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Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with dysfunction in cortices as well as

white matter (WM) tracts. While the changes to WM structure have been extensively investi-

gated in PD, the nature of the functional changes to WM remains unknown. In this study, the

regional activity and functional connectivity of WM were compared between PD patients

(n = 57) and matched healthy controls (n = 52), based on multimodel magnetic resonance imag-

ing data sets. By tract-based spatial statistical analyses of regional activity, patients showed

decreased structural-functional coupling in the left corticospinal tract compared to controls. This

tract also displayed abnormally increased functional connectivity within the left post-central

gyrus and left putamen in PD patients. At the network level, the WM functional network

showed small-worldness in both controls and PD patients, yet it was abnormally increased in the

latter group. Based on the features of the WM functional connectome, previously un-evaluated

individuals could be classified with fair accuracy (73%) and area under the curve of the receiver

operating characteristics (75%). These neuroimaging findings provide direct evidence for WM

functional changes in PD, which is crucial to understand the functional role of fiber tracts in the

pathology of neural circuits.
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1 | INTRODUCTION

Parkinson's disease (PD) is the second most common neurodegenera-

tive disease after Alzheimer's disease (Dorsey et al., 2007). Patients

typically manifest with motor dysfunctions such as bradykinesia, rigid-

ity, resting tremor, and postural instability. The underlying mechanism

of PD is understood to be the loss of dopaminergic cells in the sub-

stantia nigra pars compacta. However, studies using animal models of

PD have demonstrated that pathological changes were not restricted

to the cell bodies (Burke & O'Malley, 2013); damage to the projecting

axons of substantia nigral neurons can also be observed in early stages

of PD (Tagliaferro et al., 2015). Thus, investigating the structural and

functional changes to brain white matter (WM) is critical to under-

stand the pathological mechanism of PD.

Diffusion tensor imaging (DTI) is a powerful tool to investigate

microstructural alterations to the human brain in vivo. In PD, this tech-

nique has been combined with voxel- or region-of-interest (ROI)-wise

(Atkinson-Clement, Pinto, Eusebio, & Coulon, 2017; Schwarz et al.,

2013), and graph-theoretical analyses (Aarabi et al., 2015; Li et al.,

2017; Nigro et al., 2016; Pereira et al., 2015). Tract-based spatial statis-

tics (TBSS) is a voxel-wise method, specifically developed to minimize

the methodological pitfalls caused by misalignment and misregistration

in conventional voxel-based analyses (Smith et al., 2006). However, the

TBSS findings in PD patients have differed between studies. While

some studies have found normal fractional anisotropy (FA) in PD

patients (Hattori et al., 2012; Worker et al., 2014), others reported lim-

ited (Galantucci et al., 2017) or widespread (Li, Ren, Cao, & Huang,

2017) abnormalities in brain WM. When using graph-theoretical analy-

sis, structural topological properties of regions (i.e., small-worldness and

efficiency) can be estimated by the diffusion features of fiber tracts

(Gong et al., 2009; Hagmann et al., 2008). It has been demonstrated

that the brain structural network is a small-world network with many

local connections, and a few long-distance connections, an arrangement

which is optimal for synchronizing neuronal activity between different

brain regions (Bullmore & Sporns, 2009; Ji et al., 2015). This small-

worldness has been shown to be disrupted in PD patients if they also

present with mild cognitive impairment (Galantucci et al., 2017). All

these advances have improved our understanding of the structural

changes that underlie clinical symptoms of PD (Hall et al., 2016), and

may also help in classifying healthy controls or patients with other neu-

rodegeneration diseases (Cochrane & Ebmeier, 2013).

In contrast to the number of structural studies, considerably little

functional imaging research has focused on brain WM. This is probably

because the origin of the functional magnetic resonance imaging (fMRI)

signal in WM was still largely unknown until recently (Gawryluk, Mazer-

olle, & D'Arcy, 2014), when studies indicated that functional activation in

WM can be revealed by the blood oxygenation level dependent (BOLD)

signal. For instance, different subregions of the corpus callosum can be

exclusively activated by their functionally related tasks (Courtemanche,

Sparrey, Song, MacKay, & D'Arcy, 2018; Fabri, Pierpaoli, Barbaresi, &

Polonara, 2014; Fabri & Polonara, 2013; Fabri, Polonara, Mascioli,

Salvolini, & Manzoni, 2011; Gawryluk, D'Arcy, Mazerolle, Brewer, &

Beyea, 2011; Gawryluk, Mazerolle, Beyea, & D'Arcy, 2014; Haberling,

Badzakova-Trajkov, & Corballis, 2011; Mazerolle et al., 2010; Mazerolle,

D'Arcy, & Beyea, 2008). During resting state (i.e., absence of task require-

ment on subject), the BOLD signal in WM exhibits a topological organiza-

tion rather than random distribution as noise (Ji, Liao, Chen, Zhang, &

Wang, 2017). As the fibers are tracked using DTI data, anatomical bun-

dles are able to be identified by resting-state fMRI data as well (Ding

et al., 2013; Marussich, Lu, Wen, & Liu, 2017; Peer, Nitzan, Bick, Levin, &

Arzy, 2017). Additionally, the WM function, estimated by the low-

frequency BOLD signal, can be modulated by different tasks (Ding et al.,

2018; Ji, Liao, et al., 2017; Marussich et al., 2017; Wu et al., 2017). For

instance, visual stimulation was found to exclusively increase the ampli-

tude of low-frequency fluctuation (ALFF) of bilateral optic radiations (Ji,

Liao, et al., 2017). All these evidences suggested that the BOLD signal

can be used to estimate WM function, a novel perspective that has moti-

vated some recent investigation in different brain disorders. In Alzhei-

mer's disease, it has been found that the resting-state WM function was

associated with regional glucose metabolism and correlated with memory

function (Makedonov, Chen, Masellis, & MacIntosh, 2016). Combining

dynamic functional connectivity in WM could provide valuable informa-

tion in classifying mild cognitive impairment patients and healthy controls

(Chen et al., 2017). More recently, Jiang and colleagues classified WM

into several functional networks as a previous study (Peer et al., 2017),

and estimated their disrupted synchronization with gray matter

(GM) function in schizophrenia patients (Jiang et al., 2018).

In this study, we aimed to comprehensively reveal the resting-

state function of WM in PD patients. To this end, both voxel and net-

work level analyses were performed. As our previous work indicated

that the ALFF was significantly correlated with FA in WM (Ji, Liao,

et al., 2017), supporting the idea that structural-functional coupling is

a basic organizing principle in healthy subjects (Honey et al., 2009;

Wang, Dai, Gong, Zhou, & He, 2014), the ALFF/FA ratio would be

adopted here as the regional level measure. At the network level, the

topological properties of WM functional network would be investi-

gated using graph-theoretical analysis.

2 | MATERIALS AND METHODS

2.1 | Subjects

A total of 57 patients diagnosed with PD at the First Affiliated Hospi-

tal of Anhui Medical University were consecutively enrolled in this

study. The inclusion criteria were as follows: patients fulfilling the idio-

pathic PD diagnosis according to the UK brain bank criteria, age older

than 45 years, Mini-Mental State Examination score higher than 24.

Exclusion criteria were a history of addiction, psychiatric disorders, or

neurologic diseases other than PD; focal brain lesions on T1-weighted

and T2-weighted fluid-attenuated inversion recovery images; and

head motion exceeding 3 mm in translation or 3� in rotation during

fMRI scanning. Symptoms of 51 of the patients were assessed using

the Unified Parkinson's Disease Rating Scale III (UPDRS-III) and the

Hoehn-Yahr (H-Y) stage after medication withdrawal for at least

12 hr, the so-called off state. The other six patients were assessed in

a medication-on state, without medication withdrawal. Cognitive

functions were estimated using the Montreal cognitive assessment, a

verbal fluency test, and digit span (forward and backward). Notably,
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some subjects did not complete all tests (Table 1). Healthy controls

consisted of 52 age, sex, and education-matched individuals consecu-

tively enrolled from the local community. These participants had no

history of neurological disorders or psychiatric illnesses, and no gross

abnormalities in their brain MRI. This study protocol was reviewed

and approved by the Medical Ethics Committee of Anhui Medical Uni-

versity. Written informed consent was obtained from all participants.

2.2 | Multimodel MRI data acquisition

Functional, structural, and diffusion MRI data sets were obtained at Uni-

versity of Science and Technology of China with a 3-T scanner (Discovery

750; GE Healthcare, Milwaukee, WI). Foam padding was used to minimize

head motion for all subjects. Participants were instructed to rest with their

eyes closed without falling asleep during resting-state fMRI scanning.

Functional images (217 volumes) were acquired using a single shot

gradient-recalled echo planar imaging sequence (repetition/echo time,

2,400/30 ms; flip angle, 90�). Images of 46 transverse sections (field of

view, 192 × 192 mm2; 64 × 64 in-plane matrix; section thickness with-

out intersection gap, 3 mm; voxel size, 3 × 3 × 3 mm3) were acquired

parallel to the anteroposterior commissure line. Subsequently, high-spa-

tial-resolution T1-weighted anatomic images were acquired in the sagittal

orientation using a three-dimensional brain-volume sequence (repetition/

echo time, 8.16/3.18 ms; flip angle, 12�; field of view, 256 × 256 mm2;

256 × 256 matrix; section thickness, 1 mm, without intersection gap;

voxel size, 1 × 1 × 1 mm3; 188 sections). Finally, a spin-echo echo planar

imaging sequence was used to produce 30 volumes with diffusion gradi-

ents applied along 30 noncollinear directions (b = 1,000 s/mm2) and three

volumes without diffusion weighting (b = 0 s/mm2). Each volume con-

sisted of 67 contiguous axial sections (TR = 8,600 ms, TE = 84.2 ms, flip

angle = 90�, field of view = 256 × 256 mm2, matrix = 128 × 128, slice

thickness = 2 mm, no interslice gap).

2.3 | Functional data processing

Functional images were preprocessed using the Data Processing

Assistant for Resting-State fMRI (http://rfmri.org/DPARSF) (Yan &

Zang, 2010), TMStarget (Ji, Yu, Liao, & Wang, 2017), and SPM12

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12) (Figure 1). We

deleted the first five functional volumes, and then performed slice

timing and realignment for the rest of the images. Structural images

were then coregistered with these preprocessed functional images,

and segmented into GM, WM, and cerebrospinal fluid (CSF) by Diffeo-

morphic Anatomical Registrations through Exponentiated Lie Algebra

(DARTEL) (Ashburner, 2007). Based on the transformation matrix pro-

duced by DARTEL, a CSF mask in Montreal Neurological Institute

(MNI) space (70% threshold on SPM12's a priori probability map) was

transformed into individual functional space. The mean signal in the

CSF mask and the 24 head motion parameters (Friston, Williams,

Howard, Frackowiak, & Turner, 1996) were regressed out from the

functional images in each subject's individual space. To avoid elimina-

tion of signals of interest, we did not include WM and global brain sig-

nal as nuisance regressors (Ji, Liao, et al., 2017; Peer et al., 2017).

To avoid mixing signals between GM and WM, subsequent pro-

cessing for the functional images was performed for GM and WM

separately (Figure 1). First, individual masks were produced using a

50% and 90% threshold on the probability map of GM and WM (pro-

duced by structural segmentation), respectively. To correctly classify

deep brain structures that were assigned as WM in DARTEL, the (25%

probability) Harvard-Oxford Atlas (Desikan et al., 2006) was transformed

into an individual's functional space (using the inverse matrix during

structural segmentation) to remove subcortical nuclei (i.e., bilateral cau-

date, pallidum, putamen, accumbens, thalamus, and brainstem) from the

WM mask. Second, functional images were spatially separated into GM

and WM images based on these two masks. Third, the GM images were

normalized into MNI space by structural segmentation, smoothed (6 mm

full-width half-maximum, isotropic), and filtered (0.01–0.1 Hz) for com-

puting functional connectivity and ALFF. The functional connectivity was

transformed to Fisher's z value, while the ALFF was standardized by

zero-mean normalization. Fourth, two different processes were per-

formed for the WM images. One was the same as GM, which was per-

formed for further connectivity and network analysis. The other was

computing ALFF map and transforming it into diffusion space using

TABLE 1 Demographic and clinical features

PD HC Statistics p value

Sample size (M/F) 29/28 20/32 1.69 .19a

Age (years) 59.5 � 1.21 60.6 � 1.22 0.61 .54b

Education (years) 8.4 � 0.66 9.3 � 0.56 1.08 .28b

Duration (years) 4.6 � 0.61 NA NA NA

UPDRS-III 25 � 1.41 (n = 55)* NA NA NA

H-Y 1.3 � 0.35 (n = 50)* NA NA NA

MMSE 28.1 � 0.32 28.4 � 0.21 0.90 .36b

MoCA 23.7 � 0.73 (n = 54)* 25.5 � 0.62 (n = 32)* 1.70 .10b

VFT 16.5 � 0.62 (n = 51)* 17.9 � 0.57 (n = 49)* 1.67 .10b

DST (forward) 7.2 � 0.23 (n = 49)* 6.9 � 0.21 (n = 48)* 0.87 .39b

DST (backward) 4.4 � 0.37 (n = 49)* 4.7 � 0.23 (n = 48)* 0.68 .50b

Data are mean � SE. aChi-square test; btwo-sample t test.
Abbreviations: DST = Digit Span Test; F = Female; HC = Healthy Control; M = Male; MoCA = Montreal Cognitive Assessment; NA = Not Available; PD =
Parkinson's Disease; UPDRS = Unified Parkinson's Disease Rating Scale; VFT = Verbal Fluency Test; H-Y = Hoehn and Yahr stage.
*Data in parentheses indicates the number of subjects in each test. Data without an asterisk is computed on all subjects.
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structure-FA coregistration, which was performed for structural-

functional coupling analysis (see section 2.4).

2.4 | Diffusion data processing

Diffusion images were preprocessed and analyzed using fMRIB's Soft-

ware Library (FSL) (http://fsl.fmrib.ox.ac.uk/fsl). For each subject, head

motion and eddy current-induced distortion were corrected by eddy

function. Then, FA maps were calculated by fitting the diffusion ten-

sor model at each voxel. TBSS analysis was first performed for FA

images using the routine steps (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

TBSS) (Smith et al., 2006). Specifically, FA images were transformed

into MNI space by nonlinear registration. Then, a mean skeletonized

FA image was created by thinning the FA images, and thresholded by

FA > 0.20 to include the major WM pathways, but exclude peripheral

tracts and GM. Finally, each subject's FA image was projected onto

the skeleton by filling the skeleton with FA values from the nearest

relevant tract center.

To analyze the WM function by TBSS, ALFF and the function–

structure coupling images (ALFF divided by FA) were smoothed

(6 mm full-width half-maximum, isotropic), and projected onto the

skeleton using the non-linear registration and projection vectors from

the TBSS analysis for FA images (“tbss_non_FA” script in FSL).

2.5 | Functional topology of WM network

By constructing ROI-to-ROI correlation matrix within WM, we esti-

mated the WM network properties in each group, and tested the per-

formance of classifying subjects by functional connectivity patterns.

2.5.1 | Matrix construction

First, an individual WM mask was transformed into MNI space using

the matrix from structural normalization. Then, only voxels identified

as WM in >90% of subjects were included as part of the group-level

WM mask. Second, the group-level WM mask was subdivided into

256 random ROIs with approximately identical size (Fornito, Zalesky, &

Bullmore, 2010; Zalesky et al., 2010). This was achieved by half-

splitting the target mask (i.e., the whole WM mask and its sub-masks)

recursively. In each half-splitting, two seed voxels with the largest dis-

tance were identified within the target mask. Then, other voxels were

classified into submasks according to their distance to the seed voxels.

Third, a correlation matrix was produced by Pearson's correlation

analysis between each paired ROI.

2.5.2 | Network properties

Six global topologies were computed here: network strength (Sp),

global efficiency (Eglob), local efficiency (Eloc), shortest path length (Lp),

clustering coefficient (Cp), and small worldness (σ). A recent review

describes the uses and interpretations of these network measures

(Rubinov & Sporns, 2010). These measures were computed using the

Brain Connectivity Toolbox (http://www.brain-connectivity-toolbox.

net/).

Network strength: For a network graph (G) with a given number of

nodes (N), the strength of G was calculated as follows:

Sp Gð Þ¼ 1
N

X

i2G
S ið Þ,

where S(i) is the sum of edge weights, wij—which are correlation coef-

ficient values for weighted networks—linking to node i. Network

strength is the average strength across all of the nodes in the

network.

Small-world properties: Small-world network parameters Cp, and Lp

were originally proposed by Watts and Strogatz (1998). The clustering

coefficient of a node i [C(i)] was defined as the extent to which the

neighborhoods were connected with each other or not, and was com-

puted as follows:

C ið Þ¼
P

j,h2N wijwihwjh

� �1=3

ki ki−1ð Þ ,

where ki is the number of nodes connected to node i and w is the

weight scaled by the mean of all weights to control each participant's

cost at the same level. The Cp of a network is the average clustering

coefficient over all nodes, and indicates the extent of the local inter-

connectivity or cliquishness in a network.

The path length between any pair of nodes (e.g., i and j) was

defined as the sum of edge lengths along this path. The shortest path

length, Lij, was defined as the shortest length of the path for nodes

i and j; for the network G, the shortest path length (Lp) is the average

Lij across all the paired nodes. Lp quantifies the ability for information

propagation, with larger Lp indicating lower propagation efficiency.

To examine small world properties related to Cp and Lp, brain net-

works were compared to random networks. A small world network

has similar path length but higher clustering than a random network;

that is, γ¼Creal
p =Crand

p > 1 and λ¼ Lrealp =Lrandp ≈1 (Watts & Strogatz,

FIGURE 1 Flow chart of regional-level data processing. Resting-state

functional images were segmented into white matter (WM) and gray
matter (GM) via the segmentation information of structural images.
The amplitude of low-frequency fluctuation (ALFF) maps in WM was
transformed into diffusion space by the coregistration information
between structural and fractional anisotropy (FA) images. Statistical
findings on the ALFF/FA ratio between patient and control groups
provided seed information for the WM-GM functional connectivity
analysis in Montreal neurological institute (MNI) space. Abbreviations:
CBTC = corticobasal ganglia-thalamocortical; FC = functional
connectivity [Color figure can be viewed at wileyonlinelibrary.com]
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1998). These two conditions can be summarized as a scalar quantita-

tive measurement—that is, small-worldness, σ = γ/λ—that is, typically

>1 in the case of small world organization (Achard, Salvador, Whitcher,

Suckling, & Bullmore, 2006; Humphries, Gurney, & Prescott, 2006). For

each individual brain network, a set of 100 comparable random net-

works with similar degree distribution and symmetric adjacent matrices

was formed, and Crand
p and Lrandp were defined as the average weighted

clustering coefficient and weighted path length.

Network efficiency: The global efficiency of G measures the global

efficiency of parallel information transfer in the network (Latora &

Marchiori, 2001), which can be computed as follows:

Eglob Gð Þ¼ 1
N N−1ð Þ

X

i6¼j2G

1
Lij
,

where Lij is the shortest path length between nodes i and j in G. The

local efficiency of G reveals how much the network is fault-tolerant,

and demonstrates the efficiency of communication among the first

neighbors of node i when it is removed. The local efficiency of a graph

is defined as follows:

Eloc Gð Þ¼ 1
N

X

i2G
Eglob Gið Þ,

where Gi denotes the subgraph composed of the nearest neighbors of

node i.

2.5.3 | Connectome-based classification

This classification was performed based on the ROI-to-ROI correlation

matrix (Fisher's r-to-z transformed), and estimated by leave-one-out

cross validation. We sequentially selected one subject as a test and

estimated its similarity to mean correlation matrices across the rest of

the patients and controls by Pearson's correlation. The test subject

would be assigned to the group with the higher correlation coefficient.

After 109 rounds of classification, the performance could be esti-

mated by sensitivity, specificity, accuracy, and area under the curve

(AUC) of the receiver operating characteristic (ROC). Sensitivity and

specificity referred to the percentage of cases that correctly identified

as patient and control, respectively. Accuracy referred to the total

proportion of samples correctly classified. The ROC curves provided

information regarding the balance between sensitivity and the false

positive rate (1-specificity) across a range of decision thresholds.

2.6 | Statistical analysis

Randomized script in FSL was used to test for between-group differ-

ences in the skeletonized data (i.e., FA, ALFF, and ALFF/FA), with age,

gender, and education as covariates. It performed permutation-based

testing (5,000 times) and inference using Threshold-Free Cluster

Enhancement (TFCE) (Nichols & Holmes, 2002) with a threshold of

Pcorr < 0.05, corrected for multiple comparisons.

Based on the findings of between-group comparisons of ALFF/

FA ratios, the significant cluster was defined as seed region, then the

average signal within this seed was correlated to each voxel in the

ipsilateral corticobasal ganglia-thalamocortical (CBTC) network

(Pearson's correlation-based functional connectivity). The left CBTC

mask included the left primary motor area, primary somatosensory

area, supplementary motor area from an automatic anatomical labeling

template (Tzourio-Mazoyer et al., 2002), and subcortical structures

from our previous meta-analysis of PD (including the left caudate,

putamen, globus pallidus, pedunculopontine nucleus, and subthalamic

nucleus) (Ji et al., 2018), see Supporting Information Figure S1.

Between-group comparisons were performed by a permutation test

through a toolbox in SPM12, Statistic non-Parameter Mapping (SnPM).

Briefly, it randomized the label (“patient” or “control”) of each subject

5,000 times. In each trial, a two-sample t test would produce a t map.

Based on the distribution of these 5,000 t maps, the t value in the real

labeling condition can be inferred as significant or not (Nichols &

Holmes, 2002). To control the family-wise error in multiple compari-

sons, we first set a cluster-defined threshold t, 2.37 (corresponding to

FIGURE 2 Tract-based spatial statistics on fractional anisotropy (FA) and amplitude of low-frequency fluctuation (ALFF). Patients showed

significantly decreased FA in the left cingulum as compared to healthy controls. No significant difference was found in ALFF between groups. The
fiber skeleton is illustrated in green [Color figure can be viewed at wileyonlinelibrary.com]
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p = .01 at the voxel level). Then, only clusters larger than a given vol-

ume would be reported as having survived the cluster-level correction,

Pcorr < 0.05.

Pearson correlation analyses were performed between the imag-

ing data and clinical measurements (disease duration, UPDRS-III score,

and H-Y stage) in the patients. Notably, the UPDRS-III and H-Y infor-

mation were only available for 55 and 50 patients, respectively.

Potential outliers were identified by nonlinear regression analyses in

GraphPad Prism (Motulsky & Brown, 2006).

Permutation tests were used to show the significance of classifi-

cation measures. Briefly, subjects (except the test subject) were ran-

domly assigned to patient and control group 5,000 times, with

insurance that each group had the same number of subjects as the

real condition. Based on the distribution of these 5,000 classification

measures, the significance of the discriminative performance in the

real condition was determined with p < .05 as a cut-off for

significance.

To compare the WM network property between patients and

controls, we controlled differences in edge numbers across subjects

by applying a sparsity threshold to all correlation matrices. Sparsity

was defined as the ratio of the number of existing edges divided by

the maximum possible number of edges in a network. This approach

normalized the number of edges for all resultant networks by applying

a subject-specific correlation coefficient threshold, and minimized the

effects of possible discrepancies in the overall correlation strength

between groups (Wig, Schlaggar, & Petersen, 2011). Instead of select-

ing a single threshold, we repeatedly determined a threshold for each

correlation matrix over a wide range of sparsity levels according to

the following criteria: the lower range of sparsity was defined as the

average degree of a node (i.e., the number of connections linked to

the node) over all nodes of each thresholded network, which was

>2 × log(N), with N = 256 denoting the number of nodes. The upper

range of sparsity corresponded to the lowest significant correlation

coefficient (p < .05) among all subjects. This generated the range of

thresholds of 0.04 ≤ S ≤ 0.40. Finally, the area under the global prop-

erty curve was evaluated by a two-sample t test, which provided an

overall estimation independent of the sparsity threshold.

2.7 | Supplementary analysis

To estimate the influence of medication, global signal regression, and

head motion, on our findings, we performed additional analyses.

(1) We excluded the six patients in a medication-on stage and

repeated all the analyses. (2) We regressed out the average global sig-

nal during functional data processing and kept all other processes.

(3) We did not delete functional data according to head motion

parameters in the primary report, since this process is still in debate.

Its influence on our findings was estimated here. We assessed frame-

wise displacement (FD) for each functional volume (Power, Barnes,

FIGURE 3 Structural and functional alterations in the left corticobasal ganglia-thalamocortical network in Parkinson's disease (PD). PD patients

exhibit decreased amplitude of low-frequency fluctuation (ALFF)/fractional anisotropy (FA) ratio in the corticospinal tracts (shown here in blue)
and increased white matter (WM)—Gray matter (GM) functional connectivity (shown here in red). The fiber skeleton for tract-based spatial
statistics is illustrated in green. In the patient group, the abnormal ALFF/FA ratio in the corticospinal tract shows a significant negative correlation
with disease duration. Notably, this correlation become nonsignificant after removing two statistical outliers marked in red color [Color figure can
be viewed at wileyonlinelibrary.com]
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Snyder, Schlaggar, & Petersen, 2012). Along with the bad time points

(FD > 0.5 mm), one preceding and two following points were deleted

as an additional preprocessing step prior to computing imaging mea-

sures (i.e., ALFF and functional connectivity).

3 | RESULTS

3.1 | Demographic characteristics

No significant differences were found in age, male/female ratio, years

of education, and cognitive scores between PD and controls (Table 1).

The FD (Power et al., 2012) was also similar between groups

(t = 0.25, p = .80).

3.2 | WM structural-functional coupling

TBSS analysis indicated significant between-group differences in FA

and ALFF/FA, but not ALFF (Pcorr < 0.05). Significantly decreased FA

and ALFF/FA was found in the left cingulum and left corticospinal

tract, respectively, in PD patients relative to controls (Figure 2 and 3).

See the smoothing kernel effect on ALFF/FA comparison in Support-

ing Information Figure S2. Pearson's correlation analysis indicated that

the ALFF/FA ratio of the left-corticospinal cluster negatively correlated

with disease duration (r = −0.45, p = .0005, Figure 3), but not H-Y

(r = −0.09, p = .51) or UPDRS-III (r = −0.05, p = .74) scores. No signifi-

cant correlation was found between FA in the left cingulum and clinical

measures (all p > .05, see statistics in Supporting Information Table S2).

3.3 | WM-GM functional connectivity

Significant cluster in the ALFF/FA analysis was defined as a seed

region for this functional connectivity analysis. PD patients showed

increased functional connectivity in the left post/precentral gyrus, and

left putamen (Figure 3, Supporting Information Table S1, Pcorr < 0.05

in cluster level [voxel-level p < .01, cluster size>38 voxels, permuta-

tion test]). No significant correlation was found between these

FIGURE 4 Network construction and property comparison. White matter network was constructed by correlation analysis between 256 random

region-of-interests (a). Curves displaying the quantification of global topologies of functional networks in patient and control groups (b). Inset

maps (with mean and SD) show significant between-group differences in the area under the curve in network efficiency (gamma), and small-
worldness (sigma). Colored shadows indicate the SD of global properties across sparsities [Color figure can be viewed at wileyonlinelibrary.com]
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functional abnormalities and the clinical measures in the PD group (all

p > .05, see statistics in Supporting Information Table S2).

3.4 | WM functional network properties

PD patients showed significantly increased relative Cp (gamma,

t = 2.27, p = .03) and small-world property (sigma, t = 2.50, p = .02)

compared to controls. Other properties (Sp [t = −0.25, p = .81], Elocal

[t = −0.06, p = .95], Eglobal [t = 0.40, p = .69], and lambda [t = −1.38,

p = .17]) were similar between groups (Figure 4). No significant corre-

lation was found between network properties (gamma and sigma) and

clinical measures in the PD group (all p > .05, see statistics in Support-

ing Information Table S2). These findings were well-replicated when

the WM mask was divided into 128 and 512 random ROIs

(Supporting Information Table S3).

3.5 | WM connectome-based classification

Based on the functional connectivity pattern within WM, leave-one-

out cross validation indicated that PD patients could be discriminated

from healthy controls with 73% accuracy (75% sensitivity, 70% speci-

ficity), and 75% AUC (both permutation tests were significant

at p < .005).

3.6 | Complementary analysis

Among the four types of measurements (ALFF/FA ratio, WM-GM

functional connectivity, network property, and connectome-based

classification), only the network property findings were not replicated

in the “global regression” condition, while the others were reproduced

in all the three complementary analyses (Supporting Information

Table S4).

4 | DISCUSSION

This study systematically investigated WM function in PD using multi-

model MRI data sets. At the regional level, the TBSS analysis indicated

a decreased ALFF/FA ratio in the left corticospinal tracts in PD

patients, which was aggravated with disease duration. This left corti-

cospinal cluster also showed abnormally increased functional connec-

tivity within the CBTC network in PD patients. At a global level,

graph-theoretical analysis indicated abnormally increased Cp and

small-world properties in PD patients. Furthermore, the WM func-

tional connectome showed fair performance (73% accuracy and 75%

AUC) in discriminating PD patients from controls. In summary, our

findings characterized the regional and network functioning of WM in

PD, providing important information for the understanding of PD

pathophysiology.

Changes in brain structure and function have been extensively

investigated with neuroimaging studies in order to reveal the patho-

physiology of PD (Ji et al., 2018; Li, Ren, Cao, & Huang, 2018).

Although many TBSS studies have investigated WM in PD, the num-

ber of patients analyzed was less than 30 in most studies (Ji, Wang,

Zhu, Liu, & Shi, 2015; Li et al., 2018; Worker et al., 2014). This limita-

tion may increase sample heterogeneity between studies, resulting in

quite different findings that may be difficult to replicate. For instance,

while some studies reported no significant FA abnormality in PD

patients (Hattori et al., 2012; Worker et al., 2014), others found wide-

spread FA changes (Li et al., 2018). Using a large sample-size

(170 patients), Galantucci and colleagues found significant FA

decreases in the corpus collosum and associative frontoparietal tracts

in PD patients relative to controls (Galantucci et al., 2017). Consistent

with this, we found significantly decreased FA in the left cingulum

connecting the frontal and parietal cortices.

In addition to the conventional measure (i.e., FA), two novel mea-

sures (i.e., ALFF and ALFF/FA) were adopted for investigating WM

function and structural-functional coupling. In PD patients, abnormal-

ity was only found in the ALFF/FA but not ALFF. FA and ALFF were

complementary measures reflecting WM structure and function, and

showed significant correlation in healthy subjects (Ji, Liao, et al.,

2017). In pathological condition, this structural-functional coupling

may be disrupted and the three measures showed different changes

in patients. Similarly, functional connectivity strength (FCS) and cere-

bral blood flow (CBF) showed significant correlation in healthy sub-

jects (Liang, Zou, He, & Yang, 2013), but their abnormalities were

distinct to FCS/CBF ratio in schizophrenia patients (Zhu et al., 2017).

In this study, we found the left corticospinal tracts showing abnor-

mally low ALFF/FA in PD patients, which is consistent with the core

PD symptom observed in the clinic (i.e., impaired motor function). This

result suggests that structural-functional coupling is a sensitive WM

measure to detect the neuropathological changes in PD. Furthermore,

as the left corticospinal tracts showed abnormal connectivity with cor-

tical and subcortical nodes within motor network in PD patients, our

findings indicate that this WM substruction does not properly func-

tionally connect cortical (post/precentral gyrus) and subcortical (puta-

men) nodes. Further studies are needed to investigate whether the

increased WM-GM functional connectivity is a compensatory change

in the PD brain. Taken together, the FA, ALFF, and ALFF/FA ratio

could provide complementary information and should be jointly used

to reveal pathological changes in schizophrenia.

Graph theory provides a network perspective for investigating

how different regions of the brain work interactively. In both healthy

and disease conditions, the WM structural and GM functional features

have been extensively investigated by graph-theoretical analysis on

diffusion and fMRI data, respectively (Gong et al., 2009; Ji et al.,

2016; Ji, Zhang, et al., 2015). It has been demonstrated that the

human brain is organized in a “small-world” pattern to produce high

value for low energetic cost (Bullmore & Sporns, 2012). In this study,

we investigated the functional architecture of the WM network using

resting-state fMRI. Both healthy controls and PD patients showed a

small-world property (gamma > 1, and lambda ffi 1), but the patients

indicated greater gamma and sigma. Gamma is the global clustering

coefficient of a real network relative to a random network. The

increase in sigma (the ratio of gamma and lambda) observed in

patients was mainly a result of an alteration in gamma, as the lambda

was similar between groups. This pattern of WM functional reconfi-

guration can be summarized as a shift to higher integrative capacity

with low additional expense of metabolic connection costs. Con-

versely, WM functional networks become more optimal in PD

patients. This was different from previous findings concerning WM
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structure (Galantucci et al., 2017) and GM function (Gottlich et al.,

2013; Kim et al., 2017) in PD patients, and suggests a functional-

structural decoupling at the network level.

Our findings also have several clinical implications. First, we

hypothesized that a group of subjects with common behavior possess

a similar functional WM connectome (Finn et al., 2015; Miranda-

Dominguez et al., 2014), and that subjects could therefore be classi-

fied according to their connectome similarity with candidate groups.

The classification indicated fair performance with 73% accuracy, and

75% AUC. To improve their performance, future studies should adopt

an individualized functional atlas rather than group parcellation for

cross-subject alignment (Wang et al., 2015), and a movement-related

rather than resting-state design (Finn et al., 2017). Second, transcra-

nial magnetic stimulation (TMS) is an noninvasive neuro-modulation

technique, which has shown potential to treat PD (Chou, Hickey,

Sundman, Song, & Chen, 2015); however, its mechanism is still largely

unknown. In addition, most TMS equipment can only effectively stimulate

superficial cortical areas. It has been hypothesized that the after-effects

of stimulation could reach distant areas via structural connections, but

how fiber tracts are functionally modulated by TMS and interact with

cortical and subcoritcal nuclei remains to be determined. Our findings

suggest that the ALFF/FA ratio may be used as a potential biomarker to

understand the mechanism of TMS in PD treatment.

There were some limitations in this study. First, to exclude any

short-term effect of medication on the results, most patients were

evaluated in a medication-off state. However, the long-term effect of

medication still presumably persisted in these patients. Future studies

with drug-naïve patients are necessary to address this issue. Second,

unlike in GM, the physiological basis of the BOLD signal in WM is still

undetermined. In a systematic review, Gawryluk and colleagues sug-

gested that the hemodynamic changes in WM may relate to the ener-

getic requirement for spiking activity, maintenance of resting potential

and neuronal housekeeping processes, whereas the contribution of

artifacts (such as motion, partial volume, and physiological noise) was

minimal (Gawryluk, Mazerolle, & D'Arcy, 2014). In this study, the pos-

sible effect of artifacts was also accounted for by regression of motion

parameters, regression of CSF signal, and independent processing for

GM and WM. Future neurophysiological studies on the WM BOLD

signal are imperative to further explain the current findings in PD

patients. Third, in accordance with previous studies (Ji, Liao, et al.,

2017; Jiang et al., 2018; Peer et al., 2017), our main findings were

based on data without global signal regression, but the complemen-

tary analysis indicated the findings of WM network properties may be

sensitive to this processing. The effect of global signal regression has

long been discussed when estimating GM function (Murphy & Fox,

2016); yet more specific investigations are needed to show its influ-

ence on WM functional analysis.

5 | CONCLUSION

This study investigated WM function in PD using resting-state fMRI.

At the regional level, the left corticospinal tract in PD patients showed

decreased functional-structural coupling and increased synchroniza-

tion with the CBTC nodes. At the global level, the WM functional

network in patients showed small-world properties and was abnor-

mally increased, compared to healthy controls. In summary, these

findings on WM function provide a complement to conventional

structural studies, which together are important for understanding the

pathophysiology of PD.
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