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Abstract
Neurobiological models to explain vulnerability of major depressive disorder (MDD) are scarce

and previous functional magnetic resonance imaging studies mostly examined “static” functional

connectivity (FC). Knowing that FC constantly evolves over time, it becomes important to assess

how FC dynamically differs in remitted-MDD patients vulnerable for new depressive episodes.

Using a recently developed method to examine dynamic FC, we characterized re-emerging FC

states during rest in 51 antidepressant-free MDD patients at high risk of recurrence (≥2 previous

episodes), and 35 healthy controls. We examined differences in occurrence, duration, and

switching profiles of FC states after neutral and sad mood induction. Remitted MDD patients

showed a decreased probability of an FC state (p < 0.005) consisting of an extensive network

connecting frontal areas—important for cognitive control—with default mode network, striatum,

and salience areas, involved in emotional and self-referential processing. Even when this FC

state was observed in patients, it lasted shorter (p < 0.005) and was less likely to switch to a

smaller prefrontal–striatum network (p < 0.005). Differences between patients and controls

decreased after sad mood induction. Further, the duration of this FC state increased in remitted
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patients after sad mood induction but not in controls (p < 0.05). Our findings suggest reduced

ability of remitted-MDD patients, in neutral mood, to access a clinically relevant control network

involved in the interplay between externally and internally oriented attention. When recovering

from sad mood, remitted recurrent MDD appears to employ a compensatory mechanism to

access this FC state. This study provides a novel neurobiological profile of MDD vulnerability.
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1 | INTRODUCTION

Major depressive disorder (MDD) is a severe psychiatric disease, which

globally accounts for the greatest loss of years due to disability (Smith,

2014). This high impact of MDD is related to its high incidence and

recurrence rates, particularly in patients with multiple previous episodes

(Bockting, Spinhoven, Wouters, Koeter, & Schene, 2009). However, this

vulnerability during MDD remission has scarcely been studied from a

level of intrinsic brain connectivity. Elucidating neural vulnerability fac-

tors in remitted recurrent MDD (rrMDD) could facilitate the develop-

ment of effective prediction tools or improve preventive treatments

against MDD recurrence (Fischer, Keller, & Etkin, 2016).

Previous studies have linked MDD to disrupted resting-state func-

tional connectivity (FC) in several resting-state networks (RSNs) and

systems, including frontal networks (FNs), regulating cognitive control

and attention, the default mode network (DMN), involved in internal

attention, the salience network (SN) and frontostriatal pathways, both

involved in salience detection and emotion (Furman, Hamilton, & Gotlib,

2011; Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2015; Menon, 2011;

Mulders, van Eijndhoven, Schene, Beckmann, & Tendolkar, 2015). Dur-

ing remission between episodes, MDD vulnerability might specifically

relate to a failure of control systems to downregulate DMN activity,

with the SN as switching hub between the networks (Marchetti, Koster,

Sonuga-Barke, & De Raedt, 2012; Servaas et al., 2017). However, the

scarce research that has been conducted in remitted-MDD previously

examined “static” FC, representing mean connectivity over a period of

scanning. Instead, growing evidence shows that brain activity at rest is

not stable during the scan, but slowly wanders through a repertoire of

time-varying, but reoccurring, states of coupling among brain regions

(Cabral, Kringelbach, & Deco, 2017; Deco, Jirsa, & McIntosh, 2011;

Hansen, Battaglia, Spiegler, Deco, & Jirsa, 2015). Dynamic-FC (dFC)

analysis allows characterizing these reoccurring FC states.

dFC changes during tasks (Sakoglu et al., 2010) and resting-state

(Damaraju et al., 2014; Jin et al., 2017; Kaiser et al., 2016) have been

associated with psychiatric disorders and with reduced behavioral/

cognitive performance in healthy subjects (Cabral, Vidaurre, et al.,

2017; Jia, Hu, & Deshpande, 2014; Madhyastha, Askren, Boord, &

Grabowski, 2015). For MDD specifically, findings from recent studies

suggest aberrations in dFC involving DMN, (Wise et al., 2017) frontal,

and SN areas (Demirtaş et al., 2016; Kaiser et al., 2015). However, it

remains unclear whether this persists during MDD remission.

The best way to characterize dFC remains under debate (Hutchison

et al., 2013). Although the sliding-window analysis is most commonly

used to calculate successive dFC matrices (Sakoglu et al., 2010), the win-

dow size affects the temporal resolution, challenging its validity (Deco

et al., 2017; Hindriks et al., 2016; Hutchison et al., 2013; Lindquist, Xu,

Nebel, & Caffo, 2014; Preti, Bolton, & Ville, 2016; Shine et al., 2015). In

the current study, we instead use a recently developed method, the

Leading Eigenvector Dynamics Analysis (LEiDA), which calculates dFC

at the instantaneous level (for each recorded frame), and allows identi-

fying patterns of blood oxygen level dependent (BOLD) phase coher-

ence, or FC states, that reoccur over time both within and across

scanning sessions (Cabral, Vidaurre, et al., 2017). Operating in the tem-

poral domain, this method allows characterizing recurrent FC states in

terms of probabilities of occurrence, duration and transition profiles on

a subject-by-subject level, which allows statistical comparisons

between groups. Previously, the dynamical properties of recurrent FC

states have been shown to relate with cognitive performance in healthy

participants (Cabral, Vidaurre, et al., 2017). Here, we used the same

LEiDA method to investigate whether there are specific configurations

of dFC that differentiate between antidepressant-free rrMDD and con-

trols without personal and familial MDD history. We compared differ-

ences in occurrence, duration, and switching profiles of FC states both

after neutral and sad mood induction. We hypothesized to find alter-

ations in dFC, particularly involving the frontoparietal network, the

DMN, and the SN, which would be influenced by sad mood (Cohen,

2017; Harrison et al., 2008).

2 | METHODS

2.1 | Participants

After approval by the local Medical Ethical Committee and written

informed consent, 62 rrMDD patients with ≥2 depressive episodes as

defined by the Structured Clinical Interview for DSM disorders (SCID),

in stable remission for ≥2 months according to DSM IV criteria, and

41 healthy controls were scanned. Hamilton Depressive Rating Scale

(HDRS-17) scores, an observer rated MDD-symptom scale to assess

depression severity, were ≤7 (Rush et al., 1986). Patients were antide-

pressant free for ≥8 weeks. Controls did not have a personal or famil-

ial history for psychiatric disease (assessed by SCID). All participants

were aged 35–65 years. We excluded participants with alcohol/drug
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dependency; psychotic or bipolar disorder; predominant anxiety disorder;

severe personality disorder; electroconvulsive therapy ≤2 months before

scanning; history of severe head trauma; neurological disease; severe gen-

eral physical illness; and no Dutch/English proficiency. rrMDD patients

and controls were matched for age, sex, educational level, and working

class. Participants were recruited through identical advertisements in

freely available online and house-to-house papers, posters in public

spaces and from previous studies in our and affiliated research centers

(Mocking et al., 2016). See Appendix S1 (Supporting Information) for

information about psychiatric comorbidity of rrMDD patients.

2.2 | Mood-induction paradigm

As described in more detail in previous work regarding this mood induc-

tion (Figueroa et al., 2017; Mocking et al., 2016), before the scan, par-

ticipants described with as much detail as possible a memory which

they regarded as neutral, (e.g., doing the dishes) and one which they

regarded as being among the saddest in their life (e.g., losing a job and

death of a relative). In addition, participants chose one neutral and one

sad fragment of music from 10 different fragments. Memories were

scripted in key sentences for display on the screen in the MRI scanner.

During memory display, we played the chosen neutral or sad music.

Participants were asked to rate their current mood on a scale of 0 to

10 (0 being extremely sad; 10 extremely happy) after the neutral mood

induction, after the neutral resting-state scan and before and after the

sad mood induction. After the sad resting-state scan, the most extreme

sadness was rated. The gap between the neutral and sad mood induc-

tion, in which participants completed other fMRI tasks was ±125 min,

including a 30 min break (Mocking et al., 2016). We designed the sad

mood induction to be at the end of all fMRI scanning, as it might have

been too stressful for participants to continue fMRI scanning and tasks

after the sad mood induction (Figure S1, Supporting Information).

2.3 | Image acquisition and analyses

A 3 Tesla Philips Achieva XT scanner (Philips Medical Systems, Best, the

Netherlands), equipped with a 32-channel SENSE head coil, was used to

obtain the images. A high-resolution T1-weighted 3D structural image

was acquired using fast-field echo for anatomical reference (220 slices;

repetition time (TR): 8.3 ms; TE: 3.8 ms; field of view (FOV): 240 × 188;

240 × 240 matrix; voxel size: 1 × 1 × 1 mm3). Functional images

were acquired with T2*-weighted gradient echo planar imaging (EPI)

sequences. Participants were instructed to close their eyes without

falling asleep. The scans comprised 210 volumes of 37 axial slices

(TR: 2,000 ms; TE: 27.6 ms; FOV: 240 × 240; 80 × 80 matrix; voxel

size = 3 × 3 × 3 mm3). Slices were oriented parallel to the anterior com-

missure-posterior commissure (AC–PC) transverse plane and acquired in

ascending order with a gap of 0.3 mm.

2.4 | Preprocessing

We preprocessed functional MRI data with FMRIB's Software Library

(FSL, www.fmrib.ox.ac.uk/fsl). We used the default parameters of an

imaging preprocessing pipeline on all participants: Multivariate Explor-

atory Linear Optimized Decomposition into Independent Components

(MELODIC 3.14). MELODIC is usually used to conduct an independent

component analysis but here we only used it for motion correction and

high-pass filtering of the data. This pipeline further consisted of motion

correction using FMRIB's linear image registration tool (MCFLIRT)

(Jenkinson, Bannister, Brady, & Smith, 2002); nonbrain removal using

brain extraction tool (BET) (Smith, 2002); spatial smoothing using a

Gaussian kernel of full width half maximum (FWHM) 5 mm; grand-

mean intensity normalization of the entire 4D dataset by a single

multiplicative factor applying a standard high-pass temporal filtering

(Gaussian-weighted least-squares straight line fitting, with σt = 50.0 s

and σf = 0.02 Hz). The EPI images were coregistered to the T1-

weighted structural images, and the T1-weighted images were coregis-

tered to standard MNI space.

We used the Anatomical Automatic Labeling (AAL) atlas (Tzourio-

Mazoyer et al., 2002) to parcelate the MNI brain into N = 90 cortical

and subcortical noncerebellar brain areas and the BOLD signals were

then averaged over all voxels belonging to each brain area. The BOLD

signals in each of the 90 brain areas were subsequently band-pass

filtered between 0.02 and 0.1 Hz (using a second-order Butterworth

filter), partially discarding the high frequency components associated

with cardiac and respiratory signals (>0.1 Hz), and focusing on the

most meaningful frequency range of resting-state fluctuations (Biswal,

Yetkin, Haughton, & Hyde, 1995; Cabral, Vidaurre, et al., 2017; Glerean,

Salmi, Lahnakoski, Jaaskelainen, & Sams, 2012).

2.5 | Dynamic functional connectivity

We used BOLD phase coherence connectivity (Deco et al., 2017;

Deco & Kringelbach, 2016; Glerean et al., 2012; Ponce-Alvarez et al.,

2015) to obtain a time-resolved dFC tensor, with size N × N × T,

where N = 90 is the number of brain areas considered in the current

parcellation scheme (see Section 2.4), and T = 210 is the number of

recording frames in each scan. We first estimated the phase of the

BOLD signals in all N = 90 areas over time, θ(n,t), using the Hilbert

transform, which expresses a signal X as X(t) = A(t)cos(θ(t)), where A(t)

is the instantaneous amplitude, and θ(t) is the instantaneous phase.

In Figure 1a, we represent the portrait of all N = 90 BOLD phases

at time t, which can be represented in Cartesian coordinates with

cos(θ(n,t)) in the horizontal axis and sin(θ(n,t)) in the vertical axis. Each

entry dFC(n,p,t) contains to the BOLD phase coherence between brain

areas n and p at time t, obtained using the following equation:

dFC n, p, tð Þ = cos θ n, tð Þ− θ p, tð Þð Þ

where cos() is the cosine function. dFC(n,p,t) is 1 if two areas

n and p have synchronized BOLD signals at time t, and dFC(n,p,t) is

0 if the BOLD signals are orthogonal (with a phase difference of 90�).

2.6 | FC states

To identify recurrent patterns in the dFC, LEiDA considers, at each

time t, only the leading eigenvector V1(t) of each dFC(t) (i.e., the one

associated with the largest magnitude eigenvalue), which captures

only the dominant pattern of FC, instead of considering the whole

matrices (Cabral, Vidaurre, et al., 2017). As can be seen in Figure 1a,
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this vector contains N elements (each representing one brain area)

and their sign (positive or negative) can be used to separate brain

areas into two communities according to their BOLD-phase relation-

ship (Newman, 2006). When all elements of the largest magnitude

eigenvector, V1(t), have the same sign, it means all BOLD phases are

following in the same direction with respect to the orientation deter-

mined by V1(t), which is indicative of a global mode governing all

BOLD signals. If instead the first eigenvector V1(t) has elements of dif-

ferent signs (i.e., positive and negative), the BOLD signals follow dif-

ferent directions with respect to the leading eigenvector, which we

use to divide brain areas into two “communities” according to their

BOLD phase relationship (see Figure 1a). Moreover, the magnitude of

each element in V1(t) indicates the “strength” with which brain areas

belong to the communities in which they are placed (Newman, 2006).

The dominant FC state can also be represented back into matrix for-

mat (N × N) by computing the outer product V1V1
T, which is visually

similar to the original dFC(t) matrix, despite being a matrix of Rank

1 (i.e., a matrix that is obtained from a single vector). Since V and –V

represent the same vector orientation, we use a convention ensuring

that most of the elements have negative values.

FIGURE 1 Time courses of recurrent functional connectivity (FC) states obtained with Leading Eigenvector Dynamics Analysis (LEiDA).

(a) Leading eigenvector of BOLD phase coherence (top left) phase portrait of BOLD signal phases at a given time point t in all N = 90 brain areas
(bottom left). The N × N phase coherence matrix, dynamic-FC (dFC(t)) indicates for each pair of areas how coherent they are, where 1 (red)
means full synchrony and −1 (blue) indicates a phase difference of 180� (middle). The leading eigenvector V1(t) of this matrix is a N × 1 vector
that, when multiplied by its transpose V1(t) × V1(t) reveals the dominant pattern of the dFC(t) matrix (top right). Note that the product of
elements with the same sign (be they negative or positive) is always positive, so negative values in the matrix are between pairs with different
signs. The signs of the elements in V1 (red/blue) are used to divide brain areas into communities according to their BOLD phase, which can be
visualized in cortical space (here links between the areas with positive elements in V1 are plotted in red). (b) The leading eigenvectors V1 are
obtained for each time point from all fMRI scans in all subjects, resulting in a large sample of 36,120 leading eigenvectors. (c) This sample is
partitioned into a reduced number of K clusters (here we varied K between 2 and 20). Each cluster is represented by a central vector, which may
not necessarily be a member of the data set. We take these cluster centroid vectors as representing recurrent patterns of BOLD phase coherence,
or FC states. (d) To obtain the FC-state time courses, we select, at each TR, the cluster number to which V1(t) is the most similar. The cluster time
courses (illustrated as color-shaded bars, over a single fMRI session) are then used to calculate, for each scan, the probability, mean duration, and
the state-switching probabilities of each FC state (bottom). For illustration, the FC state assigned to the blue-shaded time points are displayed as
an N × N matrix (outer product) and as a network in cortical space (here lighter and darker colors show stronger and weaker coherence,
respectively, within the positive [yellow-red] versus the negative [cyan-blue] communities) [Color figure can be viewed at wileyonlinelibrary.com]
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Conveniently, eigenvectors can be represented in cortical space

by representing each element as a sphere placed at the center of grav-

ity of the corresponding brain area, and scaling the color of each

sphere according to the value of the corresponding eigenvector ele-

ment. As such, areas with coherent BOLD signals are colored alike

(yellow-to-red for the smallest community and cyan-to-blue for the

largest community), where lighter colors (cyan/yellow) indicate stron-

ger contributions and darker colors (blue/red) weaker contributions. To

highlight the network formed by the smallest community of brain areas,

we plot links between the corresponding areas. For example, Figure 1

(bottom right) shows an FC state represented in cortical space, where

the BOLD signals can be divided into two modes: a larger set of brain

areas (cyan areas) and a smaller functional network (orange/red areas)

formed by areas whose BOLD signal is coherent but phase shifted with

respect to the other community. In the matrix format, all links between

pairs of areas with the same sign (be it positive or negative) have a posi-

tive value (red). Negative values in the matrix format (blue) correspond

to links between areas with different signs in the eigenvector.

In this work, we aimed to explore whether there are specific FC

configurations that differentiate rrMDD patients from controls. To do

so, we first cluster all the samples of FC states into a reduced number

of recurrent patterns, applying a k-means clustering algorithm to all

leading eigenvectors V1(t) across all subjects (rrMDD and controls in

neutral and sad mood, resulting in 210 × 86 × 2 = 36,120 leading

eigenvectors) (see Figure 1b). The clustering divides the samples into

k clusters (each representing a recurrent FC configuration), with

higher k revealing more rare and more fine-grained network configu-

rations. Although there is not a consensus regarding the number of FC

states revealed by fMRI (and whether FC states can be discretized in

the first place), the number of RSNs reported in the literature gener-

ally falls between 7 and 17, depending on the selected criteria

(Damoiseaux et al., 2006; Yeo et al., 2011).

Here, we do not aim to determine the optimal number of FC

states, but rather to explore if there is an FC state that significantly

differs (consistently) between remitted patients and controls, even if

that FC state is different from previously reported networks and/or

occurs only rarely in time. As such, we varied k (number of clusters)

over a wide range between 2 and 20 and for each k, examined how

each FC state changed between groups. Importantly, the clustering

assigns a single FC state to each fMRI time frame, as highlighted by

the shaded bars in Figure 1d. The clustering obtained for each value

of k is obtained independently of each other and thus represent inde-

pendent models of FC configuration space.

2.7 | Between-group comparisons

To assess how the repertoire of k FC states explored during rest var-

ied between groups, we first calculated, for each subject and condi-

tion, the probability of occurrence of each FC state (fraction of

epochs it occurred throughout the scan duration), the mean duration

of each FC state (mean number of consecutive epochs in the same

state), the switching frequency (number of transitions per second

[Hz]) and the switching profiles (probabilities of switching from a given

FC state to another). All values were compared between rrMDD

patients and controls, after neutral and sad mood induction using

(nonparametric) permutation-based t tests (10,000 permutations). For

each FC repertoire obtained by k-means clustering, k hypotheses are

tested. To correct for multiple comparison, we adjusted the signifi-

cance threshold to 0.05/k, using a Bonferroni correction (green

dashed line in Figure 2). We then evaluated the consistency of the FC

states that were found to be significantly different between groups

across the range of k explored (Figures 2 and 3, see Section 3.2). We

also report within-group differences for neutral versus sad mood

(rrMDD patients and controls separately) in the Results, Supporting

Information. For statistical testing involving clinical and demographic

characteristics, we used SPSS version 25. For the LEiDA analysis, we

used MATLAB version R-2017b.

2.8 | Code availability statement

The LEiDA codes are publicly available at github.com/juanitacabral/

LEiDA in the folder: “Remission from Major Depression.”

3 | RESULTS

3.1 | Sample characteristics

Here, 72 rrMDD patients and 46 controls were initially eligible, of which

62 and 41 were scanned, respectively. Of these participants, we

excluded nine rrMDD and six controls because of abnormal brain anat-

omy and two rrMDD due to technical difficulties (corrupted scans). Then,

51 rrMDD patients and 35 controls were included in the final analysis

(Figure S2, Supporting Information). No significant differences were

observed between rrMDD patients and controls for sex, age, education,

IQ, living situation, employment status, and handedness. rrMDD patients

showed higher levels of residual depressive symptoms (HDRS) p < 0.001

(Table 1). Comparisons between rrMDD and controls did not change

when restricted to the sample selected for the present fMRI analyses.

Both groups reported comparable neutral to positive mood after

neutral mood induction (p = 0.095). Mood scores (±SD) decreased

only slightly during neutral resting state (rrMDD: −0.41 ± 0.93, con-

trols: −0.022 ± 0.65), without a group × mood interaction (p = 0.36).

The sad mood induction significantly decreased mood scores in both

groups (rrMDD: −2.13 ± 1.50, controls: −2.15 ± 1.17; p < 0.001), also

without a group × mood-induction interaction (p = 0.95). The lowest

mood reported during the second resting-state was significantly lower

in rrMDD (rrMDD: 4.99 ± 1.88 vs. controls: 5.94 ± 1.39; p = 0.027).

See Table S1 (Supporting Information) for all mood ratings.

3.2 | Detection of the most different FC states

The repertoire of FC states obtained depends on the number of clus-

ters determined in the k-means clustering algorithm, with generally a

higher number of clusters resulting in more fine-grained, less frequent

and often less symmetric networks. Importantly, here we do not aim

to determine the optimal number of FC states explored during rest

but instead to search for FC configurations that most significantly and

consistently differentiate patients remitted from recurrent MDD from

controls. In Figure 2, we show, for each clustering model of the FC

state samples into k FC state categories, the k p-values obtained from
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between-group comparisons in terms of probability and lifetimes. In

each model, k hypotheses are tested. Thus, to account for the

increased probability of false positives, we Bonferroni corrected the

significance threshold to 0.05/k (green dashed line in Figure 2). We

find that, irrespective of the number of clusters selected (as long as

k > 2), the clustering consistently returns an FC state that significantly

differs in probability between patients in remission and controls, falling

below (or very near) the threshold corrected by the number of clusters

within each partition model (green dashed line in Figure 2).

In detail, of the 19 partition models considered (i.e., with k ranging

from 2 to 20), 15 solutions revealed an FC state that occurred signifi-

cantly less in rrMDD compared to controls after correcting for the num-

ber of clusters in each repertoire of FC states (p < 0.05/k). The most

significantly different FC states of each partition model are reported in

Figure 3 in vector format, where areas with the same color are assigned

to the same mode of phase coherence. The 15 FC states that passed

the corrected significance threshold, were highly correlated (Pearson's

r > 0.84 for all pairs of FC states), which indicate that they refer to vari-

ant forms of the same underlying FC state, with differences arising from

the number of output states constrained by k. In terms of duration, this

FC state also lasted significantly shorter in seven partition models

(p < 0.05/k), of which four had overlap with a significant lower

probability (see Figure 2). Of note, for k = 18, the FC state that

lasted significantly shorter in rrMDD patients includes only the sub-

cortical areas (caudate, putamen, pallidus, thalamus, and amygdala)

(2.74 ± 0.26 vs. 4.55 ± 0.63 s, p = 0.0018, uncorrected). This reveals

that more detailed partitions (higher k) can further subdivide the FC

states, revealing finer grained structures that differentiate between

groups (see Figure S3, Supporting Information for dominant FC states

from k = 2 to 20 and Figure S4, Supporting Information for the variance

in each k-means derived FC state for each partition model).

The consistency of our findings for a range of partition models

reinforces the existence of a specific pattern of BOLD phase coher-

ence that differentiates patients in remission from controls. For the

subsequent analysis, we selected the partition into k = 10 FC states,

since it returned a repertoire of 10 FC states where only one FC state

significantly differed both in terms of probability and lifetime (see

Figure 2, blue dots in the gray rectangle in both [a] and [b]), whereas

all other nine FC states in this partition model did not show significant

differences (p > 0.05 for all black dots within the gray rectangles).

Moreover, the partition into 10 states is aligned with previous studies

in the resting-state literature (Damoiseaux et al., 2006).

3.3 | Relevant FC state

Our analysis revealed an FC state, which consistently appeared less

and lasted shorter in rrMDD compared to controls in neutral mood

(Figure 4; FCstate.mp4; Figure S3, Supporting Information). This

underrepresented FC state consists of an extensive network including

frontal (dorsolateral prefrontal cortex [DLPFC] and fronto-orbital cortex),

FIGURE 2 Significance of between-group differences in functional connectivity (FC)-state probability and lifetime as a function of k. For each

partition of the sample into k = 2 to 20 FC states, we plot the p-values associated with the between-group comparison between patients and
controls in both FC-state probability (a) and lifetimes (b). We find that, although most FC states do not show significant differences between
groups (black dots falling above the 0.05 threshold, in red), for all k > 2, there is one FC state that consistently falls below (or very near) the
corrected threshold by the number of clusters (<0.05/k, green dashed line). The p-values marked as red crosses pass the standard threshold
(<0.05) but do not survive the correction for multiple comparisons within each partition model (>0.05/k) and are hence considered false positives.
The blue dashed line refers to the threshold correction if all hypothesis were independent across models, losing statistical power (i.e., increased
probability of false negatives) when the hypothesis are not independent, as it is the case when considering the whole sample of tests performed
[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Consistency of the functional connectivity (FC) state with the most significant differences in probability of occurrence

between remitted patients and controls over partition models. After clustering all eigenvectors into k = 2 to 20 clusters, we
consistently find, for all k > 2, that the FC state most different between groups is a functional network consisting of areas of the frontal
cortex coupled (in terms of BOLD phase alignment) with basal ganglia (i.e., caudate, putamen, and pallidum) and the angular gyrus
(default mode network [DMN]). Note that the involvement of basal ganglia in the relevant network becomes more pronounced for
more fine-grained partitions (higher k). For all partition models with k > 2, the probability of occurrence of these FC states between
groups passed the standard significance threshold of 0.05, but only 15 (highlighted with a green title) passed the significance threshold
when corrected by the number of states, or independent hypothesis, compared within each partition model [Color figure can be viewed at
wileyonlinelibrary.com]
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DMN (posterior cingulate cortex, angular gyrus, and medial prefrontal

cortex [MPFC]), subcortical (the dorsal striatum [Str] [caudate, putamen]

and pallidus), and SN areas (anterior cingulate cortex, frontal operculum).

We further indicate this FC state as the “FN-DMN-Str-SN state.” See

Figure S5, Supporting Information for the overlap of this FN-DMN-Str-

SN state with RSNs defined by previous whole brain parcellations (Choi,

Yeo, & Buckner, 2012; Yeo et al., 2011).

For the selected clustering model (k = 10), the FN-DMN-Str-SN

state occurred less frequently (4.58 ± 0.47% compared to 7.24 ± 0.79%

of the time, p = 0.0025, uncorrected, Hedge's g = 0.67; Hedge's

g = 0.67; medium to large effect size) and lasted shorter when domi-

nant (3.78 ± 0.11 vs. 5.10 ± 0.18 s, p = 0.0011, Hedge's g = 0.71;

medium to large effect size) (Figure 4; FCstate.mp4).

In Figure 5, we show the full repertoire of FC states that are

returned by LEiDA when choosing k = 10. This reveals different net-

work configurations that appear, dissolve, and reoccur in all subjects

during the scan, with the state of global coherence showing not only

the highest probability but also the highest variability. Notably, these

networks overlap with previously described RSNs (Choi et al., 2012;

Yeo et al., 2011) and with cognitive states based on a large-scale

automatic synthesis of human functional neuroimaging data (Yarkoni,

Poldrack, Nichols, Van Essen, & Wager, 2011).

3.4 | Correction for residual symptoms

For the FN-DMN-Str-SN state, we examined whether the differ-

ences between rrMDD and controls in duration and lifetime

remained significant after correcting for residual depressive symp-

toms (HDRS scores). In a regression analysis with group (rrMDD

or control) and HDRS as independent variables and probability/

lifetime as the dependent variable, the group differences remained

significant (p = 0.007 and p = 0.006, respectively). This indicates

that current level of depressive symptoms likely does not explain

the group differences.

3.5 | Effect of sad mood induction on FC states

During sad mood, of the 19 partition models considered, the FN-DMN-

Str-SN state had a lower probability of occurrence in three clustering

solutions of a higher order (k = 17, 19, and 20), that is, when more subdi-

visions in FC states are made (Figure S3, Supporting Information), after

correction for multiple comparisons (p < 0.05/k). Furthermore, signifi-

cantly shorter lifetimes were found for this FC state in partition models

of a lower order (k = 5 and 6) (Figure S3, Supporting Information).

As can be seen in Figure 4d,e, for k = 10, the probability of being

in the FN-DMN-Str-SN state in sad mood was only significantly differ-

ent between groups before correcting by k (6.0 ± 0.51% compared to

7.80 ± 0.93% of the time, respectively, p = 0.048, uncorrected, Hedge's

g = 0.41, indicating a small to medium effect size). Further, no differ-

ences were detected in terms of duration of FC states (4.60 ± 0.26

vs. 4.80 ± 0.36 s, respectively, p = 0.32, uncorrected, Hedge's g = 0.10,

indicating a small effect size).

3.6 | Group × mood interactions

We examined if there were significant group × mood interaction

effects for the probability of occurrence and mean lifetime of the FN-

DMN-Str-SN state for k = 10 by means of a repeated measures

ANOVA. We found no significant interaction effects for this FC pattern

for probability, F = 0.634 p = 0.425, but there was a significant interac-

tion effect for lifetime, F = 4.32, p = 0.041. These interaction effects

did not significantly change when correcting for residual symptoms in a

repeated measures ANCOVA, p = 0.259 and p = 0.024, respectively.

3.7 | Within-group differences in FC states for
neutral versus sad mood

Remitted-MDD showed lower probabilities and lifetimes for sad ver-

sus neutral mood in multiple FC states (Results/Figure S6, Supporting

Information). For controls, there were no within-group differences for

neutral versus sad mood.

TABLE 1 Sample characteristics

Between-group statistics

rrMDD HC
χ2 t U p(n = 62) (n = 41)

Female N (%) 43 (69.3%) 28 (68.3%) 0.01 0.91

Age Years; mean (SD) 53.7 (7.9) 51.8 (8.1) 1.17 0.25

Education Levelsa 0/0/0/4/21/23/14 0/0/0/1/16/17/7 1.49 0.69

IQ Mean (SD) 108 (8.5) 106 (9.9) 878.5 0.14

Living situation Levelsb 26/0/18/14/2/0/2 10/0/16/11/4/0/0 6.23 0.18

Employment status Levelsc 24/23/15/0 21/16/4/0 3.7 0.16

Handedness Levelsd 4/50/4 2/33/4 0.44 0.8

Age of onset Years; mean (SD) 27.2 (11.2) – –

Episodes Median (IQR) 4.0 (2/4/7) – –

HDRS Median (IQR) 2.0 (1/2/5) 1.0 (0/1/1) 644 <0.001

HC = healthy control; HDRS = Hamilton Depression Rating Scale; IQR: interquartile range; LEIDS-R = Leiden Index Depression Sensitivity-Revised;
rrMDD = remitted recurrent major depressive disorder; RRS = Ruminative Response Scale.
aLevel of educational attainment (Verhage, 1964): levels range from 1 to 7 (1 = primary school not finished; 7 = preuniversity/university degree).
bLiving situation: alone/living with parents/cohabiting/cohabiting with children/single living with children/other/unknown.
cEmployment status: low/middle/high/never worked.
dHandedness = left/right/ambidexter; IQR = interquartile range; χ2 = chi-square test statistic; p = p-value; U = Mann–Whitney U nonparametric test
statistic; t = independent-samples t-test statistic. This table was published before (Figueroa et al., 2017).
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FIGURE 4 Functional connectivity (FC) state with a significant difference between rrMDD patients and controls (k = 10) in probability of

occurrence and lifetime during neutral mood. (a) The dominant connectivity state is represented in the cortical space, where functionally connected
brain areas (represented as spheres) are colored alike. The spheres colored in yellow, orange, and red, represent areas in the FN, default mode
network (DMN), striatum, and SN, which are all positively correlated between each other, but negatively correlated with the rest of the brain
(cyan/blue colored spheres). The dominant state is also represented as the eigenvector's outer product, which is a 90 × 90 matrix representing the
number of brain areas and red or blue indicate positive or negative BOLD phase synchronization between them. (b) Contribution of different brain
areas to the dominant FC state. Bars in yellow represent areas in the FN, DMN, striatum, and SN and bars in light blue represent the rest of the

brain. The magnitude of values indicates the “strength” with which brain areas belong to the FC state. (c) The significant FC state rendered on the
cortex. (d) Differences in probability of occurrence of this state between rrMDD patients and controls (4.58 ± 0.47% vs. 7.24 ± 0.79%, respectively,
p = 0.0022 in neutral mood and 6.0 ± 0.51% vs. 7.80 ± 0.93%, p = 0.049 in sad mood). (e) Differences in lifetime of this state between rrMDD
patients and controls (3.78 ± 0.11 vs. 5.10 ± 0.18 s, p = 0.0020 and 4.60 ± 0.26 vs. 4.80 ± 0.36, p = 0.32 in sad mood). ** Significant group
difference after correcting for multiple comparisons. * Significant group difference before correcting for multiple comparisons. Abbreviations:
MDD = major depressive disorder; rrMDD = remitted recurrent MDD; TR = repetition time [Color figure can be viewed at wileyonlinelibrary.com]
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3.8 | Switching frequencies

Overall, mean switching frequencies (number of switches/second) did

not differ between rrMDD and controls for all clustering solutions

(from k = 2 to 20) in neutral and in sad mood (all p-values >0.05).

3.9 | Switching probabilities

We examined the transition patterns between FC states in detail for

the selected partition model (k = 10) by calculating the probability of,

being in a given FC state, switching to any of the other FC states. In

Figure 6, we illustrate the general switching pattern for the whole

group, with blue arrows indicating the switches that exceed a proba-

bility of 20% of occurring (numeric values reported in the switching

matrix on the right). On a whole-group level, the most common

switches were observed from FC states 2, 3, 5, and 6 toward the

global FC state (first column in the switching matrix), suggesting that

after being coherent in BOLD phase for some time, the areas involved

in these functional networks realign their BOLD phases with the

global signal, returning to a state of global BOLD phase coherence,

which is the most prevalent FC state.

Comparing the switching patterns between rrMDD and controls, we

found that, even when rrMDD patients displayed the FN-DMN-Str-SN

FIGURE 5 Differences in probability and duration of each functional connectivity (FC) state between and within groups for neutral and sad mood

conditions for k = 10. FC states are represented in the cortical space, where functionally connected brain areas (represented as spheres) are colored
alike. The spheres colored in yellow/red represent areas that are all positively correlated between them, but negatively correlated with the rest of the
brain (cyan/blue colored spheres). Names of FC states were defined by loading network maps into neurosynth, http://neurosynth.org/decode/, a
platform for large-scale, automated synthesis of functional magnetic resonance imaging (fMRI) data. In the case of the state that was significantly
different between groups, (FC state 4), we additionally compared the FC state with resting-state networks (RSNs) defined by a whole-brain
parcellation scheme (Choi et al., 2012; Yeo et al., 2011) (Figure S5, Supporting Information). Of note, when considering other clustering solutions other
FC states may be identified. */** Significant difference between rrMDD and controls before/after correcting for number of states (*p < 0.05,
**p < 0.05/k), +/++ Significant within-group difference for rrMDD, neutral versus sad before/after correcting for number of states (+p < 0.05,
++p < 0.05/k). Abbreviations: DMN = default mode network; FN = frontal network; MDD = major depressive disorder; rrMDD = remitted recurrent
MDD; SN = salience network; Str = striatum; TR = repetition time [Color figure can be viewed at wileyonlinelibrary.com]
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state, they showed a significantly lower probability of switching from this

state to the prefrontal–striatum state compared to controls (16.5 vs. 23%,

p = 0.004, uncorrected, p = 0.04 corrected by k; Figure 6a, green arrow).

In addition, we also detected a higher probability to switch from the

prefrontal–limbic state to the state of global BOLD coherence (6%

rrMDD vs. 1% controls, p = 0.002, uncorrected, p = 0.02 corrected by k;

Figure 6a, black arrow). Conducting a deeper analysis of the transition

profiles shown in Figure 6, we can see that the trajectory from the FN-

DMN-Str-SN state before returning to the state of global BOLD coher-

ence occurs preferentially via the prefrontal–striatum state in controls.

In rrMDD, this trajectory appears disrupted, suggesting that rrMDD

patients not only have decreased ability to access the FN-DMN-Str-SN

network but also to switch from this to the prefrontal–striatum state.

3.10 | Effect of sad mood on switching profiles

The overall switching pattern after sad mood induction for the whole

group was similar to the switching pattern during neutral mood

(Figure 6b). During sad mood, for k = 10, we no longer identified sig-

nificant differences in switching probabilities between groups (all

p > 0.05/k, k = 10). See Figure S7, Supporting Information for differ-

ences with p < 0.05.

3.11 | Within-group differences for neutral versus
sad mood

Differences in switching probabilities were observed both for rrMDD

and controls for neutral versus sad mood, which we describe in the

Results and Figures S7 and 8a,b (Supporting Information).

4 | DISCUSSION

This study investigated differences in FC states reoccurring over time

during resting-state in rrMDD patients not taking antidepressants

compared with never depressed controls. We identified decreased

ability in rrMDD patients to access an FN-DMN-Str-SN state, consist-

ing of frontal, DMN, striatum, and SN areas during neutral mood. Our

study provides a new framework for detecting network abnormalities

associated with vulnerability during MDD remission.

The FN-DMN-Str-SN state, which consistently differed between

rrMDD and controls, with a medium to high effect size, reveals an exten-

sive network of clinically relevant areas including key areas from the

DMN (posterior cingulate cortex (PCC) and MPFC), executive network

(dorsolateral prefrontal cortex (DLFPC)), and SN (anterior cingulate

cortex (ACC)) (Figure S4, Supporting Information). These networks have

been identified as affected in MDD before, and together form the “triple

network,” a model employed for understanding affective and neurocogni-

tive dysfunctions across multiple disorders (Menon, 2011). The extensive

FN included in this FC state consists of areas activated during cognitive

control and flexible switching of attention from internal thought pro-

cesses to the external environment, with the DLPFC being particularly rel-

evant (Japee, Holiday, Satyshur, Mukai, & Ungerleider, 2015).

Additionally, the FC state includes a large DMN component.

Dominance of the DMN over networks involved in cognitive control has

been associated with depressive symptoms (Knyazev, Savostyanov,

Bocharov, Tamozhnikov, & Saprigyn, 2016), rumination (Hamilton et al.,

2011), and might be related to depressive recurrence, though this has

not been empirically tested (Marchetti et al., 2012). Furthermore, the

state included areas of the SN, a network that has been proposed to play

a key role in switching brain activity between introspective, ruminative

DMN functions and task-based executive networks functions (Menon &

Uddin, 2010). Finally, the state included the dorsal striatum (caudate and

putamen) and globus pallidus, structures involved in the focusing (and fil-

tering) of cortical input (Grillner, Hellgren, Menard, Saitoh, & Wikstrom,

2005). Abnormal functioning of frontostriatal pathways might addition-

ally lead to maladaptive regulation of emotions (Drevets, 2007), contrib-

uting to anhedonia and rumination in MDD (Furman et al., 2011).

Taken together, our results suggest that, patients remitted from

recurrent MDD, show decreased ability to access an FC state in neu-

tral mood regulating cognitive control (FN/SN) to diminish negative

self-referential processes (DMN) and effectively regulate emotions

(SN/corticostriatal pathways) (Marchetti et al., 2012).

Additionally, we observed a lower probability in rrMDD to switch

from the FN-DMN-Str-SN state to a smaller prefrontal–striatum state.

Interestingly, on a group level, the prefrontal–striatum state has a high

probability of switching to the state of global BOLD coherence. It has

been suggested that the more frequently occurring global brain states

allow for a greater range of either integration or segregation between

neural networks and brain areas, that is, more flexible switching to dif-

ferent brain states (Nomi et al., 2017). This greater neural flexibility

might facilitate cognitive flexibility (Kringelbach, McIntosh, Ritter,

Jirsa, & Deco, 2015; Nomi et al., 2017). As an additional measure of

neural flexibility, in a post hoc supplementary analysis, we calculated

the entropy (Shannon, 1948) for k = 10 and the FN-DMN-Str-SN state

separately (Discussion, Supporting Information). We found that the

entropy associated with the FN-DMN-Str-SN state was significantly

decreased in patients in neutral mood. This indicates a higher predict-

ability of occurrence (Wang, 2008) of this FC state in rrMDD patients,

supporting the idea that this brain state occurs in a less flexible manner.

After the sad mood induction, the duration of the FN-DMN-Str-SN

state increased in rrMDD but stayed similar in controls (significant

group × mood interaction). This suggests that rrMDD have a decreased

ability to access this state in neutral mood but manage to recruit this

state during sad mood (albeit slightly less than controls). This differen-

tial increase supports our hypothesis that this FC state is relevant for

processes associated with affect and emotion in rrMDD.

We speculate that this increase might reflect a compensatory

mechanism in rrMDD to regulate brain activity. This could be an

attempt (which might or might not be successful) to regulate negative

self-referential and emotional processing when sad mood is induced. In

controls, this FC state is already more easily activated in neutral mood

and therefore regulation of brain activity during sad mood and in daily

life might be more automatic and less effortful for never depressed sub-

jects. This is corroborated by the fact that this FC state occurs more

flexibly (as measured by the entropy) in controls during neutral mood

than in remitted-MDD (but not during sad mood, see Results, Support-

ing Information). Therefore, we hypothesize that an inability to access this

state during neutral mood might reflect increased difficulty for rrMDD

patients to effectively and flexibly handle daily life stressors and changes
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in affect (Van der Lande et al., 2016). This hypothesis needs to be tested

by future research. Of note, we additionally observed within-group differ-

ences only in rrMDD for sad versus neutral mood (Results, Supporting

Information), indicating that the induction of sad mood (i.e., recall of the

saddest life experience) affects brain network dynamics more strongly in

patients in remission compared to controls.

FIGURE 6 (a,b) Switching probabilities for the whole group and differences between rrMDD and controls, for (a) neutral and (b) sad mood. Switching

probabilities for the whole group are shown above a threshold of 20% probability of switching to show more frequent switches. The whole group
switching matrices (titled “whole group neutral” and “whole group sad”) indicate the probability of, being in a given functional connectivity (FC) state
(rows), transitioning to any of the other states (columns) for the whole group. FC states are represented in the cortical space, where functionally connected
brain areas (represented as spheres) are colored alike. The spheres colored in yellow/red represent areas that are all positively correlated between them,
but negatively correlated with the rest of the brain (cyan/blue colored spheres). The light blue arrows from and to the FC states indicate the whole group
switching probabilities, scaled to the magnitude of probability of switching. Significantly different transitions after correcting for k = 10 (p < 0.05/10) for
rrMDD compared to controls are illustrated in this figure, with the black arrow representing the transition that occurs with higher probability in rrMDD
and in green the one that occurs with higher probability in controls (note these arrows have not been scaled according to magnitude of probability of
switching). Transitioning differences between groups were calculated using a permutation-based two sample t test with 10,000 permutations. rrMDD
patients showed a lower probability of switching from the FN-DMN-Str-SN state to the prefrontal–striatum state (16.5 vs. 23%, p = 0.004), and a higher
probability to switch from the prefrontal–limbic state to the global state (6 vs. 1%, p = 0.003). We identified no significant between group differences in
sad mood after correction for k = 10 (p > 0.05/k). Abbreviations: DMN = default mode network; FN = frontal network; MDD = major depressive
disorder; rrMDD = remitted recurrent MDD; SN = salience network; Str = striatum [Color figure can be viewed at wileyonlinelibrary.com]
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Of note, though rrMDD reported higher severity of residual

depressive symptoms, this did not explain group differences in probabil-

ity or lifetime of the FN-DMN-Str-SN state. Additionally, rrMDD

reported higher levels of sadness than controls before and after the sad

mood induction (although both groups' mood decreased equally during

the sad mood induction). Overall, it thus seems that these symptoms

did not contribute to group differences in the ability to access the FN-

DMN-Str-SN state in neutral or sad mood. This could indicate that

these dynamic FC differences represent more of a trait effect of depres-

sion than a state effect associated with depressive symptomatology.

Interestingly, previous studies in MDD have also found increased

dynamic FC in areas overlapping with the FN-DMN-Str-SN state:

between the frontoparietal network and DMN (Kaiser et al., 2016)

within the DMN (Wise et al., 2017) and between DMN (MPFC) and

the insula (Kaiser et al., 2016); related to levels of self-report rumination

(Kaiser et al., 2016). This suggests that dynamic changes in FC in these

areas might be particularly important for depression and a ruminative

thinking style. However, these studies included acute MDD patients

and did not use a mood-induction procedure, which makes it difficult to

compare results. In remitted-MDD, Foland-Ross, Cooney, Joormann,

Henry, & Gotlib, 2014 found that during both a sad mood induction and

automatic mood regulation by positive autobiographical recall, remitted

participants exhibited a decrease in activation in the left ventrolateral

prefrontal cortex and cuneus, which are both involved in autobiographi-

cal memory processing (Foland-Ross et al., 2014). However, since this

study examined brain activation this is also challenging to compare. Fur-

ther, we examined resting-state dynamic FC during the recovery of sad

mood, and not during the actual mood induction. It should be examined

further how induction of sad mood or stress changes dynamic FC.

Results of this study are novel because our approach differs from

common static-FC analyses, which previously identified aberrations in

MDD in networks assumed to be temporally stable over the whole

recording time, whereas we here show differences in networks that

reoccur and dissolve over time. Of note, the FN-DMN-Str-SN state is

only dominant during a small proportion of time. However, it consists

of clinically relevant areas implicated in cognitive control and emotio-

nal/self-referential processing and occurred less, especially during neu-

tral mood, in rrMDD patients at high risk for recurrence. Importantly,

we found that this FC state consistently differed between groups after

multiple comparisons correction, largely independent of which cluster-

ing solution was chosen (Figure S3, Supporting Information). Further,

using this approach, we found that an FC state of areas traditionally

belonging to spatially defined RSNs derived from static-FC analysis

forms a separate network of increased coherence over time. This

emphasizes transient dysfunctional interactions between multiple net-

works involved in psychological functioning, as opposed to unistructural

or single network abnormalities in the pathophysiology of MDD.

Although this is still unclear, the more a functional network is

accessed, the more stable it might become during rest because

it reinforces underlying structural connections, perhaps trough

Hebbian learning mechanisms (Martin & Morris, 2002). For instance, it

has been shown that cognitive training over time does not only alter

FC but occurs alongside changes in the structural connectome

(Caeyenberghs, Metzler-Baddeley, Foley, & Jones, 2016). Here, healthy

controls might have accessed the FN-DMN-Str-SN state more

throughout life, which might be associated with a lower risk of occur-

rence of a depressive episode. If this hypothesis is true, it could be exam-

ined whether interventions such as cognitive control training

(Hoorelbeke & Koster, 2017) or neurofeedback (Enriquez-Geppert, Hus-

ter, & Herrmann, 2017), which allows participants to regulate brain pro-

cesses/states in real time (Zilverstand, Sorger, Zimmermann, Kaas, &

Goebel, 2014), could increase the occurrence and duration of this FC

state.

Interestingly, two previous studies on dFC in acute MDD also found

alterations in similar networks involving DMN/frontoparietal and SN

areas, albeit using different methods (Demirtaş et al., 2016; Kaiser et al.,

2016). Kaiser et al. (2016) used a sliding-window analysis, which has limi-

tations related to window size, and Demirtaş et al. (2016) used instanta-

neous FC, more comparable to our study. Our approach of focusing on

the dominant FC state has the advantage of being more robust to high-

frequency noise, as recurrences of the same pattern are more clearly

detected (Cabral et al., 2017; Cabral, Vidaurre, et al., 2017). Merit for

future studies lies in examining whether FC states are altered when

MDD patients change from a remitted to a depressed state, and whether

FC alterations predict short- and long-term MDD recurrence.

The state that occurred most in both groups was a state of global

coherence of BOLD phases. This global state shows the greatest variabil-

ity of all FC states and might therefore allow for a greater range of corre-

lations between areas to form, thereby functioning as a baseline state

from which other FC states are organized (Nomi et al., 2017). However,

this FC state might relate to what is commonly described as the “global

signal,” defined as the time series of signal intensity averaged across all

brain voxels, composed of both neural and nonneural signals (Murphy &

Fox, 2017). In this study, movement was corrected using MCFLIRT but

no further artifact rejection was carried out. In particular, we chose not

to regress out motion parameters or use global signal regression, a proce-

dure which has been suggested to reduce motion-based signals (Power

et al., 2014), though this remains a topic of debate. Furthermore, we did

not correct for direct physiological measures nor did we use COMPCOR

(Behzadi, Restom, Liau, & Liu, 2007). Not removing these factors could

affect our results. It has recently been argued that including/removing

this global signal might produce different complementary insights into

the brain's functional organization (Murphy & Fox, 2017). The functional

properties of this global state of coherence merit further examination.

4.1 | Strengths and limitations

The main strength of our study is that we have a large sample of

antidepressant-free patients in remission from at least two episodes of

MDD, which allows investigating biomarkers for patients at risk of MDD

excluding possible medication effects. Further, using a method to charac-

terize FC at the instantaneous level, we identify FC states that, despite

occurring with relatively low probability and duration, govern the pattern

of BOLD phase coherence recurrently and consistently across subjects,

which could be otherwise missed with analysis over longer time windows.

Importantly, instead of focusing on single pairwise connections between

regions, the identification of recurrent brain-wide FC patterns allows

characterizing FC states on a subject-by-subject level, whose properties

can subsequently be statistically compared between groups. Although

we only examined partition models from k = 2 to 20 clusters, we show
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that results can be robust across a range of partition models, with dif-

ferences arising from the granularity inherent to the number of selected

clusters. The FC states identified in the current work are strongly con-

strained by the selected parcellation atlas (AAL). Due to the anatomical

basis of this atlas and since all areas have different and relatively large

sizes, it might have relatively low BOLD signal homogeneity within its

regions compared to other fMRI-based parcellations, due to mixing of

functional signals (Craddock et al., 2013). Therefore, extending this

methodological approach to parcellations based on functional homoge-

neity and with similar size (Craddock et al., 2013; Glasser et al., 2016;

Shen, Tokoglu, Papademetris, & Constable, 2013), and/or focusing on

more fine-grained FC states is likely to reveal subdivisions within the

FN-DMN-Str-SN state. This would allow to potentially identify specific

subsystems driving the activation of the FN-DMN-Str-SN state.

Further, we selected a solution of k = 10 for further analysis in

detail, because this solution yielded the strongest group difference in

dynamic properties. This approach could be critiqued as circular and

could thus be considered a limitation of our analyses. However, rely-

ing on standard algorithms for evaluating cluster performance (which

consistently have a penalty for higher dimensionalities) may not nec-

essarily be the appropriate approach for detecting altered patterns in

neuroimaging data. Importantly, independent validation experiments

should be conducted to confirm that the core of our findings is

reproducible and potentially extendable to patients with MDD (see

COBIDAS for guidelines on reproducible research; Nichols et al., 2017).

The unclear functional meaning of FC states remains a limitation in

studies of dynamic FC. Moreover, the dynamic nature of FC is likely to

occur at a much faster timescale than captured by the BOLD signal (here

with a TR of 2 s), with magnetoencephalography (MEG) studies pointing

to timescales in the order of 200 ms (Baker et al., 2014; Vidaurre et al.,

2016). As such, measures like “FC state duration” must be interpreted

with caution, having in mind that the BOLD signals were smoothed

below 0.1 Hz. Therefore, long durations of a specific FC state (~10 s)

most likely reflect periods of high probability occurring at fast frequen-

cies, rather than expressing a prolonged sustained period of a fixed FC

configuration. Analyzing the results from a statistical perspective and

comparing between groups, as we do here, allows overcoming this limi-

tation in order to capture the most meaningful between-group differ-

ences in connectivity patterns with inherently faster dynamics.

Nevertheless, being able to detect meaningful dFC characteristics dif-

ferentiating people at risk for MDD from controls reinforces the poten-

tial of dFC measures to provide biomarkers for psychiatry.

Further, even though we selected remitted participants that were

free of current diagnoses of alcohol/drug dependence, psychotic or

bipolar, predominant anxiety or severe personality disorder (all assessed

by the SCID), a proportion of participants (41%) had other past or cur-

rent psychiatric comorbidities. Although we performed a sensitivity

analysis correcting for the presence of comorbidity in our group com-

parison for probability and lifetime for the FN-DMN-str-SN state (see

Results, Supporting Information), we cannot rule out that these comor-

bidities did not partly influence the group differences. An additional lim-

itation is that the sad mood induction was at the end of our scanning

paradigm. We took this approach because it might have been too

emotionally straining for participants to continue with tasks

afterward. However, we cannot rule out order effects and/or addi-

tional effects of fatigue after other scanning components.

5 | CONCLUSION

Using the novel LEiDA approach to examine instantaneous dynamic

FC, this study provides new insights on aberrations in dynamic brain

network connectivity in remitted MDD patients. This new framework

for exploring dynamic FC could potentially be extended to other dis-

eases that have been related to pathological resting-state connectiv-

ity. Overall, our findings suggest reduced ability and flexibility of

patients remitted from MDD, but at high risk for recurrence, to access

a clinically relevant control network involved in the interplay between

emotional and attentional processing and self-referential attention.
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