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Abstract

4D (spatial + temporal) infant cortical surface atlases covering dense time points are

highly needed for understanding dynamic early brain development. In this article, we

construct a set of 4D infant cortical surface atlases with longitudinally consistent and

sharp cortical attribute patterns at 11 time points in the first six postnatal years, that

is, at 1, 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 months of age, which is targeted for bet-

ter normalization of the dynamic changing early brain cortical surfaces. To ensure

longitudinal consistency and unbiasedness, we adopt a two-stage group-wise surface

registration. To preserve sharp cortical attribute patterns on the atlas, instead of simply

averaging over the coregistered cortical surfaces, we leverage a spherical patch-based

sparse representation using the augmented dictionary to overcome the potential regis-

tration errors. Our atlases provide not only geometric attributes of the cortical folding,

but also cortical thickness and myelin content. Therefore, to address the consistency

across different cortical attributes on the atlas, instead of sparsely representing each

attribute independently, we jointly represent all cortical attributes with a group-wise

sparsity constraint. In addition, to further facilitate region-based analysis using our

atlases, we have also provided two widely used parcellations, that is, FreeSurfer

parcellation and multimodal parcellation, on our 4D infant cortical surface atlases.

Compared to cortical surface atlases constructed with other methods, our cortical

surface atlases preserve sharper cortical folding attribute patterns, thus leading to

better accuracy in registration of individual infant cortical surfaces to the atlas.

K E YWORD S

cortical attributes, cortical parcellation, group-wise sparsity, infant cortical surface atlas,

surface registration

1 | INTRODUCTION

The brain atlas plays an important role in brain-related research, since

it provides a common space for normalizing, comparing, and analyzing

brain structures and functions across different individuals and studies

(Evans, Janke, Collins, & Baillet, 2012). The first brain atlas could date

back to 1900s, when researchers used the cell stain method on ex vivo

brains to label and map brain cytoarchitecture and myeloarchitecture,

forming the earliest cerebral cortex parcellation (Brodmann, 1909,

1914). Due in part to the invention of the MRI, researchers can now

construct brain atlas from in vivo brain images, which has greatly

enriched the understanding and analysis on brains. Generally, there are
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two types of brain atlases: (a) volumetric atlases (Dickie, Shenkin,

Anblagan, et al., 2017; Shi et al., 2011; Tzourio-Mazoyer et al., 2002)

(which are directly constructed from volumetric brain MR images), and

(b) cortical surface atlases (which are constructed based on the

reconstructed cortical surfaces from volumetric MR images) (Fischl,

Sereno, Tootell, et al., 1999; Lyttelton, Boucher, Robbins, & Evans,

2007; Toro & Burnod, 2003; Van Essen & Dierker, 2007). Compared to

volumetric atlases, cortical surface atlases provide more valuable and

accurate references for brain studies by respecting the topology of the

highly convoluted cerebral cortex (Glasser et al., 2016; Li, Nie, Wang,

Shi, Lyall, et al., 2013; Li et al., 2014; Li, Lin, Gilmore, & Shen, 2015;

Van Essen, Drury, Joshi, et al., 1998, 2000; Van Essen, Smith, Barch,

et al., 2013; Van Essen, Snyder, Raichle, et al., 2004).

Many cortical surface atlases have been constructed to facilitate

adult brain studies. For example, FreeSurfer cortical surface atlas was

constructed by landmark-free coregistration of cortical folding pat-

terns of 40 adult brains (Fischl, Sereno, Tootell, et al., 1999).

Population-Average, Landmark and Surface-based (PALS) cortical sur-

face atlas was constructed by a sulcal–gyral landmark-constrained

registration of 12 adult brains (Van Essen, 2005; Van Essen & Dierker,

2007). International Consortium for Brain Mapping cortical surface

atlas was constructed by unbiased coregistration of curvature pat-

terns of 222 adult brains (Lyttelton et al., 2007). More recently, the

Human Connectome Project (HCP) cortical surface atlas (Glasser

et al., 2016) was constructed by cortical surface registration driven by

multimodal information in a common framework (Robinson et al.,

2014). These cortical surface atlases, encoding the geometric cortical

folding attributes (e.g., average convexity, sulcal depth, curvature, etc.)

as well as other informative cortical attributes (e.g., cortical thickness,

myelin content, and functional connectivity), have been widely applied

in understanding the adult brain. However, these adult cortical surface

atlases are not suitable for characterizing the dynamic developing

infant brains, due to the dramatic differences in brain size, appear-

ance, shape, and folding between adults and infants. Therefore,

infant-dedicated cortical surface atlases are highly needed for early

brain development studies.

Few works have been dedicated to infant cortical surface atlas

construction. Hill et al. (2010) constructed the first neonatal cortical

surface atlas, PALS-term 12 atlas, by coregistration of 12 term-born

neonatal cortical surfaces. In particular, the coregistration was driven

by the manually delineated sulcal–gyral landmark curves (Van Essen

et al., 2004; Van Essen, Drury, Dickson, et al., 2001). Kim et al. (2016)

constructed a spatiotemporal cortical surface atlas for the preterm-

born neonates from 26 to 40 postmenstrual weeks, based on surface

registration framework (Lyttelton et al., 2007; Robbins, Evans,

Collins, & Whitesides, 2004) from the CIVET1 pipeline. Specifically,

they used 231 scans from 158 preterm-born neonates, and constructed

atlases at four postmenstrual age ranges, that is, 26–30, 31–33, 34–36,

and 37–40 weeks. Bozek, Fitzgibbon, Wright, et al. (2016) and Bozek

et al. (2018) created a spatiotemporal neonatal cortical surface atlas

at each week from 36 to 44 weeks of postmenstrual age, based on

270 full-term subjects. The Multimodal Surface Matching registration

(Robinson et al., 2014) was adopted to coregister spherical cortical

surfaces in each week group.

However, these infant cortical surface atlases cover only the neo-

natal stage, which is not sufficient to accurately characterize the

dynamic, regionally heterogeneous, and nonlinear postnatal develop-

ment of infant brains (Li, Nie, Wang, Shi, Lin, et al., 2013). To address

this issue, Li et al. (2015) constructed the first 4D infant cortical sur-

face atlases at seven densely sampled time points, including 1, 3, 6, 9,

12, 18, and 24 months of age, based on 202 serial MRI scans from

35 healthy term-born infants, with each infant scanned longitudinally

from birth. To ensure longitudinal consistency and unbiasedness to

any specific subject and age, they first computed the within-subject

mean by averaging the group-wise coregistered longitudinal cortical

surfaces from an individual subject. Then, they further established lon-

gitudinally consistent and unbiased intersubject cortical surface corre-

spondence by group-wise coregistration of the within-subject means

from different subjects. Thus, these 4D surface atlases can capture

dynamic population-average shape changes during early brain devel-

opment. However, due to potential registration errors and consider-

able intersubject cortical attribute variations, the population-average

cortical attributes were often oversmoothed on the constructed 4D

atlases, which potentially degrades the registration performance when

aligning new subjects to these 4D atlases.

To address this issue, we propose to leverage a spherical patch-

based sparse representation method to construct a set of 4D infant

cortical surface atlases, which preserves sharper cortical attribute pat-

tern and increases the registration performance. The spherical patch-

based analysis has been shown as an elegant way for exploring the

cerebral cortex, for example, for the Alzheimer's disease diagnosis

(Zhang, Fan, Li, et al., 2017). In this work, our central idea is (a) for

each spherical patch in the atlas space, we build a dictionary which

includes corresponding patches and their spatially neighboring pat-

ches from all coregistered cortical surfaces, and (b) for each cortical

attribute on the atlas patch, we sparsely represent it using the dictio-

nary patches. The advantages of this method include (a) by augmenting

the patch dictionary with the neighboring patches, the potential regis-

tration errors can be tolerated, and (b) sparse representation is substan-

tially robust to noisy cortical attributes, where the noisy cortical

attribute refers to the cortical attribute that has least agreement with

the population's attribute. These two advantages made the proposed

atlas construction framework more robust to noise in cortical attributes,

and thus preserve the continuous attribute patterns on our atlases. In

this work, we capitalize on six cortical attributes, that is, four geometric

cortical folding attributes such as sulcal depth, average convexity, mean

curvature, and local gyrification index (LGI), as well as the cortical thick-

ness and myelin content. Note that, since different cortical attributes

can be regarded as different views of the cortical folds, they are highly

correlated and thus required to be consistent on the constructed 4D

atlas. Therefore, instead of sparsely representing each cortical attribute

independently, we jointly represent all attributes with a group-wise

sparsity constraint. Our constructed 4D infant cortical surface atlases

have three merits: (a) it covers the longest time range in the densest1https://mcin-cnim.ca/technology/civet/
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manner (i.e., the first six postnatal years with 11 time points at 1, 3,

6, 9, 12, 18, 24, 36, 48, 60, and 72 months of age) for characterizing

the dynamic early postnatal brain development, based on 339 longitudi-

nal MR scans from 50 healthy infants; (b) it provides comprehensive

views for describing cerebral cortex development by introducing multi-

ple longitudinal corresponding and consistent cortical attributes; and

(c) it preserves sharp cortical attribute patterns for representing the

population cortical attribute, which leads to better registration accuracy

when used to align individual infant cortical surfaces. To further

facilitate region-based analysis, we have also provided the con-

structed 4D infant cortical surface atlases with two widely used

parcellations, that is, FreeSurfer parcellation (Desikan et al., 2006)

and the HCP multimodality parcellation (MMP) (Glasser et al., 2016).

This article significantly extends our previous conference paper

(Wu, Li, Meng, et al., 2017) in the following three aspects: (a) we have

provided more cortical attributes to better characterize infant cerebral

cortex development; (b) we have addressed the issue of consistency

across different cortical attributes using the group-wise sparse repre-

sentation; and (c) we have provided more details and experiments for

explaining and validating our constructed 4D infant cortical surface

atlases.

The rest of this article is organized as follows. In Section 2, we

briefly introduce the dataset and related MR image processing steps

involved in the atlas construction. In Section 3, we present the whole

framework in detail. In Section 4, we evaluate our constructed 4D

atlases qualitatively and quantitatively. In Section 5, we discuss some

components in our framework and analyze their influences. Finally,

we conclude this paper in the last section.

2 | MATERIALS AND IMAGE PROCESSING

2.1 | Materials

Serial T1-weighted (T1w) and T2-weighted (T2w) MR images from

50 healthy infants were acquired using a Siemens 3T head-only

scanner with a 32-channel head coil. Each subject was scheduled to

be scanned at 1, 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 months of

age. At each scheduled scan, both T1w and T2w MR images were

collected. All images were quality controlled by neuroradiologists,

and images with insufficient quality were removed from the study.

In total, 339 images were collected. The subject number and gender

information (with M indicating male, and F indicating female) at each

time point are reported in Table 1. The imaging parameters for T1w MR

image are: Time of Repetition (TR) = 1,900 ms, Time of Echo

(TE) = 4.38 ms, flip angle = 7, and the resolution = 1 × 1 × 1 mm3. The

imaging parameters for T2w MR image are: TR = 7,380 ms, TE = 119 ms,

flip angle = 150, and the resolution = 1.25 × 1.25 × 1.95 mm3. More

detailed information on imaging protocol in this work can be found in Li,

Wang, et al. (2015), Nie et al. (2011), and Wang et al. (2012).

2.2 | Image processing

All infant T1w and T2w MR images were processed by the UNC

Infant Cortical Surface Pipeline (Li, Nie, Wang, Shi, Lin, et al., 2013; Li

et al., 2014; Li, Nie, et al., 2014; Li, Wang, et al., 2015). Briefly, it

included the following major preprocessing steps: (a) intensity inho-

mogeneity correction by N3 (Sled, Zijdenbos, & Evans, 1998); (b) rigid

alignment of the T2w image to the corresponding T1w image and fur-

ther resampling to 1 × 1 × 1 mm3 using FSL (Smith et al., 2004);

(c) skull stripping by a learning-based method (Shi et al., 2012);

(d) cerebellum and brain stem removal by registration (Shen &

Davatzikos, 2002) with a volumetric atlas (Shi et al., 2011); (e) rigid

alignment of all longitudinal images of the same subject; (f) longitudi-

nally consistent tissue segmentation using learning-based multisource

integration framework (Wang et al., 2012; Wang et al., 2015); and

(g) masking and filling noncortical structures, and separation of each

brain into left and right hemispheres (Li, Nie, Wang, Shi, Lin, et al.,

2013; Li, Nie, Wang, Shi, Lyall, et al., 2013).

For each hemisphere of each subject brain, the topologically cor-

rect and geometrically accurate inner (white/gray matter interface)

and outer (gray matter/cerebrospinal fluid interface) cortical surfaces

were reconstructed using a topology-preserving deformable surface

method based on tissue segmentation results (Li et al., 2012; Li, Nie,

et al., 2014). Specifically, to reconstruct the inner cortical surface,

firstly, topological defects were corrected on the white matter volume

based on a learning-based method (Hao, Li, Wang, et al., 2016), ensur-

ing a 2D topology for each hemisphere. Then, the corrected white

matter volume was tessellated as a triangular mesh. Next, the triangu-

lar surface mesh was deformed by preserving its initial topology to

reconstruct the inner and outer cortical surfaces (Li et al., 2012; Li,

Nie, et al., 2014). To simplify cortical surface registration, the inner

cortical surface was further smoothed, inflated, and mapped to a

sphere by minimizing the metric distortion between the original corti-

cal surface and its spherical representation (Fischl, Sereno, & Dale,

1999). Notably, the inner surface, outer surface, inflated surface, and

the mapped spherical surface are all represented as triangular meshes,

which can be uniformly denoted as Sτ = Vτ ,Fτð Þ, with Vτ indicating the

vertices, and Fτ indicating the triangular faces, where τ2 {Inner,Out-

er, Inflate, Sphere} indicates the surface type. Note that VInner, VOuter,

VInflate, and VSphere have one-to-one vertex correspondence.

TABLE 1 Subjects for constructing the 4D infant cortical surface atlases

Scan age (months) 1 3 6 9 12 18 24 36 48 60 72 Total

Subject number 39 36 41 36 36 40 23 14 26 28 20 339

Gender M:23

F:16

M:20

F:16

M:21

F:20

M:19

F:17

M:21

F:15

M:22

F:18

M:10

F:13

M:5

F:9

M:11

F:15

M:12

F:16

M:8

F:12

M:172

F:167
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The cortical attributes M are provided along with the cortical

surface atlases. In this work, we mainly focus on six typical cortical

attributes, that is, four geometric cortical folding attributes that

include average convexity (denoted as MA) (Fischl, Sereno, Tootell,

et al., 1999), mean curvature (MC ) (Fischl, Sereno, Tootell, et al., 1999),

sulcal depth (MD) (Li, Wang, et al., 2014), and LGI (MG) (Li, Wang,

et al., 2014), and two other attributes that include cortical thickness

(MT ) (Li, Lin, et al., 2015) and myelin content (ML) (Glasser & Van

Essen, 2011). These cortical attributes were computed from the

reconstructed cortical surfaces using the UNC Infant Cortical Surface

Pipeline (Li, Nie, Wang, Shi, Lin, et al., 2013; Li, Nie, et al., 2014; Li,

Wang, et al., 2014; Li, Wang, et al., 2015). Once the cortical attributes

are computed, they can be attached to any cortical surface (inner,

outer, inflate, and sphere) for visualization or analysis. For a local

vertex vi 2V, i=1,…, Vj j, we use Mj við Þ (j2 {A,C,D,G,T,L}) to denote a

certain cortical attribute of this vertex.

3 | METHODS

3.1 | Main framework

After preprocessing, we obtain cortical surfaces and corresponding

cortical attributes for each subject at each age. The atlas at each age,

with specific cortical attribute, should be representative of the popu-

lation from that age. Therefore, we can formulate the construction of

a 4D infant cortical surface atlas for each cortical attribute as a sparse

representation (Tibshirani, 1996) of cortical attributes of individual

subjects. To maintain the consistency across different cortical attri-

butes on the atlas, we further require that the representation for dif-

ferent cortical attributes should share similar sparsity structure, which

can be achieved by introducing a group-wise sparsity constraint

(Argyriou, Evgeniou, & Pontil, 2007, 2008; Liu, Ji, & Ye, 2009; Nie,

Huang, Cai, et al., 2010).

The main framework for 4D infant cortical surface atlas con-

struction includes the following three steps. First, we establish the

unbiased spatio-temporal cortical correspondence across different

subjects and different time points using a two-stage group-wise

registration. Then, for each local patch in the atlas space, we build a

dictionary for sparse representation. Of note, the dictionary

includes not only the corresponding patches from the age-matched

coregistered cortical surfaces, but also the neighboring patches to

account for the possible registration errors. Finally, we jointly represent

all cortical attributes of the atlas patch by the cortical attributes of pat-

ches in the dictionary, through a group-wise sparsity constraint. This

joint representation is formulated as a multitask sparse representation

problem, that is, the dirty model (Jalali, Sanghavi, Ruan, et al., 2010),

with each task corresponding to sparsely representing a specific cortical

attribute. The reason of choosing the dirty model is that it enables us

to impose the group-wise sparse constraint and address potential

noises in the obtained cortical attributes. By using these described

steps, we can not only preserve sharp patterns of the cortical attributes,

but also maintain consistency across different attributes on the

constructed 4D cortical surface atlas. In the following section, we will

explain each step in detail.

3.2 | Establishing spatio-temporal cortical
correspondences

Establishing correspondence across different individual cortical sur-

faces is the first step for atlas construction. To further assist longitudi-

nal analysis, we require the 4D infant cortical surface atlases to have

longitudinal (temporal) cortical correspondences across all ages. That

means, for the same location in the atlas space, its cortical attributes

from different ages are corresponded.

A straightforward solution is to directly align all individual cortical

surfaces at different ages into a common space, using the group-wise

registration. However, this will result in poor longitudinal correspon-

dence across different time points because we have two kinds of cor-

tical attribute variations that need to be normalized during the

registration: (a) within-subject changes due to each subject's own brain

development and (b) intersubject variations due to interindividual

differences. As the primary and secondary cortical folds are present at

term birth and preserved during postnatal development (Hill et al.,

2010; Li, Nie, Wang, Shi, Lin, et al., 2013), the within-subject changes

of cortical attributes are much smaller than the intersubject variations.

Thus, the registration will be dominated by the intersubject variations,

whereas the within-subject (longitudinal) changes will be less addressed,

causing inconsistent longitudinal correspondence.

To avoid this issue, we adopt a two-stage (intrasubject and inter-

subject) group-wise cortical surface registration strategy, to not only

ensure the spatio-temporal correspondences, but also preserve the

within-subject longitudinal consistency. The registration framework is

illustrated in Figure 1.

The first stage is to establish the unbiased intrasubject longitudinal

cortical correspondences for each subject. To this end, all longitudinal

cortical surfaces of the same subject are group-wise coregistered, and

then the intrasubject mean is obtained. Note that, considering that all

primary and secondary cortical folds preserve stably during postnatal

development, accurate intrasubject registration can be obtained,

which leads to sharp intrasubject mean for capturing subject-specific

representative cortical attribute patterns.

The second stage is to establish intersubject cortical correspon-

dences across all subjects. Specifically, the intrasubject mean surfaces

of all subjects are group-wise coregistered into a common space, that

is, the intersubject mean space. Then, the longitudinally consistent

intersubject cortical correspondences are also established based on

the sharp cortical attribute patterns in each intrasubject mean, and

thus each cortical surface of each subject at each time point can be

warped into the intersubject mean space.

The group-wise cortical surface registration method used in the

above two stages is the spherical demons (Yeo, Sabuncu, Vercauteren,

et al., 2009), which has been shown to have similar registration accu-

racy as FreeSurfer, but is much more efficient. It can group-wise align

cortical surfaces based on the geometric cortical attribute patterns

mapped on the spherical surface.
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The spherical demons extends the traditional diffeomorphic demons

algorithm (Cachier, Bardinet, Dormont, Pennec, & Ayache, 2003;

Vercauteren, Pennec, Perchant, & Ayache, 2009) from the Euclidean

space to the spherical space. The objective function of the traditional

diffeomorphic demons in Euclidean space is:

Υ*,Γ*� �
= argmin

Υ,Γ
Σ−1 F−M∘Γð Þ�� ��2 + 1

σ2x
dist Γ,Υð Þ+ 1

σ2T
Reg Υð Þ

where F and M are the fixed image and moving image, respec-

tively; Γ and Υ are both deformation fields; dist(�) indicates the dis-

tance between Γ and Υ; and Reg(�) denotes the regularization which

generally penalizes the Jacobian of the deformation field. Matrix Σ

models the variance of the voxel-wise attribute (intensity) across the

images; σx and σT provide a balance across the data fitting term and

the regularization term. The reasons for introducing two displacement

fields Γ and Υ are: (a) by introducing Υ, the objective function could

be more efficiently solved through iterative updating of Γ and Υ; and

(b) by modeling the process of updating Γ as a diffeomorphic velocity

field evolution, the diffeomorphism of the transformation can be pre-

served. To extend it to the spherical surface space, the F and M are

now regarded as the fixed and moving spherical surfaces with certain

cortical attribute, for example, the average convexity or curvature

(Yeo et al., 2009). The dist(Γ,Υ) is defined as the distance of the tan-

gent vectors of Γ and Υ on the sphere; while Reg(Υ) is defined as the

energetic inner product with the Laplacian operator, which can pre-

serve a smaller deformation field with a small Reg(Υ). By introducing

these new definitions, the spherical demons successfully extended

the traditional demons registration to the spherical space. The advan-

tages of the spherical demons registration are: (a) the registration is

very efficient, that is, a pair-wise registration can be done in a few

minutes; (b) the registration can be extended to involve multiple

cortical attributes hierarchically, for example, the functional attributes

or myelin content. In this work, we adopted the commonly used aver-

age convexity and curvature for driving the cortical surface registration.

Once the pair-wise surface registration is defined, the group-wise

surface registration can be achieved by iteratively aligning each indi-

vidual cortical surface into the same common space. Specifically, it

first aligns each individual cortical surface into the mean surface of all

cortical surfaces; second, given with the registered surfaces, the mean

surface can be updated and all the individual cortical surfaces are then

aligned to the updated mean surface. This procedure is iterated until

convergence.

After aligning all individual cortical surfaces at different ages into

the intersubject common space, we further resample all the registered

surfaces and their cortical attributes with a standard mesh tessella-

tion, which has 163,842 vertices and is sufficient to preserve the spa-

tial detailed information of the convoluted cortical surface for infant

brains (typically with less than 110,000 vertices).

3.3 | Building spherical patch dictionary

After registration and resampling, all subjects are now sitting in the

intersubject mean space and all spherical cortical surfaces from different

subjects are sharing the same mesh structure. Although a direct average

operation over all subjects at each age (time point) could be conducted

to obtain age-specific population-average atlases (Li, Wang, et al.,

2015), this will lead to oversmoothed cortical attribute patterns due to

potential registration errors and large intersubject variations. As illus-

trated in Figure 2, the cortical attribute patterns on the population-

average atlas are oversmoothed, and many detailed cortical attribute

patterns are lost. Therefore, when using the population-average 4D

atlases as the reference to spatially normalize the individual infant corti-

cal surfaces with sharp cortical attribute patterns, the registration

F IGURE 1 Illustration of two-stage registration for establishing intrasubject and intersubject cortical correspondences. The spheres without
color indicate missing data at those time points [Color figure can be viewed at wileyonlinelibrary.com]
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accuracy is often degraded due to the oversmoothed cortical attribute

patterns.

To address this oversmoothing issue, we formulate atlas construc-

tion as a problem of spherical patch-based sparse representation. That

is, the cortical attribute on the atlas is sparsely represented by the

underlying cortical attribute in the dictionary that is built from all the

coregistered cortical surfaces. Specially, compared to the case of using

the vertex-wise cortical attributes, the atlas constructed using patch-

wise cortical attributes can be more robust by introducing the neigh-

borhood context information (i.e., the local cortical attribute pattern).

Moreover, with a properly designed dictionary building strategy

(as illustrated in paragraph building dictionary), the effect of potential

registration errors could also be minimized. Thus, the sharpness and

representativeness of the cortical attribute patterns on the cortical

surface atlas can be improved.

3.3.1 | Building comparable neighboring spherical
patches

To build a representation dictionary, we need to obtain comparable

patches for neighboring vertices. As aforementioned, each spherical

cortical surface is a triangular mesh, composed of the vertices set and

their respective connections. There are two reasons that we need to

do the patch rotation. The first reason is that, on the original spherical

surface, different points may have different numbers of neighboring

points. As illustrated in Figure 3a, vertex v1 has 15 neighbors on its

two-ring patch (the red patch), while vertex v2 has 18 two-ring neigh-

bors (the green patch). Therefore, we cannot directly augment the

neighboring patches on the original spherical surfaces into the dictio-

nary, since they are not comparable. The second reason is that we

need consistent vertices orders on the patches. As illustrated in

Figure 3a, we may regard the vertex inside the red circle as the first

neighbor of local patch at v1; however, if we need to augment the

patch at v2, which is one of the three-ring neighbors (the green verti-

ces) of v1, we need to make their vertices orders consistent. To solve

these issues, we rotate the patch from v1 to v2, as illustrated in

Figure 3b. Of note, both v1 and v2 are on the sphere, so we can rotate

the patch at v1 along the axis v1 × v2 with the angle of θ = v1,v2h i
kv1k�kv2k.

Then, the rotated patch at v2 has the same vertex number and also

consistent vertices order as the local patch at v1. During the atlas

construction, we use the local patch as the template, rotate it to its

neighbors and then use the rotated patch after resampling as its

neighboring patch.

3.3.2 | Building dictionary

With the built comparable neighboring patches, for each atlas patch

with a certain cortical attribute, we can now build a representation

dictionary. Herein, we select one of the six cortical attributes Mj (j2
{A, C, D, G, T, L}), with j = A (i.e., average convexity) as an example, and

build its corresponding representation dictionary. Other cortical attri-

butes' representation dictionaries at the same local patch can be built

similarly. Specifically, for a local patch centered at vertex vi, we extract

all corresponding patches from N coregistered cortical surfaces and

then include them into the dictionary, denoted as p nð Þ
MA

við Þ, where

n = 1,… , N denotes a subject index while MA indicates that the ele-

ments in this patch are the average convexity. To increase the robust-

ness to potential registration errors, all patches near to the current

local patch are also extracted and augmented into the dictionary, den-

oted as p nð Þ
MA

vki
� �

, where vki is the kth vertex near to the vertex vi

(i.e., vki ,k =1,…,K, is the two-ring neighbor of vi as illustrated in

Figure 4). By including all these corresponding patches and their spa-

tially neighboring patches, the dictionary DMA við Þ can be well built to

represent average convexity on the atlas patch centered at vi. Using

the same method, we can also build dictionaries of other cortical attri-

butes, DMC við Þ, DMD við Þ, DMG við Þ, DMT við Þ, and DML við Þ, for this local

patch, as also illustrated in Figure 4.

3.4 | Constructing atlas by spherical patch-based
group-wise sparse representation

Once the dictionaries are built, acquiring the certain cortical attribute

on the atlas becomes finding the best sparse representation using the

respective dictionary. For example, for a cortical attribute (e.g., MA),

given an atlas patch at vi, the N corresponding local patches from N

coregistered surfaces can be obtained. However, due to potential reg-

istration errors and substantial intersubject variations, patches from

certain subjects may have less agreement with patches from the rest

of the subjects in representing the population-level cortical attribute.

F IGURE 2 (a) The cortical attribute
(i.e., average convexity) of an individual
subject. (b) The same cortical attribute
(i.e., average convexity) of the population-
average 4D atlas. CS, central sulcus;
PostCS, postcentral sulcus; PreCS,
precentral sulcus [Color figure can be
viewed at wileyonlinelibrary.com]
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An effective way to deal with this is to filter out these atypical pat-

ches in atlas construction with the following three steps. (a) the group

center patch is first computed as the average over the N patches;

(b) the correlation coefficient between each patch and the group cen-

ter patch is then computed; (c) Finally, the top M (M ≤ N) patches

corresponding to the top M correlation coefficients are selected, den-

oted as p̂ mð Þ
MA

við Þ, with m = 1,… , M. In the following, we will use our

built dictionary to represent these top M patches.

Since there are three cortical attributes and each attribute can be

regarded as a specific view of the cerebral cortex, these six different

cortical attributes estimated for each atlas location should be consis-

tent to each other. To this end, instead of independently estimating

them, we estimate them jointly using a multi-task sparse representa-

tion with group-wise sparsity constraint, where each task corresponds

to the estimation of a specific cortical attribute. We use the dirty

model (Jalali et al., 2010; Zou & Hastie, 2005) for modeling this multi-

task sparse representation with group-wise sparsity constraint.

The multitask sparse representation using the dirty model for the

atlas construction can be formulated as the following minimization

problem:

argmin
W

X
j

XM
m=1

DMj við Þωj við Þ− p̂ mð Þ
Mj

við Þ
��� ���2

2
+ ρ1 Pk k∞,1 + ρ2 Qk k1

" #
ð1Þ

st: W =P+Q ð2Þ

where p̂ mð Þ
Mj

við Þ denotes the m-th extracted patch from the top

M patches with the cortical attribute Mj, j2 {A, C, D, G, T, L}. DMj við Þ is

F IGURE 3 Illustration of building comparable neighboring patches. (a) Inconsistency of the mesh structures at vertices ν1 and ν2. (b) Rotation
of the patch at 1 to the patch of ν2 to 875 build the two comparable neighboring patches [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Construction of six cortical attribute dictionaries DMA(νi), DMC(νi), DMD(νi), DMG(νi), DMT (νi), and DML(νi) for a local patch centered at

vertex vi:vki , k = 1,…K, is the three-ring neighbor of νi. Each dictionary includes not only the local two-ring patch from all subjects, but also the

augmented three-ring neighbors' patches from all subjects, thus improving robustness to potential registration errors [Color figure can be viewed
at wileyonlinelibrary.com]
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the dictionary of Mj for the local patch centered at vi, and ωj is the

sparse representation (column) vector for the jth cortical attribute.

W= [ωA(vi),ωC(vi),ωD(vi),ωG(vi),ωT(vi),ωL(vi)] is the matrix containing all

six sparse representation vectors for all six cortical attributes, and it is

composed of two matrices, P and Q. The first term in Equation 1 is a

fitting error for multitask representation of all cortical attributes.

It encourages each constructed attribute DMj
við Þωj to be similar to

each respective p̂ mð Þ
Mj

við Þ. The second term is the group-wise sparsity

regularization term. kPk∞, 1 is a combination of both L∞ and L1

norms, while L∞ is first imposed on each row vector of P and then L1

is for getting sparse rows. This regularization term encourages similar

sparse patterns across different cortical attribute representations.

For different cortical attributes, this regularization term will lead the

matrix P to having sparsely nonzero rows. Therefore, the consistent

columns from different cortical attribute dictionaries are selected for

representing the atlas. The third term is the element-wise sparsity

component, to handle the potential noise included in the data that

cannot be group-wise represented. Equation 2 constrains the relation-

ship of W with P and Q. With this modeling, we can impose group-

wise sparsity through P to preserve the consistency across six cortical

attributes and handle the potential noises in cortical attributes

through Q. ρ1 and ρ2 are the two nonnegative parameters used to bal-

ance different terms.

By solving the above optimization problem using the multitask

learning via structural regularization (Zhou, Chen, & Ye, 2011) pack-

age, all the cortical attributes on the atlas patch centered at vertex vi

are jointly represented via the estimated representation coefficient

matrix W, as illustrated in Figure 5. Using the above group-wise

sparsity constraint, different cortical attributes at the same location of

the atlas can share similar sparsity structure in their respective repre-

sentations. Thus, the consistency across six cortical attributes can be

preserved.

Notably, the use of nonoverlapping patches could lead to steep

gradient changes along patch boundaries and also cause spatially

inconsistent cortical attributes across nearby patches. To alleviate this

issue, patches are overlapped during the atlas construction. Therefore,

each vertex on the atlas will be covered by multiple patches, and thus

have multiple representation results. To fuse these representation

results, we simply average them to obtain the final cortical attribute

for the atlas.

It is worth noting that during the implementation, we update the

selection of top M typical highly correlated patches in an iterative man-

ner. At the first iteration, we use the mean patch of all corresponding

patches after registration to select the top M highly correlated patches

at a certain age. However, the mean patch may not be the optimal one.

Therefore, after the atlas is constructed, we replace the mean patch

with the patch on the constructed atlas to further select another group

of top M highly correlated patches. This could further increase the reli-

ability of the highly correlated patches selection.

3.5 | Parcellations on 4D cortical surface atlases

After constructing the 4D infant cortical surface atlas, we provide it

with parcellations to facilitate region-based analysis. In particular, we

have warped the FreeSurfer parcellations (Desikan et al., 2006) and

the recent HCP MMP parcellations (Glasser et al., 2016) onto the last

F IGURE 5 (a) Representations of different cortical attributes using their corresponding dictionaries DMj(νi) (j2{A,C,D,G,T,L}) and sparse

representation vectors ωj (j2{A,C,D,G,T,L}). (b) Multitask sparse representation using the dirty model. W contains all sparse representation vectors
[ωj] for all cortical attributes, and it is composed of two matrices, P and Q. The matrix P is imposed with group-wise sparsity, to ensure sharing of
similar sparsity structure for different cortical attributes. The matrix Q is imposed with element-wise sparsity [Color figure can be viewed at
wileyonlinelibrary.com]
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time point (age) of our atlas, that is, 72-month-old atlas. The main

motivation is that the 72-month-old surface atlas is more similar to

those adult cortical surface atlases and thus can be well aligned. After

this warping, we propagate the parcellations at 72-month-old to all

other time points according to the established temporal correspon-

dences across different time points (ages). Note that the FreeSurfer

Desikan parcellation protocol partitions the cerebral cortex into

72 (36 for each hemisphere, including subcortical regions) regions

based on the major cortical folds, where each of the parcellation

regions is relatively large. Since the major and secondary cortical folds

have been largely established at term birth (Hill et al., 2010), it is rational

to apply the FreeSurfer parcellation protocol for infant brains. The

MMP parcellation protocol parcellates the brain into 360 (180 for each

hemisphere, not including subcortical regions) regions based on

multimodality data (especially the functional connectivity and myelin

content), and the parcellations are defined in the FreeSurfer space. This

parcellation provides a more detailed reference for inspecting the brains.

Therefore, we also warped it to our atlas to provide more detailed corti-

cal region references. Since we also construct our atlas in the FreeSurfer

space, the respective warpings have relatively high accuracy. Figure S5

in the Supporting Information shows the MMP parcellation on the origi-

nal HCP atlas and also the warped MMP parcellation on our atlas. It can

be seen that the region of interest (ROI) regions are quite consistently

overlaid on the corresponding cortical surfaces.

4 | EXPERIMENTAL RESULTS

To assess the quality of the constructed 4D cortical surface atlases, we

have performed evaluations both visually and quantitatively (i.e., when

applied for spatial normalization). For evaluating each cortical surface

atlas at each age, besides comparing with the FreeSurfer adult atlas

(Fischl, Sereno, Tootell, et al., 1999), we have also introduced the fol-

lowing five atlases for extensive comparison: (a) the one-step registration

atlas, which is constructed by first coregistering all infant cortical sur-

faces (of all subjects at all ages) into the common space, and then aver-

aging the cortical attributes of age-matched coregistered surfaces and

(b) the two-step registration atlas, which is constructed by first

coregistering cortical surfaces using the two-step registration strategy

in Section 3.2. After that, we obtain two deformation fields for each sur-

face and use them to bring each individual surface to a common space.

Finally, we average the cortical attributes of all registered subjects at

this specific age to generate the age-specific atlas. (c) the top M patch-

based atlas, which is constructed by averaging the top M highly corre-

lated patches extracted from the age-matched two-step co-registered

cortical surfaces; (d) the independent sparse atlas, which is constructed

by independent sparse representation of each cortical attribute and

thus ignores the relationship across different cortical attributes; (e) the

group-wise sparse atlas (our atlas), which is constructed by imposing the

group-wise sparsity constraint when jointly representing different corti-

cal attributes on the atlas.

When performing visual inspection, we mainly compare cortical

attribute patterns in different atlases, and the atlases with sharp and

clear attribute patterns are regarded as better atlases. When performing

quantitative evaluation, we use different atlases as templates for spatial

normalization of individual cortical surfaces. The atlases with sharp and

clear cortical attribute patterns will lead to better spatial normalization

performance. We have evaluated the spatial normalization performance

in both cross-sectional and longitudinal settings. Also, based on the spa-

tial normalization performance, we have chosen the best parameter set-

ting for constructing our atlases. Note that the LGI computation is

relevant to the neighborhood size on the cortical surface, so in this work

we use the 20-ring neighborhood to compute the LGI, which can well

characterize the local folding.

4.1 | Visual inspection

4.1.1 | Overall inspection

The left hemisphere of our constructed 4D infant cortical surface

atlases at all ages are presented in Figures 6–7, and 8. Specifically,

Figure 6 shows the sulcal depth, average convexity, curvature, and

LGI of the constructed 4D atlases at all ages using the spherical repre-

sentation surface. For better inspection of these cortical attributes,

we have also mapped them on the average inner cortical surface as

shown in Figure 7. Of note, the average inner cortical surface is

obtained by averaging the corresponding 3D coordinates of each ver-

tex from the coregistered cortical surfaces, which is more suitable for

inspecting the local cortical folding. From Figures 6 and 7, at each age,

we can see consistent cortical attributes, which provide different

detailed views for inspecting infant cortical surfaces and their devel-

opments. In addition, longitudinally, we can see that the major cortical

attribute patterns in terms of these four geometric cortical folding

attributes are established at term birth and well preserved during the

postnatal development. Specifically, the magnitudes of the average

convexity, sulcal depth, and LGI increase considerably, whereas the

magnitude of curvature decreases gradually. In Figure 8, we present

cortical thickness and myelin content in both spherical surfaces and

average inner surfaces, respectively. Meanwhile, we also present the

equipped parcellations on the average inner surface. From Figure 8, it

can be seen that the cortical thickness has a dramatic increase in the

first postnatal year, while the myelin content increases gradually with

the maturing of the brain.

4.1.2 | Cortical attribute pattern inspection

Generally, the cortical attribute patterns on the cortical surface atlases

are mainly used for driving the spatial normalization of individual cor-

tical surfaces. Since different cortical attributes differ from each other

in their spatial scales, for example, the sulcal depth and average convex-

ity can be regarded as a coarse scale for characterizing the cortical fold-

ing, while the curvature can be regarded as a fine scale. The cortical

surface registration algorithm generally uses these cortical attributes in

a coarse to fine manner. For example, the spherical demons uses the

average convexity for a coarse alignment and then uses the curvature

for a fine alignment. Therefore, the smooth cortical attribute pattern
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will generally degrade the registration accuracy and sharp cortical attri-

bute pattern on the atlases is required. We have visually compared the

sharpness of the registration related cortical attribute patterns on four

atlases, that is, the two-step registration atlas, the top M patch-based

atlas, the independent sparse atlas, and the group-wise sparse atlas.

The reason we select these atlases for comparison is that they all

adopted more appropriate cortical surface registration strategies, which

helps preserve the longitudinal consistency of cortical attributes. In

Figure 9, we show the zoomed-in cortical attribute patterns from two

regions on the left hemispherical atlas at 12 months of age. The original

region location in the inflated cortical surface is indicated by the red

rectangle in the top. For better inspection, we use the inflated cortical

surface since it can provide better geometric inspection. From the fig-

ures, it can be seen that the two-step registration atlas has the most

F IGURE 6 The constructed 4D infant
cortical surface atlases of the left
hemisphere, with different cortical attributes
shown on the spherical surface. Numbers on
the left denote the month(s) of age and the
subjects number, with M indicating male, and
F indicating female. (a) Sulcal depth.
(b) Average convexity. (c) Curvature. (d) Local
gyrification index (LGI) [Color figure can be
viewed at wileyonlinelibrary.com]
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ambiguous cortical attribute patterns, as indicated by the arrows, due

to potential registration errors and substantial individual cortical attri-

bute variations. Then, the top M patch-based atlas improves the sharp-

ness of the cortical attribute pattern by filtering out the underlying

atypical patches. However, the cortical attribute pattern is still unclear.

Comparably, both the independent sparse atlas and the group-wise

sparse atlas have better preserved cortical attribute patterns. This is

benefited from two factors: (a) our dictionary construction strategy

enables better tolerance to potential registration errors, and (b) sparse

representation is relatively robust to outlier patches. By further com-

paring the cortical attribute patterns on the independent sparse atlas

and the group-wise sparse atlas, it can be seen that patterns appear

clearer on the group-wise sparse atlas, because the group-wise sparse

constraint enables to take advantage of the implicit relationships among

F IGURE 7 The constructed 4D infant cortical
surface atlases of the left hemisphere, with
different cortical attributes shown on the average
inner cortical surface. Numbers on the left denote
the month(s) of age. (a) Sulcal depth. (b) Average
convexity. (c) Curvature. (d) Local gyrification index
(LGI) [Color figure can be viewed at
wileyonlinelibrary.com]
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different cortical attributes. Moreover, for the group-wise sparse atlas,

since the atlas patch is consistently represented by the patches from

different cortical attribute dictionaries, it is less influenced by a certain

cortical attribute once the attributes are obtained.

4.1.3 | Effectiveness of fusing representations of the
overlapping patches representation

During the atlas construction, we use overlapped patches to capture

local cortical attribute patterns. Therefore, for a local position on the

atlas, there are multiple representation results that need to be fused.

Two fusion strategies have been considered: (a) only use the local

patch center's representation without fusing the neighbors' represen-

tation and (b) fuse the representations from all overlapping patches.

To demonstrate the effectiveness of the fusion strategy in cortical

surface atlas construction, we have compared the atlases with and

without fusion strategies. For better investigation, we have mapped

all six cortical attributes on both the inflated cortical surface and the

average inner cortical surface. Note that, the inflated cortical surface

can provide an overall inspection of the cortical surfaces, whereas the

F IGURE 8 The constructed
4D infant cortical surface atlases
of the left hemisphere, with
thickness, myelin content, and
equipped parcellations. Numbers
on the left denote the month(s)
of age. (a) Cortical thickness on
spherical surfaces and average
inner surfaces. (b) Myelin content
on spherical surfaces and average
inner surfaces. (c,d) The equipped
FreeSurfer parcellations and
Human Connectome Project
multimodality parcellation
parcellations, respectively [Color
figure can be viewed at
wileyonlinelibrary.com]
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average inner cortical surface enables the detailed inspection of corti-

cal attributes patterns. Figure 10 shows differences on one region of

the cortical surface, as indicated by the red box in the top of

Figure 10. Note that the two boxes on the inflated surface and the

inner cortical surface indicate the same region. In Figure 10, each row

corresponds to a specific cortical attribute; columns (a) and (c) show

cortical attribute patterns with fusing the representations from over-

lapping patches on the inflated cortical surface and the average inner

cortical surface, respectively, while Columns (b) and (d) show the

corresponding cortical attribute patterns without fusing. From this fig-

ure, it can be seen that with the fusion strategy, we can get clearer

and sharper cortical attributes patterns, compared to the cluttered

patterns obtained without the fusion strategy.

4.2 | Quantitative evaluation of accuracy in cortical
surface normalization

To quantitatively assess the constructed atlases, we have used them

for spatial normalization of individual cortical surfaces. For evaluation,

we uniformly divide all the cortical surfaces into three subgroups in a

random manner at each age. Two subgroups are used as the training

set for constructing the comparison atlases, while the third subgroup

is used as the testing set (named as testing set 1) for evaluating the

accuracy of spatial normalization. For more extensive validation, we

also adopt an extra independent dataset (named as testing set 2),

which has no subjects involved in the atlas construction; testing set

2 includes three time points, that is, 1, 12, and 24 months of age, and

has images of 80 healthy subjects at each time point. The same pipe-

line is used to generate the cortical surface for each (training/testing)

subject at each age. For any individual cortical surface in the two test-

ing sets, we register it onto the age-matched atlas using the spherical

demons. If an atlas can better encode the cortical attributes and has

sharper patterns, then the registration from each individual cortical

surface to that atlas surface (driven by cortical attributes average con-

vexity and curvature) is expected to be better. We have compared

spatial normalization accuracy of six atlases, that is, the FreeSurfer

adult atlas, the one-step registration atlas, the two-step registration

atlas, the top M patch-based atlas, the independent sparse atlas, and

the group-wise sparse atlas (our atlas).

Since there is no ground truth for the cortical surface registration,

to quantitatively evaluate the accuracy of the spatial normalization at

each age, we use the following four measurements: (a) the average

information entropy of the sulcal and gyral regions of all aligned cortical

surfaces; (b) the pairwise overlap of sulcal and gyral regions between

each pair of subjects at each age (i.e., using Dice ratio [Dice, 1945]);

(c) the average correlation coefficient of the average convexity maps

between each pair of subjects; and (d) the average correlation coeffi-

cient of the curvature maps between each pair of subjects. Notably, the

sulcal and gyral regions are determined by the signs of the average con-

vexity attributes (Fischl, Sereno, & Dale, 1999) of the cortical surface.

The sulcal region corresponds to the vertices with positive average con-

vexity value, whereas the gyral region corresponds to the vertices with

negative average convexity value. Therefore, for any cortical surface,

we can easily obtain its sulcal and gyral regions. Then, for all the aligned

cortical surfaces, at each local vertex v, we can compute the ratio of

subjects belonging to the gyral or sulcal region. Finally, the average

information entropy can be calculated as:

H=
1
jV j

X
v2V

−psulci vð Þ log2psulci vð Þ−pgyri vð Þ log2pgyri vð Þ� �

where jV j is the vertex number, and psulci(v) and pgyri(v) are the

ratios of subjects belonging to the sulcal or gyral region at the given

vertex v, respectively. Previously, this measurement has been used for

F IGURE 9 Comparison of
zoomed cortical attribute patterns
at one cortical region of
4 (12-month atlas, left
hemispherical) comparison
atlases. In the top of this figure,
the original region location in the
inflated cortical surface is
indicated by the red rectangle.
Each row shows the specific
cortical attribute on different
atlases. (a) Two-step registration
atlas. (b) Top M patch-based atlas.
(c) Independent sparse atlas.
(d) Group-wise sparse atlas (our
atlas) [Color figure can be viewed
at wileyonlinelibrary.com]
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evaluating the cortical surface registration performance (Lyttelton

et al., 2007). Meanwhile, once the sulcal and gyral regions are deter-

mined, the Dice ratio for measuring the overlap of sulcal and gyral

regions for any two aligned cortical surfaces in the testing set can be

obtained. The correlation coefficient of the average convexity

(or curvature) maps can be computed as the Pearson correlation coeffi-

cient for any pair of the aligned cortical surfaces in the testing set, and

then the average of all pair-wise correlation coefficients can be used as

the correlation coefficient for the whole testing set. Based on these

four measurements, the atlas with sharp cortical attributes patterns is

expected to have lower average information entropy value, higher Dice

ratio for sulcal/gyral region, and higher correlation coefficient.

Table 2 reports the average information entropy of the sulcal and

gyral regions after aligning the individual cortical surfaces of the two

testing sets onto each of the comparison atlases. As can be seen, the

FreeSurfer adult atlas gets the highest average information entropy

for the two testing sets (i.e., 0.466 for the testing set 1 and 0.489 for

the testing set 2), indicating the inappropriateness of using it for infant

cortical surface normalization. The one-step registration atlas achieves

better results (i.e., 0.428 for the testing set 1 and 0.473 for the testing

F IGURE 10 Comparison of the cortical attribute patterns with two different fusion strategies. The comparisons of patterns are demonstrated
on the inflated and the average inner cortical surface, respectively. The red rectangles on the inflated and average inner cortical surfaces indicate
the same zoomed region location. Each row corresponds to a specific cortical attribute. Columns (a) and (c) show the results with the second
fusion strategy (proposed method), while (b) and (d) show results with the first fusion strategy (i.e., without fusion) [Color figure can be viewed at
wileyonlinelibrary.com]
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set 2) than the FreeSurfer adult atlas, mainly due to the use of the

infant data for the atlas construction. However, as we mentioned, the

one-step registration atlas ignores the within-subject cortical attri-

butes constraints during the registration, and, as can be seen from

Table 2, the performance is inferior to the two-step registration atlas

(i.e., 0.391 for the testing set 1 and 0.445 for the testing set 2). Since

the top M patch-based atlases filtered out the patches with poor

agreement to the population, it can achieve slightly better perfor-

mance (i.e., 0.389 for the testing set 1 and 0.443 for the testing set 2)

than the two-step registration atlas. While due to the better preserva-

tion of the cortical attribute patterns on the atlas, the registration

accuracies of the independent sparse atlas (i.e., 0.378 for the testing

set 1 and 0.433 for the testing set 2) and the group-wise sparse atlas

(i.e., 0.378 for the testing set 1 and 0.432 for the testing set 2) are fur-

ther improved. This indicates that the cortical attribute patterns of the

infant population can be better captured by the use of sparse repre-

sentation. Comparing the independent sparse atlas with the group-

wise sparse atlas (our atlas), they achieve similar average information

entropy, while the group-wise sparse atlas achieves a slightly better

performance. Using the pairwise t test, we have further validated

whether the atlas constructed by the group-wise sparse representa-

tion had statistically significant registration performance improvement

over the other comparison atlases when aligning new subjects. Our

group-wise sparse atlas achieves statistically significant improvement

over the atlases constructed by the FreeSurfer, one-step registration,

two-step registration, and also the top M patch-based method

(with all p values smaller than .05). While comparing to the atlas con-

structed by the independent sparse representation, the registration

performance improvement is not statistically significant.

Figure 11 presents the Dice ratios of the sulcal and gyral regions

between each pair of subjects at each age on the two testing sets. It

can be seen that, at each age of the two testing sets, the independent

sparse atlas and the group-wise sparse atlas consistently achieved

higher Dice scores for both sulcal and gyral regions than the other

comparison atlases. For the sulcal regions, the independent sparse atlas

and the group-wise sparse atlas achieve statistically significant higher

TABLE 2 The average information entropy on two testing sets

Data set
Testing set 1 Testing set 2

Age (months) 01 03 06 09 12 18 24 36 48 60 72 01 12 24

FreeSurfer 0.421 0.416 0.470 0.487 0.495 0.494 0.479 0.441 0.477 0.505 0.445 0.472 0.504 0.490

One-step registration 0.451 0.413 0.436 0.489 0.491 0.428 0.371 0.364 0.425 0.437 0.401 0.459 0.498 0.463

Two-step registration 0.405 0.397 0.394 0.397 0.389 0.401 0.368 0.342 0.409 0.415 0.380 0.431 0.445 0.458

Top M patch-based 0.403 0.394 0.394 0.396 0.386 0.398 0.363 0.341 0.408 0.413 0.378 0.432 0.441 0.455

Independent sparse 0.401 0.391 0.390 0.393 0.381 0.398 0.356 0.297 0.408 0.402 0.344 0.419 0.439 0.442

Group-wise sparse 0.401 0.390 0.390 0.393 0.381 0.398 0.356 0.297 0.407 0.402 0.344 0.419 0.439 0.441

F IGURE 11 Comparison of Dice scores in the sulcal and gyral regions for the six comparison atlases at different ages, using two testing sets.
(a,c) The sulcal and gyral Dice scores on the testing set 1, respectively. (b,d) The sulcal and gyral Dice scores on the testing set 2, respectively
[Color figure can be viewed at wileyonlinelibrary.com]
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Dice scores than the two-step registration atlas (i.e., p = .0002 for the

independent sparse atlas, and p = .0001 for the group-wise sparse

atlas) and the top M patch-based atlas (i.e., p = .0012 for independent

sparse atlas, and p = .0006 for the group-wise sparse atlas). For the

gyral regions, they also achieved statistically significant improvement

in Dice score, compared to the two-step registration atlas (i.e., p = 2e-5

for the independent sparse atlas, and p = 7e-6 for the group-wise

sparse atlas) and topM patch-based atlas (i.e., p = 1e-5 for the indepen-

dent sparse atlas, and p = 5e-6 for the group-wise sparse atlas). Com-

pared to the independent sparse atlas, the group-wise sparse atlas has

slightly higher average Dice scores in both sulcal (0.812 vs. 0.810) and

gyral regions (0.825 vs. 0.824), but not statistically significant.

In addition, Figure 12 presents the correlation coefficients of the

average convexity maps between each pair of the normalized subjects

at each age, using the two testing sets. Similarly, Figure 13 presents

the correlation coefficients of the curvature maps, using the two testing

sets. Larger correlation coefficients indicate better spatial normalization

accuracy. From these two figures, it can be seen again that the indepen-

dent sparse atlas and the group-wise sparse atlas clearly outperform

other atlases. Also, compared to the independent sparse atlas, the

group-wise sparse atlas achieves slightly better average convexity

correlation (0.792 vs. 0.791) and average curvature correlation

(0.357 vs. 0.356), while not statistically significant.

From the above comparisons, we can see that the sparse represen-

tation can better preserve cortical attribute patterns on the atlas, since

it is more robust to the cortical attribute noises, which leads to better

spatial normalization accuracy compared to other atlas construction

methods. The group-wise sparse representation achieves slightly better

but not statistically significant performance improvement than the

independent sparse representation. The main advantage is the group-

wise representation helps to provide multiple different detailed views

for inspecting the infant cortical surfaces and their development.

4.3 | Quantitative evaluation of temporal
consistency of cortical surface normalization

Besides evaluating the spatial normalization accuracy, we also quanti-

tatively evaluate the temporal consistency when aligning the longitu-

dinal cortical surfaces onto the age-matched atlas. To this end, we use

multiple measurements, including the aforementioned Dice ratio of

the sulcal and gyral regions, correlation coefficients of the average

convexity maps, and correlation coefficients of the curvature maps.

We define the following longitudinal consistency degree of sulcal and

gyral regions for the normalized longitudinal cortical surfaces:

C =
1
jV j

X
v2V

1−
α vð Þ
T−1

� �
T >1

where α(v) is the accumulated time that the vertex label (sulcal or

gyral vertex) changes between each pair of neighboring time points,

and T is the available longitudinal scan number for a certain subject.

Of note, for this measurement, we need at least two time points, that

is, T > 1. Ideally, after registration, C should be close to 1. Larger C

value indicates better temporal consistency of the normalized cortical

F IGURE 12 Comparison of correlation coefficients of the average convexity maps for the six comparison atlases at different ages, using
(a) testing set 1 and (b) testing set 2 [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 13 Comparison of correlation coefficients of the curvature maps for the six comparison atlases at different ages, using (a) testing set
1 and (b) testing set 2 [Color figure can be viewed at wileyonlinelibrary.com]
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surfaces. In this evaluation, we did not use the testing set 2 because it

is not a longitudinal testing set.

Table 3 reports the mean and SD of each temporal consistency

measurement for the six comparison atlases. From this table, it can be

seen that the atlases constructed using the infant data achieves better

temporal consistency than the FreeSurfer adult atlas. Also, the atlases

constructed using the two-step registration (including the two-step

registration atlas, the top M patch-based atlas, the independent

sparse atlas, and the group-wise sparse atlas [our atlas]) achieve better

consistency than the one-step registration atlas. The reason is that

they adopt more suitable registration strategies, which help preserve

temporal consistency for the constructed 4D atlases.

5 | DISCUSSION

5.1 | Cortical surface registration

Cortical surface registration plays an important role in the cortical sur-

face atlas generation. It normalizes the variation across individual cor-

tical surfaces and establishes the correspondence among them.

However, the cortical surface variations exist in two aspects, that is,

structural variation and functional variation. Ideally, the registration

successfully normalizes both variations. Unfortunately, although they

are highly correlated (Fischl et al., 2007; Van Essen et al., 1998), the

structural variation and the functional variation are heterogeneous,

that is, good structural normalization does not necessarily indicate

good functional normalization (Frost & Goebel, 2012; Glasser & Van

Essen, 2011). Most existing cortical surface registration methods

(Charon & Trouvé, 2013; Durrleman, Pennec, Trouvé, & Ayache,

2009; Fischl, Sereno, Tootell, et al., 1999; Lombaert, Grady, Polimeni,

et al., 2011; Lombaert, Sporring, & Siddiqi, 2013; Robbins et al., 2004;

Tardif et al., 2015; Vaillant & Glaunès, 2005; Yeo et al., 2009) mainly

normalize structural variation. One recent method (Robinson et al.,

2014) tried to consider both variations in a uniform framework by

incorporating the fMRI data to drive the functional normalization.

In this work, we mainly focus on the structural atlas construction.

Therefore, we adopt the cortical folding attributes, mainly the average

convexity map and the mean curvature map, to drive the spherical

Demons registration in a hierarchical manner (Yeo et al., 2009). The

average convexity map is used to roughly align the cortical folding,

and then the mean curvature map is used to finely align the cortical

folding. When constructing the atlases, we did not specify any new

cost function or optimization method for the registration. Instead, we

use the conventional cost, optimization, and parameters in spherical

Demons to make the registration accuracy less reliant on the specific

cost function or optimization method when aligning new cortical sur-

faces onto our atlas. However, it is worth noting that more advanced

registration could lead to further improved atlas construction. In addi-

tion, we also need to point out that the good alignment of the cortical

folding attributes does not necessarily mean the good alignment of

the noncortical folding attributes, for example, the myelin content. For

the noncortical folding attributes, incorporating them into registration

would improve their alignment. Since the focus of our atlas is mainly

on the folding alignment, we have not incorporated nonfolding attri-

butes into the current registration method. This will be done in our

future work, since our atlas construction framework can be directly

extended by using registration methods driven by multimodal data,

such as myelin content or functional cortical attributes.

5.2 | Robustness to missing data

There are missing data in our dataset because not all subjects are able

to be scanned at each scheduled time point. Although various

methods have been proposed to handle the missing data (Meng et al.,

2017), the missing data itself is not the focus of this work. Our atlas

construction framework is less influenced by the missing data due to

two main reasons:

1. The registration is less influenced by missing data. Note that, in

our method, all cortical surfaces of different time points of the

same subject are group-wise registered into the within-subject

common space, followed by group cross-subject registration

among all within-subject mean images of all subjects. During the

within-subject registration, the bias has been greatly suppressed,

and the estimation of the within-subject mean does not rely on

certain cortical surface at specific time point. Therefore, the final

registration is less influenced by the missing data.

2. The dictionary construction is less influenced by missing data since

it does not rely on specific subjects. Therefore, the final represen-

tation will also not rely on specific subjects at certain time points,

which preserves the unbiasedness on subjects.

TABLE 3 Temporal consistency measurements on testing set 1

Measurement Consistency Sulcal Dice score Gyral Dice score Average convexity correlation Curvature correlation

FreeSurfer 0.878 ± 0.016 0.857 ± 0.023 0.852 ± 0.022 0.884 ± 0.041 0.641 ± 0.076

One-step registration 0.908 ± 0.017 0.889 ± 0.023 0.884 ± 0.023 0.916 ± 0.039 0.675 ± 0.074

Two-step registration 0.921 ± 0.015 0.899 ± 0.022 0.895 ± 0.021 0.928 ± 0.037 0.694 ± 0.071

Top M patch-based 0.921 ± 0.014 0.900 ± 0.022 0.896 ± 0.021 0.926 ± 0.038 0.697 ± 0.069

Independent sparse 0.922 ± 0.014 0.901 ± 0.021 0.897 ± 0.020 0.929 ± 0.036 0.701 ± 0.067

Group-wise sparse 0.922 ± 0.014 0.901 ± 0.021 0.898 ± 0.020 0.930 ± 0.035 0.703 ± 0.066
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We have adopted the 6-month-old cortical surfaces to validate

the robustness of the constructed atlas, since we have the most

(total of 41) subjects at this time point. We first randomly separate

these subjects into two groups. For each group, we can use the pro-

posed method to construct the atlas. Then, we can compute the dif-

ference between these constructed atlases. We repeated the

experiments 10 times. Figure 14 shows the visualized vertex-wise

SD of these constructed atlases. From the figure, it can be seen that

the constructed atlas is stable in the aspect of a low SD.

5.3 | Applications

One assumption of our atlas construction method is that the cortical

attributes from all registered cortical surfaces follow a single Gaussian-

like distribution, and therefore the mean of the cortical attributes is

meaningful for representing the population attributes. To verify this

assumption, for a certain cortical attribute (e.g., average convexity, curva-

ture, sulcal depth, and LGI) at a local position, we use the Anderson–

Darling test (Stephens, 1974) to check whether the cortical attribute at

this local position follows a single variate Gaussian distribution, especially

for the top M highly correlated patches. Of note, we care about these

attributes since the cortical surface registration is driven by them.

We reported the vertex-wise hypothesis testing result in Table 4

for these cortical attributes from the typical patches at each time

point, with each entry indicates the ratio of vertices that follows

the normal distribution. From this table, we can see that cortical

attributes at majority vertices can be regarded as following the

Gaussian distribution. Therefore, it is rational to get the representa-

tion target (the population cortical attributes) through the mean

operation. However, as more data are available for a certain time

point, a single atlas may not be enough for representing the entire

population for that time point due to the substantial cortical attri-

bute variation. Therefore, we will try to build multiple cortical sur-

face atlases with bigger datasets in the future.

The infant cortical surface atlases constructed in this work are dif-

ferent from the traditional volumetric infant atlases (Evans et al.,

2012), since they respect and leverage the inherent 2D topology of

the highly convoluted and geometrically complex cortical surfaces.

Comparing to the analysis directly using the volumetric atlas, the cor-

tical surface atlas is more suitable for the highly folded cerebral cortex

with a sheet-like structure (Fischl, Sereno, Tootell, et al., 1999; Glasser

et al., 2016; Hill et al., 2010; Li, Wang, Yap, et al., 2019; Van Essen &

Dierker, 2007), especially for cortical thickness, myelination, and func-

tional connectivity.

Our infant dedicated longitudinal 4D cortical surface atlases has

two main advantages: (1) it preserves sharper cortical attribute

F IGURE 14 Vertex-wise SD
of the atlases with different
groups of subjects [Color figure
can be viewed at
wileyonlinelibrary.com]

TABLE 4 The ratio of vertices that follows the Gaussian distribution for different cortical attributes at different time points

Months of age 01 03 06 09 12 18 24 36 48 60 72

Average convexity 0.93 0.93 0.91 0.93 0.93 0.91 0.96 0.97 0.95 0.95 0.96

Curvature 0.91 0.91 0.89 0.90 0.90 0.89 0.94 0.96 0.93 0.93 0.95

Sulcal depth 0.88 0.91 0.89 0.93 0.93 0.91 0.93 0.93 0.90 0.91 0.93

LGI 0.89 0.89 0.89 0.91 0.90 0.89 0.94 0.95 0.93 0.93 0.94

Abbreviation: LGI, local gyrification index.
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pattern on the atlas, which leads to better spatial normalization for

the infant cortical surfaces and (2) it contains a set of densely sam-

pled atlases along with temporal correspondence from neonates to

6-year-olds, thus facilitating the infant brain development analysis.

Specifically, aligning individual infant cortical surfaces to our age-

matched atlas, rather than adult or infant atlases that neglect

dynamic brain growth, would achieve better registration accuracy,

as shown in experimental results. In addition, with two commonly

used parcellations, that is, the FreeSurfer and the MMP parcellation,

our atlases are usable for the ROI-based analysis. It is worth noting

that our current parcellations are based on the adult brain

parcellation protocol. As more infant data are available, it is desired

to develop infant dedicated parcellation protocols to better charac-

terize infant cortical surface anatomy.

5.4 | Conclusion and future works

In this article, we have constructed a set of 4D infant cortical surface

atlases based on 339 longitudinal MRI scans (covering 11 time points at

1, 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 months of age) from 50 healthy

infants, for characterizing dynamic early postnatal brain development. By

using a dedicated two-stage cortical surface registration strategy, we can

better establish longitudinal correspondences across both time and sub-

jects. By formulating the atlas construction as a sparse representation

problem, we can preserve sharp cortical attributes patterns on our atlas.

By jointly representing all cortical attributes with group-wise sparsity

constraint, we can further achieve the consistency across different corti-

cal attributes on the constructed atlas. With all these strategies, we con-

structed 4D infant cortical surface atlases which can provide

comprehensive views for describing the cerebral cortex development

over the first 72 months of life. To further facilitate ROI-based analysis,

we have also equipped our constructed 4D infant cortical surface atlases

with the two widely used parcellations, that is, the FreeSurfer

parcellations and the HCP MMP parcellations. In the future, we will

incorporate multimodal data to improve registration accuracy and model

the atlas construction in a way that is more robust to registration errors,

such as the Wasserstein barycenter modeling. Meanwhile, we will also

develop infant dedicated parcellation protocols with the help of expert

neurologists as more data becomes available. Our 4D infant cortical sur-

face atlases will be released to the public to further research in this field.
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