompletely understood. This study employed both univari-

ate voxel-wise analysis and multivariate NPLS modeling, the latter of

which identified concurrent variations in DTI and NODDI parameters.

The analyses showed complementary results, which affirm that the

main findings are not model-dependent. In these analyses, the NODDI

data were used to disentangle mechanisms of altered FA, AD, and RD,

which may be influenced by changes in intra/extra-neurite water vol-

ume, altered neurite geometry, and partial volume contributions

from CSF.

The current results show reduced FA with increased AD and RD

at the early symptomatic phase of injury, the effects of which remain

present at RTP. In addition, RD shows more spatially extensive univar-

iate effects than AD, and has greater effect sizes for NPLS saliences,

indicating that this diffusion component is a greater contributor to the

observed effects. Overall, the results indicate less restricted, more iso-

tropic water diffusion within white matter tracts, which is consistent

with prior findings for a subset of these athletes (Churchill, Hutchison,

et al., 2017b), along with other studies of sport concussion (Cubon

et al., 2011; Murugavel et al., 2014). Based on NPLS analyses, these

effects are also associated with concurrent reductions in VIC. This sug-

gests that the primary effect of concussion on white matter is

increased extra-neurite water volume, at both early injury and RTP. In

contrast, the absence of significant VISO effects indicates that the DTI

findings are not primarily driven by variations in free water volume. In

addition, based on the absence of significant ODI effects, the changes

in compartment water volumes do not appear to systematically alter

neurite geometry. Given the significant effects at SYM and RTP rela-

tive to CTL, current results also indicate that there is limited change in

the microstructural properties of white matter over the course of clini-

cal recovery. Although univariate results showed sparse longitudinal

(RTP–SYM) changes, including decreases in FA and increases in AD,

RD, and ODI, the lack of longitudinal NPLS results indicate that the

effects are spatially heterogeneous, with limited covariation of DTI

and NODDI parameters. However, prior longitudinal DTI analyses

have found reliable changes in white matter at 6 months post-injury

(Henry et al., 2011), hence greater effects may appear over a timespan

longer than the typical time to RTP, which was a median of 19 days

post-injury in the present study.

The observed effects may be driven by multiple physiological

responses to concussion. Early injury is associated with glial-mediated

edema, which may be of either intracellular (Marmarou, 2007; Unter-

berg, Stover, Kress, & Kiening, 2004) or vasogenic (Unterberg et al.,

2004) origin, either of which may lead to an increase in extra-neurite

water volume. However, the presence of white matter effects at RTP

suggest a longer-term neurobiological response that persists for

weeks to months post-injury. One candidate mechanism for these

findings is neuroinflammation, which has been identified days to

months after traumatic insult (Patterson & Holahan, 2012) and has

been linked to disruptions in the blood–brain barrier of concussed

athletes (Marchi et al., 2013). The neuroinflammatory response is

mediated by glial activation, including enlargement of microglia and

astrocytes (Streit, Mrak, & Griffin, 2004), which would also serve to

increase extra-neurite water volume. The presence of a long-term

neuroinflammatory response in sport concussion is supported by prior

research, in which peripheral biomarkers of neuroinflammation were

seen in athletes years after their last concussion (Di Battista et al.,

2016). Although the present findings are similar to more severe TBI,

where they have been linked to neurodegeneration (Arfanakis et al.,

2002; Inglese et al., 2005; Nakayama et al., 2006; Newcombe et al.,

2009), the presence of these effects at early injury and the modest

levels of clinical impairment make it unlikely that neurodegeneration

is the main cause of the observed effects. Moreover, although reliable

group-level effects are observed, the individual subject effects of con-

cussion on DTI and NODDI parameters are variable, with few con-

cussed athletes showing significant abnormalities based on the

control 95% CIs shown in Figure 2c, suggesting a subtle and/or het-

erogeneous neurobiological effect.

Covariate analysis showed longitudinal changes in diffusion

parameters, relating to both SCAT symptom severity and time to RTP.

This is in contrast to prior DTI research, which found no effects of

time to RTP (Churchill, Hutchison, et al., 2017b), although the preced-

ing study employed a univariate regression approach. In the present

study, voxel saliences (Figure 3a) were spatially sparse and had small

bootstrap ratios compared with group-level results (Figure 2a). Thus,

the covariate effects are relatively weak and/or spatially heteroge-

neous in this cohort and detection likely requires the increased power

of combined DTI/NODDI data and multivariate analysis. The NPLS

analysis showed that, for individuals with elevated symptoms and pro-

longed recovery, there were greater longitudinal effects of concus-

sion, including decreasing FA and increasing AD and RD. Interestingly,

this was coupled with increasing ODI but without a significant change

in VIC. Hence, NODDI may be able to detect microstructural effects

that are specifically associated with severity of clinical outcome fol-

lowing a concussion. The change in neurite geometry, in the absence

of altered VIC, may reflect long-term neuroplastic response to injury,

as seen in more severe TBI (Dancause et al., 2005; Sidaros et al.,

2007). Alternatively, there may be a decrease in intracellular water

which is heterogeneously mixed into extracellular and isotropic water

fractions, leading to apparent inconsistent changes in tissue water.

Further research will be required to more fully characterize the rela-

tionship between clinical covariates and diffusion imaging measures.

This study has some limitations. First, the NODDI results are

based on diffusion shells with differing TR/TE values. Although simu-

lation results included in this study indicate that the renormalization

approach can effectively correct for this issue (Supporting Informa-

tion Appendix S1), future research should also validate the results

using fixed TR/TE values. In addition, the current NODDI parameter

estimates are based on compartment models developed primarily for

normal, healthy adult tissue. For example, the analyses were based on

standard values of intrinsic diffusivity (Zhang et al., 2012), but an error

in estimated diffusivity can substantially alter apparent VIC

(Hutchinson et al., 2017). Thus, the effect of concussion on neurite

volume may be confounded by other factors, including changes in
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properties of tissue water (e.g., altered viscosity) or changes in myeli-

nation status (Grussu et al., 2017). Comparison with controls pre-

sumes a similar physiology, which is reasonable given the relatively

mild nature of TBI in this cohort, but future research may benefit from

more advanced concussion-specific diffusion models. The present

findings may also be strengthened by including other advanced diffu-

sion models such as diffusion kurtosis imaging (Jensen, Helpern,

Ramani, Lu, & Kaczynski, 2005) to gain further insights into how con-

cussion affects brain tissue, and how different diffusion imaging

parameters are inter-related. In this study, a lack of pre-injury baseline

imaging also precludes determination of whether the observed DTI

and NODDI effects are direct sequelae of injury or were present prior

to the concussion. Given the presence of abnormalities at RTP, it is

also not clear if the observed differences in white matter are static, or

show ongoing change over longer timescales (e.g., months to years).

Future research should therefore also examine diffusion imaging

parameters over a longer timeline post-injury.

The present study has extended our understanding of the effects

of concussion on neural microstructure from early symptomatic injury

to RTP, thereby validating standard DTI findings among young, cur-

rently active athletes. DTI markers of brain injury are principally asso-

ciated with reduced intra-neurite volume, at the symptomatic phase

of injury and following RTP. Moreover, the longitudinal evolution of

DTI parameters is affected by acute symptom severity and time to

RTP and mainly associated with greater neurite orientation dispersion.

This work demonstrates the importance of using advanced diffusion

MRI models including NODDI to better understand how brain tissue

is altered during recovery after a concussion.
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